Files
esp-idf/components/esp_system/port/soc/esp32c5/clk.c
2025-06-06 18:28:47 +05:30

355 lines
15 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_clk_internal.h"
#include "esp32c5/rom/ets_sys.h"
#include "esp32c5/rom/uart.h"
#include "soc/soc.h"
#include "soc/soc_caps.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/i2s_reg.h"
#include "soc/chip_revision.h"
#include "esp_cpu.h"
#include "hal/efuse_hal.h"
#include "hal/wdt_hal.h"
#include "hal/clk_tree_ll.h"
#if SOC_MODEM_CLOCK_SUPPORTED
#include "hal/modem_lpcon_ll.h"
#endif
#include "hal/adc_ll.h"
#include "hal/aes_ll.h"
#include "hal/assist_debug_ll.h"
#include "hal/apm_ll.h"
#include "hal/clk_gate_ll.h"
#include "hal/clk_tree_ll.h"
#include "hal/ds_ll.h"
#include "hal/ecc_ll.h"
#include "hal/etm_ll.h"
#include "hal/gdma_ll.h"
#include "hal/hmac_ll.h"
#include "hal/i2c_ll.h"
#include "hal/i2s_ll.h"
#include "hal/ledc_ll.h"
#include "hal/lp_core_ll.h"
#include "hal/lp_clkrst_ll.h"
#include "hal/mcpwm_ll.h"
#include "hal/mpi_ll.h"
#include "hal/mspi_ll.h"
#include "hal/parlio_ll.h"
#include "hal/pau_ll.h"
#include "hal/pcnt_ll.h"
#include "hal/rmt_ll.h"
#include "hal/rtc_io_ll.h"
#include "hal/sha_ll.h"
#include "hal/spi_ll.h"
#include "hal/temperature_sensor_ll.h"
#include "hal/timer_ll.h"
#include "hal/twaifd_ll.h"
#include "hal/uart_ll.h"
#include "hal/uhci_ll.h"
#include "hal/usb_serial_jtag_ll.h"
#include "esp_private/esp_sleep_internal.h"
#include "esp_private/esp_modem_clock.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
#include "esp_private/esp_pmu.h"
#include "esp_rom_uart.h"
#include "esp_rom_sys.h"
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
* Larger values increase startup delay. Smaller values may cause false positive
* detection (i.e. oscillator runs for a few cycles and then stops).
*/
#define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES
#define MHZ (1000000)
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src);
static const char *TAG = "clk";
void esp_rtc_init(void)
{
#if !CONFIG_IDF_ENV_FPGA
pmu_init();
#endif
}
__attribute__((weak)) void esp_clk_init(void)
{
#if !CONFIG_IDF_ENV_FPGA
assert((rtc_clk_xtal_freq_get() == SOC_XTAL_FREQ_48M) || (rtc_clk_xtal_freq_get() == SOC_XTAL_FREQ_40M));
rtc_clk_8m_enable(true);
#if CONFIG_RTC_FAST_CLK_SRC_RC_FAST
rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST);
#elif CONFIG_RTC_FAST_CLK_SRC_XTAL
rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_XTAL);
esp_sleep_sub_mode_config(ESP_SLEEP_RTC_FAST_USE_XTAL_MODE, true);
#else
#error "No RTC fast clock source configured"
#endif
#endif //!CONFIG_IDF_ENV_FPGA
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
// Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec).
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec).
wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT();
uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
//Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
modem_clock_deselect_all_module_lp_clock_source();
#if defined(CONFIG_RTC_CLK_SRC_EXT_CRYS)
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
#elif defined(CONFIG_RTC_CLK_SRC_EXT_OSC)
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_OSC_SLOW);
#else
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC_SLOW);
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// After changing a frequency WDT timeout needs to be set for new frequency.
stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
rtc_cpu_freq_config_t old_config, new_config;
rtc_clk_cpu_freq_get_config(&old_config);
const uint32_t old_freq_mhz = old_config.freq_mhz;
const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ;
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
assert(res);
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
if (CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM != -1) {
esp_rom_output_tx_wait_idle(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM);
}
if (res) {
rtc_clk_cpu_freq_set_config(&new_config);
}
// Re calculate the ccount to make time calculation correct.
