mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-26 10:06:51 +00:00

Closes https://github.com/espressif/esp-idf/pull/15999 Closes https://github.com/espressif/esp-idf/issues/15997
260 lines
13 KiB
C
260 lines
13 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @brief
|
|
* This is for P4 and future chips with similar arch.
|
|
* The XIP PSRAM is done by CPU copy, v1(see mmu_psram_flash.c) is done by Cache copy
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_log.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "soc/ext_mem_defs.h"
|
|
#include "hal/mmu_hal.h"
|
|
#include "hal/mmu_ll.h"
|
|
#include "hal/cache_hal.h"
|
|
#include "esp_private/mmu_psram_flash.h"
|
|
#include "esp_mmu_map.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "esp_private/image_process.h"
|
|
|
|
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
|
|
#define ALIGN_DOWN_BY(num, align) ((num) & (~((align) - 1)))
|
|
|
|
/**
|
|
* If using `int`, then for CLANG, with enabled optimization when inlined function is provided with the address of external symbol, the two least bits of the constant used inside that function get cleared.
|
|
* Optimizer assumes that address of external symbol should be aligned to 4-bytes and therefore aligns constant value used for bitwise AND operation with that address.
|
|
*
|
|
* This means `extern int _instruction_reserved_start;` can be unaligned to 4 bytes, whereas using `char` can solve this issue.
|
|
*
|
|
* As we only use these symbol address, we declare them as `char` here
|
|
*/
|
|
extern char _instruction_reserved_start;
|
|
extern char _instruction_reserved_end;
|
|
extern char _rodata_reserved_start;
|
|
extern char _rodata_reserved_end;
|
|
|
|
const static char *TAG = "mmu_psram";
|
|
static uint32_t s_irom_vaddr_start;
|
|
static uint32_t s_drom_vaddr_start;
|
|
static size_t s_irom_size;
|
|
static size_t s_drom_size;
|
|
static int s_irom_paddr_offset;
|
|
static int s_drom_paddr_offset;
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
|
|
static uint32_t s_do_load_from_flash(uint32_t flash_paddr_start, uint32_t size, uint32_t target_vaddr_start, uint32_t target_paddr_start)
|
|
{
|
|
uint32_t flash_end_page_vaddr = SOC_DRAM_FLASH_ADDRESS_HIGH - CONFIG_MMU_PAGE_SIZE;
|
|
uint32_t psram_vaddr_start;
|
|
|
|
#if !CONFIG_SPIRAM_BOOT_INIT
|
|
// Once PMP sets up the IROM/DROM split, the target_vaddr_start would not be configured to write (W) access. Thus, performing s_do_load_from_flash() post the PMP split
|
|
// is configured, copying the flash contents to the PSRAM would generate a store access fault.
|
|
// Thus, we need to choose a different PSRAM virtual address (that would have the PMP write (W) access) to map and copy the flash contents into the PSRAM.
|
|
// Choosing the second last PSRAM page instead of the last one, to avoid overlap with flash_end_page_vaddr for targets that share the same flash and psram virtual space.
|
|
uint32_t psram_second_last_page_vaddr = SOC_DRAM_PSRAM_ADDRESS_HIGH - 2 * CONFIG_MMU_PAGE_SIZE;
|
|
assert((psram_second_last_page_vaddr % CONFIG_MMU_PAGE_SIZE) == 0);
|
|
#endif
|
|
|
|
ESP_EARLY_LOGV(TAG, "flash_paddr_start: 0x%"PRIx32", flash_end_page_vaddr: 0x%"PRIx32", size: 0x%"PRIx32", target_vaddr_start: 0x%"PRIx32, flash_paddr_start, flash_end_page_vaddr, size, target_vaddr_start);
