mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-29 20:34:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1017 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1017 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \brief AES block cipher, ESP DMA hardware accelerated version
 | |
|  * Based on mbedTLS FIPS-197 compliant version.
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| /*
 | |
|  *  The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
 | |
|  *
 | |
|  *  http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
 | |
|  *  http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include "mbedtls/aes.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "esp_log.h"
 | |
| #include "soc/lldesc.h"
 | |
| #include "esp_heap_caps.h"
 | |
| #include "sys/param.h"
 | |
| #include "esp_pm.h"
 | |
| #include "esp_crypto_lock.h"
 | |
| #include "hal/aes_hal.h"
 | |
| #include "aes/esp_aes_internal.h"
 | |
| #include "esp_aes_dma_priv.h"
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| #include "esp32s2/rom/cache.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
| #include "esp32s3/rom/cache.h"
 | |
| #endif
 | |
| 
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| 
 | |
| #if SOC_AES_SUPPORT_GCM
 | |
| #include "aes/esp_aes_gcm.h"
 | |
| #endif
 | |
| 
 | |
| #if SOC_AES_GDMA
 | |
| #define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
 | |
| #define AES_RELEASE() esp_crypto_sha_aes_lock_release()
 | |
| #elif SOC_AES_CRYPTO_DMA
 | |
| #define AES_LOCK() esp_crypto_dma_lock_acquire()
 | |
| #define AES_RELEASE() esp_crypto_dma_lock_release()
 | |
| #endif
 | |
| 
 | |
| /* Max size of each chunk to process when output buffer is in unaligned external ram
 | |
|    must be a multiple of block size
 | |
| */
 | |
| #define AES_MAX_CHUNK_WRITE_SIZE 1600
 | |
| 
 | |
| /* Input over this length will yield and wait for interrupt instead of
 | |
|    busy-waiting, 30000 bytes is approx 0.5 ms */
 | |
| #define AES_DMA_INTR_TRIG_LEN 2000
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
| static SemaphoreHandle_t op_complete_sem;
 | |
| #if defined(CONFIG_PM_ENABLE)
 | |
| static esp_pm_lock_handle_t s_pm_cpu_lock;
 | |
| static esp_pm_lock_handle_t s_pm_sleep_lock;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static const char *TAG = "esp-aes";
 | |
| 
 | |
| 
 | |
| static inline void esp_aes_wait_dma_done(lldesc_t *output)
 | |
| {
 | |
|     /* Wait for DMA write operation to complete */
 | |
|     while (1) {
 | |
|         if ( esp_aes_dma_done(output) ) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Append a descriptor to the chain, set head if chain empty */
 | |
| static inline void lldesc_append(lldesc_t **head, lldesc_t *item)
 | |
| {
 | |
|     lldesc_t *it;
 | |
|     if (*head == NULL) {
 | |
|         *head = item;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     it = *head;
 | |
| 
 | |
|     while (it->empty != 0) {
 | |
|         it = (lldesc_t *)it->empty;
 | |
|     }
 | |
|     it->eof = 0;
 | |
|     it->empty = (uint32_t)item;
 | |
| }
 | |
| 
 | |
| void esp_aes_acquire_hardware( void )
 | |
| {
 | |
|     /* Released by esp_aes_release_hardware()*/
 | |
|     AES_LOCK();
 | |
| 
 | |
|     /* Enable AES and DMA hardware */
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|     periph_module_enable(PERIPH_AES_DMA_MODULE);
 | |
| #elif SOC_AES_GDMA
 | |
|     periph_module_enable(PERIPH_AES_MODULE);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Function to disable AES and Crypto DMA clocks and release locks */
 | |
| void esp_aes_release_hardware( void )
 | |
| {
 | |
|     /* Disable AES and DMA hardware */
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|     periph_module_disable(PERIPH_AES_DMA_MODULE);
 | |
| #elif SOC_AES_GDMA
 | |
|     periph_module_disable(PERIPH_AES_MODULE);
 | |
| #endif
 | |
| 
 | |
|     AES_RELEASE();
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
| static IRAM_ATTR void esp_aes_complete_isr(void *arg)
 | |
| {
 | |
