Files
esp-idf/components/hal/esp32c61/include/hal/mspi_ll.h
2025-07-29 14:12:07 +08:00

434 lines
14 KiB
C

/*
* SPDX-FileCopyrightText: 2024-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* Background
*
* This file is for the MSPI related, but not Flash driver related registers, these registers:
* - may influence both Flash and PSRAM
* - not related or directly related to Flash controller driver
*
* Some hints for naming convention:
* - For MSPI timing tuning related registers, the LL should start with `mspi_timing_ll_`
* - For others, the LL should start with `mspi_ll_`
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/clk_tree_defs.h"
#include "soc/pcr_struct.h"
#include "soc/spi_mem_struct.h"
#include "soc/spi_mem_reg.h"
#include "hal/misc.h"
#include "hal/assert.h"
#ifdef __cplusplus
extern "C" {
#endif
#define MSPI_TIMING_LL_MSPI_ID_0 0
#define MSPI_TIMING_LL_MSPI_ID_1 1
#define MSPI_LL_CORE_CLOCK_80_MHZ 80
#define MSPI_LL_CORE_CLOCK_120_MHZ 120
#define MSPI_TIMING_LL_CORE_CLOCK_MHZ_DEFAULT MSPI_LL_CORE_CLOCK_80_MHZ
/************************** MSPI pll clock configurations **************************/
/*
* @brief Select FLASH clock source
*
* @param mspi_id mspi_id
* @param clk_src clock source, see valid sources in type `soc_periph_flash_clk_src_t`
*/
__attribute__((always_inline))
static inline void _mspi_timing_ll_set_flash_clk_src(uint32_t mspi_id, soc_periph_flash_clk_src_t clk_src)
{
HAL_ASSERT(mspi_id == 0);
switch (clk_src) {
case FLASH_CLK_SRC_XTAL:
PCR.mspi_clk_conf.mspi_func_clk_sel = 0;
break;
case FLASH_CLK_SRC_RC_FAST:
PCR.mspi_clk_conf.mspi_func_clk_sel = 1;
break;
case FLASH_CLK_SRC_SPLL:
PCR.mspi_clk_conf.mspi_func_clk_sel = 2;
break;
default:
HAL_ASSERT(false);
}
}
/**
* @brief Set MSPI_FAST_CLK's high-speed divider (valid when SOC_ROOT clock source is PLL)
*
* @param mspi_id SPI0 / SPI1
* @param core_clk_mhz core clock mhz
*/
static inline __attribute__((always_inline)) void mspi_timing_ll_set_core_clock(uint8_t mspi_id, uint32_t core_clk_mhz)
{
HAL_ASSERT(mspi_id == 0);
uint32_t divider = 0;
switch (core_clk_mhz) {
case 80:
divider = 6;
break;
case 120:
divider = 4;
break;
default:
HAL_ASSERT(false);
}
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.mspi_clk_conf, mspi_fast_div_num, divider - 1);
}
/**
* @brief Enable the mspi core clock
*
* @param mspi_id SPI0 / SPI1
* @param enable enable the core clock
*/
static inline __attribute__((always_inline)) void mspi_timing_ll_enable_core_clock(uint8_t mspi_id, bool enable)
{
PCR.mspi_conf.mspi_clk_en = enable;
}
/**
* Reset the MSPI clock
*/
static inline __attribute__((always_inline)) void _mspi_timing_ll_reset_mspi(void)
{
PCR.mspi_clk_conf.mspi_axi_rst_en = 1;
PCR.mspi_clk_conf.mspi_axi_rst_en = 0;
// Wait for mspi to be ready
while (!PCR.mspi_conf.mspi_ready) {
;
};
}
/**
* Calculate spi_flash clock frequency division parameters for register.
*
* @param clkdiv frequency division factor
*
* @return Register setting for the given clock division factor.