esp_cpu_set_cycle_count((uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz);
// Set crypto clock (`clk_sec`) to use 480M SPLL clock
REG_SET_FIELD(PCR_SEC_CONF_REG, PCR_SEC_CLK_SEL, 0x2);
}
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src)
{
uint32_t cal_val = 0;
/* number of times to repeat 32k XTAL calibration
* before giving up and switching to the internal RC
*/
int retry_32k_xtal = 3;
do {
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K || rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
rtc_cal_sel_t cal_sel = 0;
if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
rtc_clk_32k_enable(true);
cal_sel = RTC_CAL_32K_XTAL;
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
rtc_clk_32k_enable_external();
cal_sel = RTC_CAL_32K_OSC_SLOW;
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(cal_sel, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0) {
if (retry_32k_xtal-- > 0) {
continue;
}
ESP_EARLY_LOGW(TAG, "32 kHz clock not found, switching to internal 150 kHz oscillator");
rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
}
}
}
rtc_clk_slow_src_set(rtc_slow_clk_src);
// Disable unused clock sources after clock source switching is complete.
// Regardless of the clock source selection, the internal 136K clock source will always keep on.
if ((rtc_slow_clk_src != SOC_RTC_SLOW_CLK_SRC_XTAL32K) && (rtc_slow_clk_src != SOC_RTC_SLOW_CLK_SRC_OSC_SLOW)) {
rtc_clk_32k_enable(false);
rtc_clk_32k_disable_external();
}
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
* Improve calibration routine to wait until the frequency is stable.
*/
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t)(cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %" PRIu32, cal_val);
esp_clk_slowclk_cal_set(cal_val);
}
void rtc_clk_select_rtc_slow_clk(void)
{
select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K);
}
/* This function is not exposed as an API at this point.
* All peripheral clocks are default enabled after chip is powered on.
* This function disables some peripheral clocks when cpu starts.
* These peripheral clocks are enabled when the peripherals are initialized
* and disabled when they are de-initialized.
*/
__attribute__((weak)) void esp_perip_clk_init(void)
{
/* During system initialization, the low-power clock source of the modem
* (WiFi, BLE or Coexist) follows the configuration of the slow clock source
* of the system. If the WiFi, BLE or Coexist module needs a higher
* precision sleep clock (for example, the BLE needs to use the main XTAL
* oscillator (40 MHz) to provide the clock during the sleep process in some
* scenarios), the module needs to switch to the required clock source by
* itself. */
#if CONFIG_ESP_WIFI_ENABLED
soc_rtc_slow_clk_src_t rtc_slow_clk_src = rtc_clk_slow_src_get();
modem_clock_lpclk_src_t modem_lpclk_src = (modem_clock_lpclk_src_t)(
(rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) ? MODEM_CLOCK_LPCLK_SRC_XTAL32K
: (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) ? MODEM_CLOCK_LPCLK_SRC_EXT32K
: MODEM_CLOCK_LPCLK_SRC_RC_SLOW);
modem_clock_select_lp_clock_source(PERIPH_WIFI_MODULE, modem_lpclk_src, 0);
#endif
/* On ESP32-C5 ECO1, clearing BIT(31) of PCR_FPGA_DEBUG_REG is used to fix
* the issue where the modem module fails to transmit and receive packets
* due to the loss of the modem root clock caused by automatic clock gating
* during soc root clock source switching. For detailed information, refer
* to IDF-11064. */
clk_ll_soc_root_clk_auto_gating_bypass(true);
soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
if ((rst_reason != RESET_REASON_CPU0_MWDT0) && (rst_reason != RESET_REASON_CPU0_MWDT1) \
&& (rst_reason != RESET_REASON_CPU0_SW) && (rst_reason != RESET_REASON_CPU0_RTC_WDT) \