|     BaseType_t higher_woken;
 | |
|     aes_hal_interrupt_clear();
 | |
|     xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
 | |
|     if (higher_woken) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static esp_err_t esp_aes_isr_initialise( void )
 | |
| {
 | |
|     aes_hal_interrupt_clear();
 | |
|     aes_hal_interrupt_enable(true);
 | |
|     if (op_complete_sem == NULL) {
 | |
|         op_complete_sem = xSemaphoreCreateBinary();
 | |
| 
 | |
|         if (op_complete_sem == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to create intr semaphore");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
| 
 | |
|         esp_intr_alloc(ETS_AES_INTR_SOURCE, 0, esp_aes_complete_isr, NULL, NULL);
 | |
|     }
 | |
| 
 | |
|     /* AES is clocked proportionally to CPU clock, take power management lock */
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     if (s_pm_cpu_lock == NULL) {
 | |
|         if (esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "aes_sleep", &s_pm_sleep_lock) != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "Failed to create PM sleep lock");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         if (esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "aes_cpu", &s_pm_cpu_lock) != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "Failed to create PM CPU lock");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|     }
 | |
|     esp_pm_lock_acquire(s_pm_cpu_lock);
 | |
|     esp_pm_lock_acquire(s_pm_sleep_lock);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif // CONFIG_MBEDTLS_AES_USE_INTERRUPT
 | |
| 
 | |
| /* Wait for AES hardware block operation to complete */
 | |
| static void esp_aes_dma_wait_complete(bool use_intr, lldesc_t *output_desc)
 | |
| {
 | |
| #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
|     if (use_intr) {
 | |
|         if (!xSemaphoreTake(op_complete_sem, 2000 / portTICK_PERIOD_MS)) {
 | |
|             /* indicates a fundamental problem with driver */
 | |
|             ESP_LOGE("AES", "Timed out waiting for completion of AES Interrupt");
 | |
|             abort();
 | |
|         }
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|         esp_pm_lock_release(s_pm_cpu_lock);
 | |
|         esp_pm_lock_release(s_pm_sleep_lock);
 | |
| #endif  // CONFIG_PM_ENABLE
 | |
|     }
 | |
| #endif
 | |
|     /* Checking this if interrupt is used also, to avoid
 | |
|        issues with AES fault injection
 | |
|     */
 | |
|     aes_hal_wait_done();
 | |
| 
 | |
|     esp_aes_wait_dma_done(output_desc);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out);
 | |
| 
 | |
| 
 | |
| /* Output buffers in external ram needs to be 16-byte aligned and DMA cant access input in the iCache mem range,
 | |
|    reallocate them into internal memory and encrypt in chunks to avoid
 | |
|    having to malloc too big of a buffer
 | |
| */
 | |
| 
 | |
| static int esp_aes_process_dma_ext_ram(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out, bool realloc_input, bool realloc_output)
 | |
| {
 | |
|     size_t chunk_len;
 | |
|     int ret = 0;
 | |
|     int offset = 0;
 | |
|     unsigned char *input_buf = NULL;
 | |
|     unsigned char *output_buf = NULL;
 | |
|     const unsigned char *dma_input;
 | |
|     chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len);
 | |
| 
 | |
|     if (realloc_input) {
 | |
|         input_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA);
 | |
| 
 | |
|         if (input_buf == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (realloc_output) {
 | |
|         output_buf = heap_caps_malloc(chunk_len, MALLOC_CAP_DMA);
 | |
| 
 | |
|         if (output_buf == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     } else {
 | |
|         output_buf = output;
 | |
|     }
 | |
| 
 | |
|     while (len) {
 | |
|         chunk_len = MIN(AES_MAX_CHUNK_WRITE_SIZE, len);
 | |
| 
 | |
|         /* If input needs realloc then copy it, else use the input with offset*/
 | |
|         if (realloc_input) {
 | |
|             memcpy(input_buf, input + offset, chunk_len);
