mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-22 17:10:28 +00:00

This commit add following crypto changes 1. Update current crypto code with upstream supplicant code 2. Add a proper porting layer to use mbedtls APIs for all the crypto operations used by supplicant. Internal crypto will be used when USE_MBEDLTS flag is disabled in supplicant's menuconfig. This commit also removes the clutter in crypto files due to partial porting of some APIs to mbedtls, all the code from those files have been removed and rewritten in a generic way, this is inspired from current upstream code. This also reduces the lib size significantly, supplicant's lib size reduces around ~567kb after this change(NB: lib size doesn't indicate reduction in final bin size).
164 lines
3.6 KiB
C
164 lines
3.6 KiB
C
/*
|
|
* AES (Rijndael) cipher - decrypt
|
|
*
|
|
* Modifications to public domain implementation:
|
|
* - cleanup
|
|
* - use C pre-processor to make it easier to change S table access
|
|
* - added option (AES_SMALL_TABLES) for reducing code size by about 8 kB at
|
|
* cost of reduced throughput (quite small difference on Pentium 4,
|
|
* 10-25% when using -O1 or -O2 optimization)
|
|
*
|
|
* Copyright (c) 2003-2012, Jouni Malinen <j@w1.fi>
|
|
*
|
|
* This software may be distributed under the terms of the BSD license.
|
|
* See README for more details.
|
|
*/
|
|
|
|
#include "includes.h"
|
|
|
|
#include "common.h"
|
|
#include "crypto.h"
|
|
#include "aes_i.h"
|
|
|
|
/**
|
|
* Expand the cipher key into the decryption key schedule.
|
|
*
|
|
* @return the number of rounds for the given cipher key size.
|
|
*/
|
|
static int rijndaelKeySetupDec(u32 rk[], const u8 cipherKey[], int keyBits)
|
|
{
|
|
int Nr, i, j;
|
|
u32 temp;
|
|
|
|
/* expand the cipher key: */
|
|
Nr = rijndaelKeySetupEnc(rk, cipherKey, keyBits);
|
|
if (Nr < 0)
|
|
return Nr;
|
|
/* invert the order of the round keys: */
|
|
for (i = 0, j = 4*Nr; i < j; i += 4, j -= 4) {
|
|
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
|
|
temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
|
|
temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
|
|
temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
|
|
}
|
|
/* apply the inverse MixColumn transform to all round keys but the
|
|
* first and the last: */
|
|
for (i = 1; i < Nr; i++) {
|
|
rk += 4;
|
|
for (j = 0; j < 4; j++) {
|
|
rk[j] = TD0_(TE4((rk[j] >> 24) )) ^
|
|
TD1_(TE4((rk[j] >> 16) & 0xff)) ^
|
|
TD2_(TE4((rk[j] >> 8) & 0xff)) ^
|
|
TD3_(TE4((rk[j] ) & 0xff));
|
|
}
|
|
}
|
|
|
|
return Nr;
|
|
}
|
|
|
|
void * aes_decrypt_init(const u8 *key, size_t len)
|
|
{
|
|
u32 *rk;
|
|
int res;
|
|
rk = os_malloc(AES_PRIV_SIZE);
|
|
if (rk == NULL)
|
|
return NULL;
|
|
res = rijndaelKeySetupDec(rk, key, len * 8);
|
|
if (res < 0) {
|
|
os_free(rk);
|
|
return NULL;
|
|
}
|
|
rk[AES_PRIV_NR_POS] = res;
|
|
return rk;
|
|
}
|
|
|
|
static void rijndaelDecrypt(const u32 rk[/*44*/], int Nr, const u8 ct[16],
|
|
u8 pt[16])
|
|
{
|
|
u32 s0, s1, s2, s3, t0, t1, t2, t3;
|
|
#ifndef FULL_UNROLL
|
|
int r;
|
|
#endif /* ?FULL_UNROLL */
|
|
|
|
/*
|
|
* map byte array block to cipher state
|
|
* and add initial round key:
|
|
*/
|
|
s0 = GETU32(ct ) ^ rk[0];
|
|
s1 = GETU32(ct + 4) ^ rk[1];
|
|
s2 = GETU32(ct + 8) ^ rk[2];
|
|
s3 = GETU32(ct + 12) ^ rk[3];
|
|
|
|
#define ROUND(i,d,s) \
|
|
d##0 = TD0(s##0) ^ TD1(s##3) ^ TD2(s##2) ^ TD3(s##1) ^ rk[4 * i]; \
|
|
d##1 = TD0(s##1) ^ TD1(s##0) ^ TD2(s##3) ^ TD3(s##2) ^ rk[4 * i + 1]; \
|
|
d##2 = TD0(s##2) ^ TD1(s##1) ^ TD2(s##0) ^ TD3(s##3) ^ rk[4 * i + 2]; \
|
|
d##3 = TD0(s##3) ^ TD1(s##2) ^ TD2(s##1) ^ TD3(s##0) ^ rk[4 * i + 3]
|
|
|
|
#ifdef FULL_UNROLL
|
|
|
|
ROUND(1,t,s);
|
|
ROUND(2,s,t);
|
|
ROUND(3,t,s);
|
|
ROUND(4,s,t);
|
|
ROUND(5,t,s);
|
|
ROUND(6,s,t);
|
|
ROUND(7,t,s);
|
|
ROUND(8,s,t);
|
|
ROUND(9,t,s);
|
|
if (Nr > 10) {
|
|
ROUND(10,s,t);
|
|
ROUND(11,t,s);
|
|
if (Nr > 12) {
|
|
ROUND(12,s,t);
|
|
ROUND(13,t,s);
|
|
}
|
|
}
|
|
|
|
rk += Nr << 2;
|
|
|
|
#else /* !FULL_UNROLL */
|
|
|
|
/* Nr - 1 full rounds: */
|
|
r = Nr >> 1;
|
|
for (;;) {
|
|
ROUND(1,t,s);
|
|
rk += 8;
|
|
if (--r == 0)
|
|
break;
|
|
ROUND(0,s,t);
|
|
}
|
|
|
|
#endif /* ?FULL_UNROLL */
|
|
|
|
#undef ROUND
|
|
|
|
/*
|
|
* apply last round and
|
|
* map cipher state to byte array block:
|
|
*/
|
|
s0 = TD41(t0) ^ TD42(t3) ^ TD43(t2) ^ TD44(t1) ^ rk[0];
|
|
PUTU32(pt , s0);
|
|
s1 = TD41(t1) ^ TD42(t0) ^ TD43(t3) ^ TD44(t2) ^ rk[1];
|
|
PUTU32(pt + 4, s1);
|
|
s2 = TD41(t2) ^ TD42(t1) ^ TD43(t0) ^ TD44(t3) ^ rk[2];
|
|
PUTU32(pt + 8, s2);
|
|
s3 = TD41(t3) ^ TD42(t2) ^ TD43(t1) ^ TD44(t0) ^ rk[3];
|
|
PUTU32(pt + 12, s3);
|
|
}
|
|
|
|
|
|
int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
|
|
{
|
|
u32 *rk = ctx;
|
|
rijndaelDecrypt(ctx, rk[AES_PRIV_NR_POS], crypt, plain);
|
|
return 0;
|
|
}
|
|
|
|
|
|
void aes_decrypt_deinit(void *ctx)
|
|
{
|
|
os_memset(ctx, 0, AES_PRIV_SIZE);
|
|
os_free(ctx);
|
|
}
|