|
|
assert((flash_paddr_start % CONFIG_MMU_PAGE_SIZE) == 0);
|
|
assert((flash_end_page_vaddr % CONFIG_MMU_PAGE_SIZE) == 0);
|
|
assert((target_vaddr_start % CONFIG_MMU_PAGE_SIZE) == 0);
|
|
|
|
uint32_t mapped_size = 0;
|
|
while (mapped_size < size) {
|
|
uint32_t actual_mapped_len = 0;
|
|
#if !CONFIG_SPIRAM_BOOT_INIT
|
|
psram_vaddr_start = psram_second_last_page_vaddr;
|
|
#else
|
|
psram_vaddr_start = target_vaddr_start;
|
|
#endif /* !CONFIG_SPIRAM_BOOT_INIT*/
|
|
|
|
mmu_hal_map_region(MMU_LL_PSRAM_MMU_ID, MMU_TARGET_PSRAM0, psram_vaddr_start, target_paddr_start + mapped_size, CONFIG_MMU_PAGE_SIZE, &actual_mapped_len);
|
|
assert(actual_mapped_len == CONFIG_MMU_PAGE_SIZE);
|
|
|
|
mmu_hal_map_region(MMU_LL_FLASH_MMU_ID, MMU_TARGET_FLASH0, flash_end_page_vaddr, flash_paddr_start + mapped_size, CONFIG_MMU_PAGE_SIZE, &actual_mapped_len);
|
|
assert(actual_mapped_len == CONFIG_MMU_PAGE_SIZE);
|
|
|
|
cache_hal_invalidate_addr(psram_vaddr_start, CONFIG_MMU_PAGE_SIZE);
|
|
cache_hal_invalidate_addr(flash_end_page_vaddr, CONFIG_MMU_PAGE_SIZE);
|
|
memcpy((void *)psram_vaddr_start, (void *)flash_end_page_vaddr, CONFIG_MMU_PAGE_SIZE);
|
|
|
|
#if !CONFIG_SPIRAM_BOOT_INIT
|
|
cache_hal_writeback_addr(psram_vaddr_start, CONFIG_MMU_PAGE_SIZE);
|
|
mmu_hal_map_region(MMU_LL_PSRAM_MMU_ID, MMU_TARGET_PSRAM0, target_vaddr_start, target_paddr_start + mapped_size, CONFIG_MMU_PAGE_SIZE, &actual_mapped_len);
|
|
assert(actual_mapped_len == CONFIG_MMU_PAGE_SIZE);
|
|
cache_hal_invalidate_addr(target_vaddr_start, CONFIG_MMU_PAGE_SIZE);
|
|
#endif /* !CONFIG_SPIRAM_BOOT_INIT */
|
|
|
|
ESP_EARLY_LOGV(TAG, "target_vaddr_start: 0x%"PRIx32, target_vaddr_start);
|
|
mapped_size += CONFIG_MMU_PAGE_SIZE;
|
|
target_vaddr_start += CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
ESP_EARLY_LOGV(TAG, "mapped_size: 0x%"PRIx32, mapped_size);
|
|
assert(mapped_size == ALIGN_UP_BY(size, CONFIG_MMU_PAGE_SIZE));
|
|
|
|
return mapped_size;
|
|
}
|
|
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
|
|
|
|
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
/* As heap memory is allocated in 4-byte aligned manner, we need to align the instruction to 4-byte boundary */
|
|
#define INSTRUCTION_ALIGNMENT_GAP_START ALIGN_UP_BY((uint32_t)&_instruction_reserved_end, 4)
|
|
/* The end of the instruction is aligned to CONFIG_MMU_PAGE_SIZE boundary as the flash instruction is mapped to PSRAM */
|
|
#define INSTRUCTION_ALIGNMENT_GAP_END ALIGN_UP_BY((uint32_t)&_instruction_reserved_end, CONFIG_MMU_PAGE_SIZE)
|
|
|
|
size_t mmu_psram_get_text_segment_length(void)
|
|
{
|
|
return ALIGN_UP_BY((uint32_t)&_instruction_reserved_end, CONFIG_MMU_PAGE_SIZE) - ALIGN_DOWN_BY((uint32_t)&_instruction_reserved_start, CONFIG_MMU_PAGE_SIZE);
|
|
}
|
|
|
|
void mmu_psram_get_instruction_alignment_gap_info(uint32_t *gap_start, uint32_t *gap_end)
|
|
{
|
|
// As we need the memory to start with word aligned address, max virtual space that could be wasted = 3 bytes
|
|
// Or create a new region from (uint32_t)&_instruction_reserved_end to ALIGN_UP_BY((uint32_t)&_instruction_reserved_end, 4) as only byte-accessible
|
|
*gap_start = INSTRUCTION_ALIGNMENT_GAP_START;
|
|
*gap_end = INSTRUCTION_ALIGNMENT_GAP_END;
|
|
}
|
|
|
|
bool mmu_psram_check_ptr_addr_in_xip_psram_instruction_region(const void *p)