 | |
|             dma_input = input_buf;
 | |
|         } else {
 | |
|             dma_input = input + offset;
 | |
|         }
 | |
| 
 | |
|         if (esp_aes_process_dma(ctx, dma_input, output_buf, chunk_len, stream_out) != 0) {
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         if (realloc_output) {
 | |
|             memcpy(output + offset, output_buf, chunk_len);
 | |
|         } else {
 | |
|             output_buf = output + offset + chunk_len;
 | |
|         }
 | |
| 
 | |
|         len -= chunk_len;
 | |
|         offset += chunk_len;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if (realloc_input) {
 | |
|         free(input_buf);
 | |
|     }
 | |
|     if (realloc_output) {
 | |
|         free(output_buf);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Encrypt/decrypt the input using DMA */
 | |
| static int esp_aes_process_dma(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, uint8_t *stream_out)
 | |
| {
 | |
|     lldesc_t stream_in_desc, stream_out_desc;
 | |
|     lldesc_t *in_desc_head = NULL, *out_desc_head = NULL;
 | |
|     lldesc_t *out_desc_tail = NULL; /* pointer to the final output descriptor */
 | |
|     lldesc_t *block_desc = NULL, *block_in_desc = NULL, *block_out_desc = NULL;
 | |
|     size_t lldesc_num;
 | |
|     uint8_t stream_in[16] = {};
 | |
|     unsigned stream_bytes = len % AES_BLOCK_BYTES; // bytes which aren't in a full block
 | |
|     unsigned block_bytes = len - stream_bytes;     // bytes which are in a full block
 | |
|     unsigned char *non_icache_input = NULL;
 | |
|     unsigned blocks = (block_bytes / AES_BLOCK_BYTES) + ((stream_bytes > 0) ? 1 : 0);
 | |
|     bool use_intr = false;
 | |
|     bool input_needs_realloc = false;
 | |
|     bool output_needs_realloc = false;
 | |
|     int ret = 0;
 | |
| 
 | |
|     assert(len > 0); // caller shouldn't ever have len set to zero
 | |
|     assert(stream_bytes == 0 || stream_out != NULL); // stream_out can be NULL if we're processing full block(s)
 | |
| 
 | |
|     /* If no key is written to hardware yet, either the user hasn't called
 | |
|        mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
 | |
|        know which mode to use - or a fault skipped the
 | |
|        key write to hardware. Treat this as a fatal error and zero the output block.
 | |
|     */
 | |
|     if (ctx->key_in_hardware != ctx->key_bytes) {
 | |
|         bzero(output, len);
 | |
|         return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
|         /* Flush cache if input in external ram */
 | |
| #if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
 | |
|         if (esp_ptr_external_ram(input)) {
 | |
|             Cache_WriteBack_All();
 | |
|         }
 | |
|         if (esp_ptr_external_ram(output)) {
 | |
|             if (((intptr_t)(output) & 0xF) != 0) {
 | |
|                 // Non aligned ext-mem buffer
 | |
|                 output_needs_realloc = true;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         /* DMA cannot access memory in the iCache range, copy input to internal ram */
 | |
|         if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input)) {
 | |
|             input_needs_realloc = true;
 | |
|         }
 | |
| 
 | |
|         if (!esp_ptr_dma_ext_capable(output) && !esp_ptr_dma_capable(output)) {
 | |
|             output_needs_realloc = true;
 | |
|         }
 | |
| 
 | |
|         /* If either input or output is unaccessible to the DMA then they need to be reallocated */
 | |
|         if (input_needs_realloc || output_needs_realloc) {
 | |
|             return esp_aes_process_dma_ext_ram(ctx, input, output, len, stream_out, input_needs_realloc, output_needs_realloc);
 | |
|         }
 | |
| 
 | |
|         /* Set up dma descriptors for input and output */
 | |
|         lldesc_num = lldesc_get_required_num(block_bytes);
 | |
| 
 | |
|         /* Allocate both in and out descriptors to save a malloc/free per function call */
 | |