*/
static inline uint32_t mspi_timing_ll_calculate_clock_reg(uint8_t clkdiv)
{
uint32_t div_parameter;
// See comments of `clock` in `spi_mem_struct.h`
if (clkdiv == 1) {
div_parameter = (1 << 31);
} else {
div_parameter = ((clkdiv - 1) | (((clkdiv - 1) / 2 & 0xff) << 8 ) | (((clkdiv - 1) & 0xff) << 16));
}
return div_parameter;
}
/**
* Clear MSPI hw fifo
*
* @param mspi_id SPI0 / SPI1
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_clear_fifo(uint8_t mspi_id)
{
for (int i = 0; i < 16; i++) {
REG_WRITE(SPI_MEM_W0_REG(mspi_id) + i * 4, 0);
}
}
/*---------------------------------------------------------------
FLASH
---------------------------------------------------------------*/
/**
* @brief Set Flash clock
*
* @param mspi_id mspi_id
* @param clock_conf Configuration value for flash clock
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_flash_clock(uint32_t mspi_id, uint32_t clock_conf)
{
if (mspi_id == MSPI_TIMING_LL_MSPI_ID_0) {
SPIMEM0.mem_clock.val = clock_conf;
} else if (mspi_id == MSPI_TIMING_LL_MSPI_ID_1) {
SPIMEM1.clock.val = clock_conf;
}
}
/**
* Enable Flash timing adjust clock
*
* @param mspi_id SPI0 / SPI1
*/
__attribute__((always_inline))
static inline void mspi_timinng_ll_enable_flash_timing_adjust_clk(uint8_t mspi_id)
{
SPIMEM0.mem_timing_cali.mem_timing_clk_ena = true;
}
/**
* Set MSPI Flash din mode
*
* @param mspi_id SPI0 / SPI1
* @param din_mode Din mode value
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_flash_din_mode(uint8_t mspi_id, uint8_t din_mode)
{
uint32_t reg_val = (REG_READ(SPI_MEM_DIN_MODE_REG(mspi_id)) & (~(SPI_MEM_DIN0_MODE_M | SPI_MEM_DIN1_MODE_M | SPI_MEM_DIN2_MODE_M | SPI_MEM_DIN3_MODE_M | SPI_MEM_DIN4_MODE_M | SPI_MEM_DIN5_MODE_M | SPI_MEM_DIN6_MODE_M | SPI_MEM_DIN7_MODE_M | SPI_MEM_DINS_MODE_M)))
| (din_mode << SPI_MEM_DIN0_MODE_S) | (din_mode << SPI_MEM_DIN1_MODE_S) | (din_mode << SPI_MEM_DIN2_MODE_S) | (din_mode << SPI_MEM_DIN3_MODE_S)
| (din_mode << SPI_MEM_DIN4_MODE_S) | (din_mode << SPI_MEM_DIN5_MODE_S) | (din_mode << SPI_MEM_DIN6_MODE_S) | (din_mode << SPI_MEM_DIN7_MODE_S) | (din_mode << SPI_MEM_DINS_MODE_S);
REG_WRITE(SPI_MEM_DIN_MODE_REG(mspi_id), reg_val);
REG_SET_BIT(SPI_MEM_TIMING_CALI_REG(MSPI_TIMING_LL_MSPI_ID_0), SPI_MEM_TIMING_CALI_UPDATE);
}
/**
* Set MSPI Flash din num
*
* @param mspi_id SPI0 / SPI1
* @param din_num Din num value
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_flash_din_num(uint8_t mspi_id, uint8_t din_num)
{