|
|
{
|
|
if ((intptr_t)p >= ALIGN_DOWN_BY((uint32_t)&_instruction_reserved_start, CONFIG_MMU_PAGE_SIZE) && (intptr_t)p < ALIGN_UP_BY((uint32_t)&_instruction_reserved_end, CONFIG_MMU_PAGE_SIZE)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
esp_err_t mmu_config_psram_text_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page)
|
|
{
|
|
s_irom_size = mmu_psram_get_text_segment_length();
|
|
|
|
uint32_t flash_drom_paddr_start = 0;
|
|
uint32_t flash_irom_paddr_start = 0;
|
|
image_process_get_flash_segments_info(&flash_drom_paddr_start, &flash_irom_paddr_start);
|
|
flash_irom_paddr_start = ALIGN_DOWN_BY(flash_irom_paddr_start, CONFIG_MMU_PAGE_SIZE);
|
|
ESP_EARLY_LOGV(TAG, "flash_irom_paddr_start: 0x%x", flash_irom_paddr_start);
|
|
|
|
if ((MMU_PAGE_TO_BYTES(start_page) + s_irom_size) > psram_size) {
|
|
ESP_EARLY_LOGE(TAG, "PSRAM space not enough for the Flash instructions, need %"PRId32" B, from %"PRId32" B to %"PRId32" B", s_irom_size, MMU_PAGE_TO_BYTES(start_page), MMU_PAGE_TO_BYTES(start_page) + s_irom_size);
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
uint32_t irom_load_addr_aligned = ALIGN_DOWN_BY((uint32_t)&_instruction_reserved_start, CONFIG_MMU_PAGE_SIZE);
|
|
s_irom_paddr_offset = flash_irom_paddr_start - MMU_PAGE_TO_BYTES(start_page);
|
|
s_irom_vaddr_start = irom_load_addr_aligned;
|
|
ESP_EARLY_LOGV(TAG, "flash_irom_paddr_start: 0x%"PRIx32", MMU_PAGE_TO_BYTES(start_page): 0x%"PRIx32", s_irom_paddr_offset: 0x%"PRIx32", s_irom_vaddr_start: 0x%"PRIx32, flash_irom_paddr_start, MMU_PAGE_TO_BYTES(start_page), s_irom_paddr_offset, s_irom_vaddr_start);
|
|
|
|
uint32_t mapped_size = 0;
|
|
mapped_size = s_do_load_from_flash(flash_irom_paddr_start, s_irom_size, irom_load_addr_aligned, MMU_PAGE_TO_BYTES(start_page));
|
|
cache_hal_writeback_addr(irom_load_addr_aligned, s_irom_size);
|
|
|
|
ESP_EARLY_LOGV(TAG, "after mapping text, starting from paddr=0x%08"PRIx32" and vaddr=0x%08"PRIx32", 0x%"PRIx32" bytes are mapped", MMU_PAGE_TO_BYTES(start_page), irom_load_addr_aligned, mapped_size);
|
|
|
|
*out_page = BYTES_TO_MMU_PAGE(s_irom_size);
|
|
|
|
ESP_EARLY_LOGI(TAG, ".text xip on psram");
|
|
return ESP_OK;
|
|
}
|
|
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
|
|
|
|
#if CONFIG_SPIRAM_RODATA
|
|
|
|
size_t mmu_psram_get_rodata_segment_length(void)
|
|
{
|
|
return ALIGN_UP_BY((uint32_t)&_rodata_reserved_end, CONFIG_MMU_PAGE_SIZE) - ALIGN_DOWN_BY((uint32_t)&_rodata_reserved_start, CONFIG_MMU_PAGE_SIZE);
|
|
}
|
|
|
|
/* As heap memory is allocated in 4-byte aligned manner, we need to align the rodata to 4-byte boundary */
|
|
#define RODATA_ALIGNMENT_GAP_START ALIGN_UP_BY((uint32_t)&_rodata_reserved_end, 4)
|
|
/* The end of the rodata is aligned to CONFIG_MMU_PAGE_SIZE boundary as the flash rodata is mapped to PSRAM */
|
|
#define RODATA_ALIGNMENT_GAP_END ALIGN_UP_BY((uint32_t)&_rodata_reserved_end, CONFIG_MMU_PAGE_SIZE)
|
|
|
|
void mmu_psram_get_rodata_alignment_gap_info(uint32_t *gap_start, uint32_t *gap_end)
|
|
{
|
|
// As we need the memory to start with word aligned address, max virtual space that could be wasted = 3 bytes
|
|
// Or create a new region from (uint32_t)&_rodata_reserved_end to ALIGN_UP_BY((uint32_t)&_rodata_reserved_end, 4) as only byte-accessible
|
|
*gap_start = RODATA_ALIGNMENT_GAP_START;
|
|