|         block_desc = heap_caps_malloc(sizeof(lldesc_t) * lldesc_num * 2, MALLOC_CAP_DMA);
 | |
|         if (block_desc == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         block_in_desc = block_desc;
 | |
|         block_out_desc = block_desc + lldesc_num;
 | |
| 
 | |
|         lldesc_setup_link(block_in_desc, input, block_bytes, 0);
 | |
|         lldesc_setup_link(block_out_desc, output, block_bytes, 0);
 | |
| 
 | |
|         out_desc_tail = &block_out_desc[lldesc_num - 1];
 | |
|     }
 | |
| 
 | |
|     /* Any leftover bytes which are appended as an additional DMA list */
 | |
|     if (stream_bytes > 0) {
 | |
|         memcpy(stream_in, input + block_bytes, stream_bytes);
 | |
| 
 | |
|         lldesc_setup_link(&stream_in_desc, stream_in, AES_BLOCK_BYTES, 0);
 | |
|         lldesc_setup_link(&stream_out_desc, stream_out, AES_BLOCK_BYTES, 0);
 | |
| 
 | |
|         if (block_bytes > 0) {
 | |
|             /* Link with block descriptors*/
 | |
|             block_in_desc[lldesc_num - 1].empty = (uint32_t)&stream_in_desc;
 | |
|             block_out_desc[lldesc_num - 1].empty = (uint32_t)&stream_out_desc;
 | |
|         }
 | |
| 
 | |
|         out_desc_tail = &stream_out_desc;
 | |
|     }
 | |
| 
 | |
|     // block buffers are sent to DMA first, unless there aren't any
 | |
|     in_desc_head =  (block_bytes > 0) ? block_in_desc : &stream_in_desc;
 | |
|     out_desc_head = (block_bytes > 0) ? block_out_desc : &stream_out_desc;
 | |
| 
 | |
| 
 | |
| #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
|     /* Only use interrupt for long AES operations */
 | |
|     if (len > AES_DMA_INTR_TRIG_LEN) {
 | |
|         use_intr = true;
 | |
|         if (esp_aes_isr_initialise() == ESP_FAIL) {
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         aes_hal_interrupt_enable(false);
 | |
|     }
 | |
| 
 | |
|     if (esp_aes_dma_start(in_desc_head, out_desc_head) != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "esp_aes_dma_start failed, no DMA channel available");
 | |
|         ret = -1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     aes_hal_transform_dma_start(blocks);
 | |
|     esp_aes_dma_wait_complete(use_intr, out_desc_tail);
 | |
| 
 | |
| #if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
 | |
|     if (block_bytes > 0) {
 | |
|         if (esp_ptr_external_ram(output)) {
 | |
|             Cache_Invalidate_DCache_All();
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     aes_hal_transform_dma_finish();
 | |
| 
 | |
|     if (stream_bytes > 0) {
 | |
|         memcpy(output + block_bytes, stream_out, stream_bytes);
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     free(non_icache_input);
 | |
|     free(block_desc);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if SOC_AES_SUPPORT_GCM
 | |
| 
 | |
| /* Encrypt/decrypt with AES-GCM the input using DMA */
 | |
| int esp_aes_process_dma_gcm(esp_aes_context *ctx, const unsigned char *input, unsigned char *output, size_t len, lldesc_t *aad_desc, size_t aad_len)
 | |
| {
 | |
|     lldesc_t *in_desc_head = NULL, *out_desc_head = NULL, *len_desc = NULL;
 | |
|     lldesc_t stream_in_desc, stream_out_desc;
 | |
|     lldesc_t *block_desc = NULL, *block_in_desc = NULL, *block_out_desc = NULL;
 | |
|     size_t lldesc_num;
 | |
|     uint32_t len_buf[4] = {};
 | |
|     uint8_t stream_in[16] = {};
 | |
|     uint8_t stream_out[16] = {};
 | |
|     unsigned stream_bytes = len % AES_BLOCK_BYTES; // bytes which aren't in a full block
 | |
|     unsigned block_bytes = len - stream_bytes;     // bytes which are in a full block
 | |
| 
 | |
|     unsigned blocks = (block_bytes / AES_BLOCK_BYTES) + ((stream_bytes > 0) ? 1 : 0);
 | |
| 
 | |
|     bool use_intr = false;
 | |
|     int ret = 0;
 | |
| 
 | |
|     /* If no key is written to hardware yet, either the user hasn't called
 | |
|        mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
 | |
|        know which mode to use - or a fault skipped the
 | |
|        key write to hardware. Treat this as a fatal error and zero the output block.