uint32_t reg_val = (REG_READ(SPI_MEM_DIN_NUM_REG(mspi_id)) & (~(SPI_MEM_DIN0_NUM_M | SPI_MEM_DIN1_NUM_M | SPI_MEM_DIN2_NUM_M | SPI_MEM_DIN3_NUM_M | SPI_MEM_DIN4_NUM_M | SPI_MEM_DIN5_NUM_M | SPI_MEM_DIN6_NUM_M | SPI_MEM_DIN7_NUM_M | SPI_MEM_DINS_NUM_M)))
| (din_num << SPI_MEM_DIN0_NUM_S) | (din_num << SPI_MEM_DIN1_NUM_S) | (din_num << SPI_MEM_DIN2_NUM_S) | (din_num << SPI_MEM_DIN3_NUM_S)
| (din_num << SPI_MEM_DIN4_NUM_S) | (din_num << SPI_MEM_DIN5_NUM_S) | (din_num << SPI_MEM_DIN6_NUM_S) | (din_num << SPI_MEM_DIN7_NUM_S) | (din_num << SPI_MEM_DINS_NUM_S);
REG_WRITE(SPI_MEM_DIN_NUM_REG(mspi_id), reg_val);
REG_SET_BIT(SPI_MEM_TIMING_CALI_REG(MSPI_TIMING_LL_MSPI_ID_0), SPI_MEM_TIMING_CALI_UPDATE);
}
/**
* Set MSPI Flash extra dummy
*
* @param mspi_id SPI0 / SPI1
* @param extra_dummy Extra dummy
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_flash_extra_dummy(uint8_t mspi_id, uint8_t extra_dummy)
{
if (extra_dummy > 0) {
SET_PERI_REG_MASK(SPI_MEM_TIMING_CALI_REG(mspi_id), SPI_MEM_TIMING_CALI_M);
SET_PERI_REG_BITS(SPI_MEM_TIMING_CALI_REG(mspi_id), SPI_MEM_EXTRA_DUMMY_CYCLELEN_V, extra_dummy, SPI_MEM_EXTRA_DUMMY_CYCLELEN_S);
} else {
CLEAR_PERI_REG_MASK(SPI_MEM_TIMING_CALI_REG(mspi_id), SPI_MEM_TIMING_CALI_M);
SET_PERI_REG_BITS(SPI_MEM_TIMING_CALI_REG(mspi_id), SPI_MEM_EXTRA_DUMMY_CYCLELEN_V, 0, SPI_MEM_EXTRA_DUMMY_CYCLELEN_S);
}
REG_SET_BIT(SPI_MEM_TIMING_CALI_REG(MSPI_TIMING_LL_MSPI_ID_0), SPI_MEM_TIMING_CALI_UPDATE);
}
/**
* Get MSPI flash dummy info
*
* @param mspi_id SPI0 / SPI1
* @param usr_dummy User dummy
* @param extra_dummy Extra dummy
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_get_flash_dummy(uint8_t mspi_id, int *usr_dummy, int *extra_dummy)
{
*usr_dummy = REG_GET_FIELD(SPI_MEM_USER1_REG(mspi_id), SPI_MEM_USR_DUMMY_CYCLELEN);
*extra_dummy = REG_GET_FIELD(SPI_MEM_TIMING_CALI_REG(mspi_id), SPI_MEM_EXTRA_DUMMY_CYCLELEN);
}
/**
* Enable/Disable Flash variable dummy
*
* @param mspi_id SPI0 / SPI1
* @param enable Enable / Disable
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_enable_flash_variable_dummy(uint8_t mspi_id, bool enable)
{
REG_SET_FIELD(SPI_MEM_DDR_REG(mspi_id), SPI_FMEM_VAR_DUMMY, enable);
}
/**
* Get if cs setup is enabled or not
*
* @param mspi_id SPI0 / SPI1
*
* @return
* true: enabled; false: disabled
*/
__attribute__((always_inline))
static inline bool mspi_timing_ll_is_cs_setup_enabled(uint8_t mspi_id)
{
return REG_GET_BIT(SPI_MEM_USER_REG(mspi_id), SPI_MEM_CS_SETUP);
}
/**
* Get cs setup val
*
* @param mspi_id SPI0 / SPI1
*
* @return
* cs setup reg val
*/