&& (rst_reason != RESET_REASON_CPU0_JTAG) && (rst_reason != RESET_REASON_CPU0_LOCKUP)) {
#if CONFIG_ESP_CONSOLE_UART_NUM != 0
uart_ll_enable_bus_clock(UART_NUM_0, false);
uart_ll_sclk_disable(&UART0);
#elif CONFIG_ESP_CONSOLE_UART_NUM != 1
uart_ll_sclk_disable(&UART1);
uart_ll_enable_bus_clock(UART_NUM_1, false);
#endif
i2c_ll_enable_bus_clock(0, false);
i2c_ll_enable_controller_clock(&I2C0, false);
rmt_ll_enable_bus_clock(0, false);
rmt_ll_enable_group_clock(0, false);
ledc_ll_enable_clock(&LEDC, false);
ledc_ll_enable_bus_clock(false);
clk_ll_enable_timergroup_rtc_calibration_clock(false);
timer_ll_enable_clock(0, 0, false);
timer_ll_enable_clock(1, 0, false);
_timer_ll_enable_bus_clock(0, false);
_timer_ll_enable_bus_clock(1, false);
twaifd_ll_enable_clock(0, false);
twaifd_ll_enable_bus_clock(0, false);
twaifd_ll_enable_clock(1, false);
twaifd_ll_enable_bus_clock(1, false);
i2s_ll_enable_bus_clock(0, false);
i2s_ll_tx_disable_clock(&I2S0);
i2s_ll_rx_disable_clock(&I2S0);
adc_ll_enable_bus_clock(false);
pcnt_ll_enable_bus_clock(0, false);
etm_ll_enable_bus_clock(0, false);
mcpwm_ll_enable_bus_clock(0, false);
mcpwm_ll_group_enable_clock(0, false);
parlio_ll_rx_enable_clock(&PARL_IO, false);
parlio_ll_tx_enable_clock(&PARL_IO, false);
parlio_ll_enable_bus_clock(0, false);
ahb_dma_ll_force_enable_reg_clock(&AHB_DMA, false);
_gdma_ll_enable_bus_clock(0, false);
#if CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
mspi_timing_ll_enable_core_clock(0, false);
#endif
spi_ll_enable_bus_clock(SPI2_HOST, false);
temperature_sensor_ll_bus_clk_enable(false);
pau_ll_enable_bus_clock(false);
#if !CONFIG_ESP_SYSTEM_HW_PC_RECORD
/* Disable ASSIST Debug module clock if PC recoreding function is not used,
* if stack guard function needs it, it will be re-enabled at esp_hw_stack_guard_init */
assist_debug_ll_enable_bus_clock(false);
#endif
mpi_ll_enable_bus_clock(false);
aes_ll_enable_bus_clock(false);
sha_ll_enable_bus_clock(false);
ecc_ll_enable_bus_clock(false);
hmac_ll_enable_bus_clock(false);
ds_ll_enable_bus_clock(false);
apm_ll_hp_tee_enable_clk_gating(true);
apm_ll_lp_tee_enable_clk_gating(true);
uhci_ll_enable_bus_clock(0, false);
apm_ll_hp_apm_enable_ctrl_clk_gating(true);
apm_ll_cpu_apm_enable_ctrl_clk_gating(true);
// TODO: Replace with hal implementation
REG_CLR_BIT(PCR_TRACE_CONF_REG, PCR_TRACE_CLK_EN);
REG_CLR_BIT(PCR_TCM_MEM_MONITOR_CONF_REG, PCR_TCM_MEM_MONITOR_CLK_EN);
REG_CLR_BIT(PCR_PSRAM_MEM_MONITOR_CONF_REG, PCR_PSRAM_MEM_MONITOR_CLK_EN);
REG_CLR_BIT(PCR_PVT_MONITOR_CONF_REG, PCR_PVT_MONITOR_CLK_EN);
REG_CLR_BIT(PCR_PVT_MONITOR_FUNC_CLK_CONF_REG, PCR_PVT_MONITOR_FUNC_CLK_EN);
WRITE_PERI_REG(PCR_CTRL_CLK_OUT_EN_REG, 0);
#if !CONFIG_USJ_ENABLE_USB_SERIAL_JTAG && !CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG_ENABLED
// Disable USB-Serial-JTAG clock and it's pad if not used
usb_serial_jtag_ll_phy_enable_pad(false);
usb_serial_jtag_ll_enable_bus_clock(false);
usb_serial_jtag_ll_enable_mem_clock(false);
usb_serial_jtag_ll_set_mem_pd(true);
#endif
}
if ((rst_reason == RESET_REASON_CHIP_POWER_ON) || (rst_reason == RESET_REASON_CHIP_BROWN_OUT) \
|| (rst_reason == RESET_REASON_SYS_RTC_WDT) || (rst_reason == RESET_REASON_SYS_SUPER_WDT) \
|| (rst_reason == RESET_REASON_CORE_PWR_GLITCH)) {
_lp_i2c_ll_enable_bus_clock(0, false);
lp_uart_ll_sclk_disable(0);
_lp_uart_ll_enable_bus_clock(0, false);
_lp_core_ll_enable_bus_clock(false);
_rtcio_ll_enable_io_clock(false);
_lp_clkrst_ll_enable_rng_clock(false);
_lp_clkrst_ll_enable_otp_dbg_clock(false);
_lp_clkrst_ll_enable_lp_ana_i2c_clock(false);
_lp_clkrst_ll_enable_lp_ext_i2c_clock(false);
apm_ll_lp_apm_enable_ctrl_clk_gating(true);
apm_ll_lp_apm0_enable_ctrl_clk_gating(true);
WRITE_PERI_REG(LP_CLKRST_LP_CLK_PO_EN_REG, 0);
}
}