 | |
|     */
 | |
|     if (ctx->key_in_hardware != ctx->key_bytes) {
 | |
|         bzero(output, len);
 | |
|         return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* Set up dma descriptors for input and output */
 | |
|     lldesc_num = lldesc_get_required_num(block_bytes);
 | |
| 
 | |
|     /* Allocate both in and out descriptors to save a malloc/free per function call, add 1 for length descriptor */
 | |
|     block_desc = heap_caps_calloc( (lldesc_num * 2) + 1, sizeof(lldesc_t), MALLOC_CAP_DMA);
 | |
|     if (block_desc == NULL) {
 | |
|         ESP_LOGE(TAG, "Failed to allocate memory");
 | |
|         ret = -1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     block_in_desc = block_desc;
 | |
|     len_desc = block_desc + lldesc_num;
 | |
|     block_out_desc = block_desc + lldesc_num + 1;
 | |
| 
 | |
|     if (aad_desc != NULL) {
 | |
|         lldesc_append(&in_desc_head, aad_desc);
 | |
|     }
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
|         lldesc_setup_link(block_in_desc, input, block_bytes, 0);
 | |
|         lldesc_setup_link(block_out_desc, output, block_bytes, 0);
 | |
| 
 | |
|         lldesc_append(&in_desc_head, block_in_desc);
 | |
|         lldesc_append(&out_desc_head, block_out_desc);
 | |
|     }
 | |
| 
 | |
|     /* Any leftover bytes which are appended as an additional DMA list */
 | |
|     if (stream_bytes > 0) {
 | |
|         memcpy(stream_in, input + block_bytes, stream_bytes);
 | |
| 
 | |
|         lldesc_setup_link(&stream_in_desc, stream_in, AES_BLOCK_BYTES, 0);
 | |
|         lldesc_setup_link(&stream_out_desc, stream_out, AES_BLOCK_BYTES, 0);
 | |
| 
 | |
|         lldesc_append(&in_desc_head, &stream_in_desc);
 | |
|         lldesc_append(&out_desc_head, &stream_out_desc);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     len_buf[1] = __builtin_bswap32(aad_len * 8);
 | |
|     len_buf[3] = __builtin_bswap32(len * 8);
 | |
| 
 | |
|     len_desc->length = sizeof(len_buf);
 | |
|     len_desc->size = sizeof(len_buf);
 | |
|     len_desc->owner = 1;
 | |
|     len_desc->eof = 1;
 | |
|     len_desc->buf = (uint8_t *)len_buf;
 | |
| 
 | |
|     lldesc_append(&in_desc_head, len_desc);
 | |
| 
 | |
| #if defined (CONFIG_MBEDTLS_AES_USE_INTERRUPT)
 | |
|     /* Only use interrupt for long AES operations */
 | |
|     if (len > AES_DMA_INTR_TRIG_LEN) {
 | |
|         use_intr = true;
 | |
|         if (esp_aes_isr_initialise() == ESP_FAIL) {
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         aes_hal_interrupt_enable(false);
 | |
|     }
 | |
| 
 | |
|     /* Start AES operation */
 | |
|     if (esp_aes_dma_start(in_desc_head, out_desc_head) != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "esp_aes_dma_start failed, no DMA channel available");
 | |
|         ret = -1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     aes_hal_transform_dma_gcm_start(blocks);
 | |
| 
 | |
|     esp_aes_dma_wait_complete(use_intr, out_desc_head);
 | |
| 
 | |
|     aes_hal_transform_dma_finish();
 | |
| 
 | |
|     if (stream_bytes > 0) {
 | |
|         memcpy(output + block_bytes, stream_out, stream_bytes);
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     free(block_desc);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif //SOC_AES_SUPPORT_GCM
 | |
| 
 | |
| static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
 | |
|                                   unsigned char *output )
 | |
| {
 | |
|     if (!ctx) {
 | |
|         ESP_LOGE(TAG, "No AES context supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!input) {
 | |
|         ESP_LOGE(TAG, "No input supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!output) {
 | |
|         ESP_LOGE(TAG, "No output supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES-ECB single block encryption
 | |
|  */
 | |
| int esp_internal_aes_encrypt(esp_aes_context *ctx,
 | |
|                              const unsigned char input[16],
 | |
|                              unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_encrypt(esp_aes_context *ctx,
 | |
|                      const unsigned char input[16],
 | |
|                      unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_encrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-ECB single block decryption
 | |
|  */
 | |
| int esp_internal_aes_decrypt(esp_aes_context *ctx,
 | |
|                              const unsigned char input[16],
 | |
|                              unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_decrypt(esp_aes_context *ctx,
 | |
|                      const unsigned char input[16],
 | |
|                      unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_decrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES-ECB block encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ecb(esp_aes_context *ctx,
 | |
|                       int mode,
 | |
|                       const unsigned char input[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CBC buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cbc(esp_aes_context *ctx,