static inline uint32_t mspi_timing_ll_get_cs_setup_val(uint8_t mspi_id)
{
return REG_GET_FIELD(SPI_MEM_CTRL2_REG(mspi_id), SPI_MEM_CS_SETUP_TIME);
}
/**
* Get if cs hold is enabled or not
*
* @param mspi_id SPI0 / SPI1
*
* @return
* true: enabled; false: disabled
*/
__attribute__((always_inline))
static inline bool mspi_timing_ll_is_cs_hold_enabled(uint8_t mspi_id)
{
return REG_GET_FIELD(SPI_MEM_USER_REG(mspi_id), SPI_MEM_CS_HOLD);
}
/**
* Get cs hold val
*
* @param mspi_id SPI0 / SPI1
*
* @return
* cs hold reg val
*/
static inline uint32_t mspi_timing_ll_get_cs_hold_val(uint8_t mspi_id)
{
return REG_GET_FIELD(SPI_MEM_CTRL2_REG(mspi_id), SPI_MEM_CS_HOLD_TIME);
}
/**
* Get clock reg val
*
* @param mspi_id SPI0 / SPI1
*
* @return
* clock reg val
*/
__attribute__((always_inline))
static inline uint32_t mspi_timing_ll_get_clock_reg(uint8_t mspi_id)
{
return READ_PERI_REG(SPI_MEM_CLOCK_REG(mspi_id));
}
/*---------------------------------------------------------------
PSRAM
---------------------------------------------------------------*/
/**
* @brief Set PSRAM clock
*
* @param mspi_id mspi_id
* @param clock_conf Configuration value for psram clock
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_psram_clock(uint32_t mspi_id, uint32_t clock_conf)
{
SPIMEM0.mem_sram_clk.val = clock_conf;
}
/**
* @brief Set SPI1 bus clock to initialise PSRAM
*
* @param mspi_id mspi_id
* @param clock_conf Configuration value for psram clock
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_spi1_bus_clock(uint32_t mspi_id, uint32_t clock_conf)
{
HAL_ASSERT(mspi_id == MSPI_TIMING_LL_MSPI_ID_1);
SPIMEM1.clock.val = clock_conf;
}
/**
* Enable PSRAM timing adjust clock
*
* @param mspi_id SPI0 / SPI1
*/
__attribute__((always_inline))
static inline void mspi_timinng_ll_enable_psram_timing_adjust_clk(uint8_t mspi_id)
{
SPIMEM0.smem_timing_cali.smem_timing_clk_ena = true;
}
/**
* Set MSPI PSRAM din mode
*
* @param mspi_id SPI0 / SPI1
* @param din_mode Din mode value
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_psram_din_mode(uint8_t mspi_id, uint8_t din_mode)
{
uint32_t reg_val = (REG_READ(SPI_SMEM_DIN_MODE_REG(mspi_id)) & (~(SPI_SMEM_DIN0_MODE_M | SPI_SMEM_DIN1_MODE_M | SPI_SMEM_DIN2_MODE_M | SPI_SMEM_DIN3_MODE_M | SPI_SMEM_DIN4_MODE_M | SPI_SMEM_DIN5_MODE_M | SPI_SMEM_DIN6_MODE_M | SPI_SMEM_DIN7_MODE_M | SPI_SMEM_DINS_MODE_M)))
| (din_mode << SPI_SMEM_DIN0_MODE_S) | (din_mode << SPI_SMEM_DIN1_MODE_S) | (din_mode << SPI_SMEM_DIN2_MODE_S) | (din_mode << SPI_SMEM_DIN3_MODE_S)