*gap_end = RODATA_ALIGNMENT_GAP_END;
|
|
}
|
|
|
|
bool mmu_psram_check_ptr_addr_in_xip_psram_rodata_region(const void *p)
|
|
{
|
|
if ((intptr_t)p >= ALIGN_DOWN_BY((uint32_t)&_rodata_reserved_start, CONFIG_MMU_PAGE_SIZE) && (intptr_t)p < ALIGN_UP_BY((uint32_t)&_rodata_reserved_end, CONFIG_MMU_PAGE_SIZE)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
esp_err_t mmu_config_psram_rodata_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page)
|
|
{
|
|
s_drom_size = mmu_psram_get_rodata_segment_length();
|
|
|
|
uint32_t flash_drom_paddr_start = 0;
|
|
uint32_t flash_irom_paddr_start = 0;
|
|
image_process_get_flash_segments_info(&flash_drom_paddr_start, &flash_irom_paddr_start);
|
|
flash_drom_paddr_start = ALIGN_DOWN_BY(flash_drom_paddr_start, CONFIG_MMU_PAGE_SIZE);
|
|
ESP_EARLY_LOGV(TAG, "flash_drom_paddr_start: 0x%x", flash_drom_paddr_start);
|
|
|
|
if ((MMU_PAGE_TO_BYTES(start_page) + s_drom_size) > psram_size) {
|
|
ESP_EARLY_LOGE(TAG, "PSRAM space not enough for the Flash rodata, need %"PRId32" B, from %"PRId32" B to %"PRId32" B", s_drom_size, MMU_PAGE_TO_BYTES(start_page), MMU_PAGE_TO_BYTES(start_page) + s_drom_size);
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
uint32_t drom_load_addr_aligned = ALIGN_DOWN_BY((uint32_t)&_rodata_reserved_start, CONFIG_MMU_PAGE_SIZE);
|
|
s_drom_paddr_offset = flash_drom_paddr_start - MMU_PAGE_TO_BYTES(start_page);
|
|
s_drom_vaddr_start = drom_load_addr_aligned;
|
|
ESP_EARLY_LOGV(TAG, "flash_drom_paddr_start: 0x%"PRIx32", MMU_PAGE_TO_BYTES(start_page): 0x%"PRIx32", s_drom_paddr_offset: 0x%"PRIx32", s_drom_vaddr_start: 0x%"PRIx32, flash_drom_paddr_start, MMU_PAGE_TO_BYTES(start_page), s_drom_paddr_offset, s_drom_vaddr_start);
|
|
|
|
uint32_t mapped_size = 0;
|
|
mapped_size = s_do_load_from_flash(flash_drom_paddr_start, s_drom_size, drom_load_addr_aligned, MMU_PAGE_TO_BYTES(start_page));
|
|
cache_hal_writeback_addr(drom_load_addr_aligned, s_drom_size);
|
|
|
|
ESP_EARLY_LOGV(TAG, "after mapping rodata, starting from paddr=0x%08"PRIx32" and vaddr=0x%08"PRIx32", 0x%"PRIx32" bytes are mapped", MMU_PAGE_TO_BYTES(start_page), drom_load_addr_aligned, mapped_size);
|
|
|
|
*out_page = BYTES_TO_MMU_PAGE(s_drom_size);
|
|
|
|
ESP_EARLY_LOGI(TAG, ".rodata xip on psram");
|
|
return ESP_OK;
|
|
}
|
|
#endif //#if CONFIG_SPIRAM_RODATA
|
|
|
|
size_t mmu_xip_psram_flash_vaddr_to_paddr(const void *ptr)
|
|
{
|
|
if (ptr == NULL) {
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
size_t paddr_on_flash = 0;
|
|
uint32_t psram_paddr = 0;
|
|
mmu_target_t target = MMU_TARGET_FLASH0;
|
|
|
|
if ((uint32_t)ptr >= s_irom_vaddr_start && (uint32_t)ptr < (s_irom_vaddr_start + s_irom_size)) {
|
|
bool is_mapped = mmu_hal_vaddr_to_paddr(MMU_LL_PSRAM_MMU_ID, (uint32_t)ptr, &psram_paddr, &target);
|
|
assert(is_mapped);
|
|
assert(target == MMU_TARGET_PSRAM0);
|
|
paddr_on_flash = psram_paddr + s_irom_paddr_offset;
|
|
} else if ((uint32_t)ptr >= s_drom_vaddr_start && (uint32_t)ptr < (s_drom_vaddr_start + s_drom_size)) {
|
|
bool is_mapped = mmu_hal_vaddr_to_paddr(MMU_LL_PSRAM_MMU_ID, (uint32_t)ptr, &psram_paddr, &target);
|
|
assert(is_mapped);
|
|
assert(target == MMU_TARGET_PSRAM0);
|
|
paddr_on_flash = psram_paddr + s_drom_paddr_offset;
|
|
} else {
|
|
paddr_on_flash = UINT32_MAX;
|
|
}
|
|
|
|
return paddr_on_flash;
|
|
}
|