 | |
|                       int mode,
 | |
|                       size_t length,
 | |
|                       unsigned char iv[16],
 | |
|                       const unsigned char *input,
 | |
|                       unsigned char *output )
 | |
| {
 | |
|     int r = 0;
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* For CBC input length should be multiple of
 | |
|      * AES BLOCK BYTES
 | |
|      * */
 | |
|     if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
 | |
|         return ERR_ESP_AES_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
 | |
|     aes_hal_set_iv(iv);
 | |
| 
 | |
|     r = esp_aes_process_dma(ctx, input, output, length, NULL);
 | |
|     if (r != 0) {
 | |
|         esp_aes_release_hardware();
 | |
|         return r;
 | |
|     }
 | |
| 
 | |
|     aes_hal_read_iv(iv);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB8 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb8(esp_aes_context *ctx,
 | |
|                        int mode,
 | |
|                        size_t length,
 | |
|                        unsigned char iv[16],
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     unsigned char c;
 | |
|     unsigned char ov[17];
 | |
|     int r = 0;
 | |
|     size_t block_bytes = length - (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* The DMA engine will only output correct IV if it runs
 | |
|        full blocks of input in CFB8 mode
 | |
|     */
 | |
|     esp_aes_acquire_hardware();
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
| 
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
 | |
|         aes_hal_set_iv(iv);
 | |
|         r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
 | |
|         aes_hal_read_iv(iv);
 | |
| 
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         length -= block_bytes;
 | |
|         input += block_bytes;
 | |
|         output += block_bytes;
 | |
|     }
 | |
| 
 | |
|     // Process remaining bytes block-at-a-time in ECB mode
 | |
|     if (length > 0) {
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, MBEDTLS_AES_ENCRYPT);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
| 
 | |
|         while ( length-- ) {
 | |
|             memcpy( ov, iv, 16 );
 | |
| 
 | |
|             r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
 | |
|             if (r != 0) {
 | |
|                 esp_aes_release_hardware();
 | |
|                 return r;
 | |
|             }
 | |
| 
 | |
|             if ( mode == MBEDTLS_AES_DECRYPT ) {
 | |
|                 ov[16] = *input;
 | |
|             }
 | |
| 
 | |
|             c = *output++ = ( iv[0] ^ *input++ );
 | |
| 
 | |
|             if ( mode == MBEDTLS_AES_ENCRYPT ) {
 | |
|                 ov[16] = c;
 | |
|             }
 | |
|             memcpy( iv, ov + 1, 16 );
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB128 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb128(esp_aes_context *ctx,
 | |
|                          int mode,
 | |
|                          size_t length,
 | |
|                          size_t *iv_off,
 | |
|                          unsigned char iv[16],
 | |
|                          const unsigned char *input,
 | |
|                          unsigned char *output )
 | |
| 
 | |
| {
 | |
|     uint8_t c;
 | |
|     int r = 0;
 | |
|     size_t stream_bytes = 0;
 | |
|     size_t n;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv_off) {
 | |
|         ESP_LOGE(TAG, "No IV offset supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     n = *iv_off;
 | |
| 
 | |
|     /* First process the *iv_off bytes
 | |
|      * which are pending from the previous call to this API
 | |
|      */
 | |
|     while (n > 0 && length > 0) {
 | |
|         if (mode == MBEDTLS_AES_ENCRYPT) {
 | |
|             iv[n] = *output++ = *input++ ^ iv[n];
 | |
|         } else {
 | |
|             c = *input++;
 | |
|             *output++ = c ^ iv[n];
 | |
|             iv[n] = c;
 | |
|         }
 | |
|         n = (n + 1) % AES_BLOCK_BYTES;
 | |
|         length--;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (length > 0) {
 | |
|         stream_bytes = length % AES_BLOCK_BYTES;
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
 | |
|         aes_hal_set_iv(iv);
 | |
| 
 | |
|         r = esp_aes_process_dma(ctx, input, output, length, iv);
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         if (stream_bytes == 0) {
 | |
|             // if we didn't need the partial 'stream block' then the new IV is in the IV register
 | |
|             aes_hal_read_iv(iv);
 | |
|         } else {
 | |
|             // if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
 | |
|             // In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
 | |
|             // block uses ciphertext as its IV input)
 | |
|             //
 | |
|             // Note: It may be more efficient to not process the partial block via DMA in this case.