| (din_mode << SPI_SMEM_DIN4_MODE_S) | (din_mode << SPI_SMEM_DIN5_MODE_S) | (din_mode << SPI_SMEM_DIN6_MODE_S) | (din_mode << SPI_SMEM_DIN7_MODE_S) | (din_mode << SPI_SMEM_DINS_MODE_S);
REG_WRITE(SPI_SMEM_DIN_MODE_REG(mspi_id), reg_val);
REG_SET_BIT(SPI_MEM_TIMING_CALI_REG(MSPI_TIMING_LL_MSPI_ID_0), SPI_MEM_TIMING_CALI_UPDATE);
}
/**
* Set MSPI PSRAM din num
*
* @param mspi_id SPI0 / SPI1
* @param din_num Din num value
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_psram_din_num(uint8_t mspi_id, uint8_t din_num)
{
uint32_t reg_val = (REG_READ(SPI_SMEM_DIN_NUM_REG(mspi_id)) & (~(SPI_SMEM_DIN0_NUM_M | SPI_SMEM_DIN1_NUM_M | SPI_SMEM_DIN2_NUM_M | SPI_SMEM_DIN3_NUM_M | SPI_SMEM_DIN4_NUM_M | SPI_SMEM_DIN5_NUM_M | SPI_SMEM_DIN6_NUM_M | SPI_SMEM_DIN7_NUM_M | SPI_SMEM_DINS_NUM_M)))
| (din_num << SPI_SMEM_DIN0_NUM_S) | (din_num << SPI_SMEM_DIN1_NUM_S) | (din_num << SPI_SMEM_DIN2_NUM_S) | (din_num << SPI_SMEM_DIN3_NUM_S)
| (din_num << SPI_SMEM_DIN4_NUM_S) | (din_num << SPI_SMEM_DIN5_NUM_S) | (din_num << SPI_SMEM_DIN6_NUM_S) | (din_num << SPI_SMEM_DIN7_NUM_S) | (din_num << SPI_SMEM_DINS_NUM_S);
REG_WRITE(SPI_SMEM_DIN_NUM_REG(mspi_id), reg_val);
REG_SET_BIT(SPI_MEM_TIMING_CALI_REG(MSPI_TIMING_LL_MSPI_ID_0), SPI_MEM_TIMING_CALI_UPDATE);
}
/**
* Set MSPI Octal PSRAM extra dummy
*
* @param mspi_id SPI0 / SPI1
* @param extra_dummy Extra dummy
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_set_psram_extra_dummy(uint8_t mspi_id, uint8_t extra_dummy)
{
if (extra_dummy > 0) {
SET_PERI_REG_MASK(SPI_SMEM_TIMING_CALI_REG(mspi_id), SPI_SMEM_TIMING_CALI_M);
SET_PERI_REG_BITS(SPI_SMEM_TIMING_CALI_REG(mspi_id), SPI_SMEM_EXTRA_DUMMY_CYCLELEN_V, extra_dummy,
SPI_SMEM_EXTRA_DUMMY_CYCLELEN_S);
} else {
CLEAR_PERI_REG_MASK(SPI_SMEM_TIMING_CALI_REG(mspi_id), SPI_SMEM_TIMING_CALI_M);
SET_PERI_REG_BITS(SPI_SMEM_TIMING_CALI_REG(mspi_id), SPI_SMEM_EXTRA_DUMMY_CYCLELEN_V, 0,
SPI_SMEM_EXTRA_DUMMY_CYCLELEN_S);
}
REG_SET_BIT(SPI_MEM_TIMING_CALI_REG(MSPI_TIMING_LL_MSPI_ID_0), SPI_MEM_TIMING_CALI_UPDATE);
}
/**
* Get MSPI PSRAM dummy info
*
* @param mspi_id SPI0 / SPI1
* @param usr_rdummy User read dummy
* @param extra_dummy Extra dummy
*/
__attribute__((always_inline))
static inline void mspi_timing_ll_get_psram_dummy(uint8_t mspi_id, int *usr_rdummy, int *extra_dummy)
{
*usr_rdummy = REG_GET_FIELD(SPI_MEM_CACHE_SCTRL_REG(mspi_id), SPI_MEM_SRAM_RDUMMY_CYCLELEN);
*extra_dummy = REG_GET_FIELD(SPI_SMEM_TIMING_CALI_REG(mspi_id), SPI_SMEM_EXTRA_DUMMY_CYCLELEN);
}
#ifdef __cplusplus
}
#endif