 | |
|             if (mode == MBEDTLS_AES_DECRYPT) {
 | |
|                 memcpy(iv, input + length - stream_bytes, stream_bytes);
 | |
|             }
 | |
|         }
 | |
|         esp_aes_release_hardware();
 | |
|     }
 | |
| 
 | |
|     *iv_off = n + stream_bytes;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-OFB (Output Feedback Mode) buffer encryption/decryption
 | |
|  */
 | |
| 
 | |
| int esp_aes_crypt_ofb(esp_aes_context *ctx,
 | |
|                       size_t length,
 | |
|                       size_t *iv_off,
 | |
|                       unsigned char iv[16],
 | |
|                       const unsigned char *input,
 | |
|                       unsigned char *output )
 | |
| {
 | |
|     int r = 0;
 | |
|     size_t n;
 | |
|     size_t stream_bytes = 0;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv_off) {
 | |
|         ESP_LOGE(TAG, "No IV offset supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     n = *iv_off;
 | |
| 
 | |
|     /* If there is an offset then use the output of the previous AES block
 | |
|         (the updated IV) to calculate the new output */
 | |
|     while (n > 0 && length > 0) {
 | |
|         *output++ = (*input++ ^ iv[n]);
 | |
|         n = (n + 1) & 0xF;
 | |
|         length--;
 | |
|     }
 | |
|     if (length > 0) {
 | |
|         stream_bytes = (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
 | |
|         aes_hal_set_iv(iv);
 | |
| 
 | |
|         r = esp_aes_process_dma(ctx, input, output, length, iv);
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         aes_hal_read_iv(iv);
 | |
|         esp_aes_release_hardware();
 | |
|     }
 | |
| 
 | |
|     *iv_off = n + stream_bytes;
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CTR buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ctr(esp_aes_context *ctx,
 | |
|                       size_t length,
 | |
|                       size_t *nc_off,
 | |
|                       unsigned char nonce_counter[16],
 | |
|                       unsigned char stream_block[16],
 | |
|                       const unsigned char *input,
 | |
|                       unsigned char *output )
 | |
| {
 | |
|     int r = 0;
 | |
|     size_t n;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!nonce_counter) {
 | |
|         ESP_LOGE(TAG, "No nonce supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!nc_off) {
 | |
|         ESP_LOGE(TAG, "No nonce offset supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     n = *nc_off;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* Process any unprocessed bytes left in stream block from
 | |
|        last operation */
 | |
|     while (n > 0 && length > 0) {
 | |
|         *output++ = (unsigned char)(*input++ ^ stream_block[n]);
 | |
|         n = (n + 1) & 0xF;
 | |
|         length--;
 | |
|     }
 | |
| 
 | |
|     if (length > 0) {
 | |
| 
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
 | |
| 
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
 | |
|         aes_hal_set_iv(nonce_counter);
 | |
| 
 | |
|         r = esp_aes_process_dma(ctx, input, output, length, stream_block);
 | |
| 
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         aes_hal_read_iv(nonce_counter);
 | |
| 
 | |
|         esp_aes_release_hardware();
 | |
| 
 | |
|     }
 | |
|     *nc_off = n + (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|     return r;
 | |
| }
 | 
