mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 21:14:37 +00:00 
			
		
		
		
	 b957692888
			
		
	
	b957692888
	
	
	
		
			
			These were previously placed on the stack, but the stack could be placed in RTC RAM which is not DMA capable.
		
			
				
	
	
		
			698 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			698 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \brief GCM block cipher, ESP DMA hardware accelerated version
 | |
|  * Based on mbedTLS FIPS-197 compliant version.
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| /*
 | |
|  *  The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
 | |
|  *
 | |
|  *  http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
 | |
|  *  http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
 | |
|  */
 | |
| 
 | |
| #include "soc/soc_caps.h"
 | |
| 
 | |
| #if SOC_AES_SUPPORT_GCM
 | |
| 
 | |
| #include "aes/esp_aes.h"
 | |
| #include "aes/esp_aes_gcm.h"
 | |
| #include "aes/esp_aes_internal.h"
 | |
| #include "hal/aes_hal.h"
 | |
| 
 | |
| #include "esp_log.h"
 | |
| #include "mbedtls/aes.h"
 | |
| #include "esp_heap_caps.h"
 | |
| #include "soc/soc_memory_layout.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #define ESP_PUT_BE64(a, val)                                    \
 | |
|     do {                                                        \
 | |
|         *(uint64_t*)(a) = __builtin_bswap64( (uint64_t)(val) ); \
 | |
|     } while (0)
 | |
| 
 | |
| /* For simplicity limit the maxium amount of aad bytes to a single DMA descriptor
 | |
|    This should cover all normal, e.g. mbedtls, use cases */
 | |
| #define ESP_AES_GCM_AAD_MAX_BYTES 4080
 | |
| 
 | |
| static const char *TAG = "esp-aes-gcm";
 | |
| 
 | |
| static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z);
 | |
| 
 | |
| /*
 | |
|  * Calculates the Initial Counter Block, J0
 | |
|  * and copies to to the esp_gcm_context
 | |
|  */
 | |
| static void esp_gcm_derive_J0(esp_gcm_context *ctx)
 | |
| {
 | |
|     uint8_t len_buf[16];
 | |
| 
 | |
|     memset(ctx->J0, 0, AES_BLOCK_BYTES);
 | |
|     memset(len_buf, 0, AES_BLOCK_BYTES);
 | |
| 
 | |
|     /* If IV is 96 bits J0 = ( IV || 0^31 || 1 ) */
 | |
|     if (ctx->iv_len == 12) {
 | |
|         memcpy(ctx->J0, ctx->iv, ctx->iv_len);
 | |
|         ctx->J0[AES_BLOCK_BYTES - 1] |= 1;
 | |
|     } else {
 | |
|         /* For IV != 96 bit, J0 = GHASH(IV || 0[s+64] || [len(IV)]64) */
 | |
|         /* First calculate GHASH on IV */
 | |
|         esp_gcm_ghash(ctx, ctx->iv, ctx->iv_len, ctx->J0);
 | |
|         /* Next create 128 bit block which is equal to
 | |
|         64 bit 0 + iv length truncated to 64 bits */
 | |
|         ESP_PUT_BE64(len_buf + 8, ctx->iv_len * 8);
 | |
|         /*   Calculate GHASH on last block */
 | |
|         esp_gcm_ghash(ctx, len_buf, 16, ctx->J0);
 | |
| 
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Increment J0 as per GCM spec, by applying the Standard Incrementing
 | |
|    Function INC_32 to it.
 | |
|  * j is the counter which needs to be incremented which is
 | |
|  * copied to ctx->J0 after incrementing
 | |
|  */
 | |
| static void increment32_j0(esp_gcm_context *ctx, uint8_t *j)
 | |
| {
 | |
|     uint8_t j_len = AES_BLOCK_BYTES;
 | |
|     memcpy(j, ctx->J0, AES_BLOCK_BYTES);
 | |
|     if (j) {
 | |
|         for (uint32_t i = j_len; i > (j_len - 4); i--) {
 | |
|             if (++j[i - 1] != 0) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         memcpy(ctx->J0, j, AES_BLOCK_BYTES);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Function to xor two data blocks */
 | |
| static void xor_data(uint8_t *d, const uint8_t *s)
 | |
| {
 | |
|     for (int i = 0; i < AES_BLOCK_BYTES; i++) {
 | |
|         d[i] ^= s[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * 32-bit integer manipulation macros (big endian)
 | |
|  */
 | |
| #ifndef GET_UINT32_BE
 | |
| #define GET_UINT32_BE(n,b,i)                            \
 | |
| {                                                       \
 | |
|     (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
 | |
|         | ( (uint32_t) (b)[(i) + 1] << 16 )             \
 | |
|         | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
 | |
|         | ( (uint32_t) (b)[(i) + 3]       );            \
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef PUT_UINT32_BE
 | |
| #define PUT_UINT32_BE(n,b,i)                            \
 | |
| {                                                       \
 | |
|     (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
 | |
|     (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
 | |
|     (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
 | |
|     (b)[(i) + 3] = (unsigned char) ( (n)       );       \
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Based on MbedTLS's implemenation
 | |
|  *
 | |
|  * Precompute small multiples of H, that is set
 | |
|  *      HH[i] || HL[i] = H times i,
 | |
|  * where i is seen as a field element as in [MGV], ie high-order bits
 | |
|  * correspond to low powers of P. The result is stored in the same way, that
 | |
|  * is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
 | |
|  * corresponds to P^127.
 | |
|  */
 | |
| static int gcm_gen_table( esp_gcm_context *ctx )
 | |
| {
 | |
|     int i, j;
 | |
|     uint64_t hi, lo;
 | |
|     uint64_t vl, vh;
 | |
|     unsigned char *h;
 | |
| 
 | |
|     h = ctx->H;
 | |
| 
 | |
|     /* pack h as two 64-bits ints, big-endian */
 | |
|     GET_UINT32_BE( hi, h,  0  );
 | |
|     GET_UINT32_BE( lo, h,  4  );
 | |
|     vh = (uint64_t) hi << 32 | lo;
 | |
| 
 | |
|     GET_UINT32_BE( hi, h,  8  );
 | |
|     GET_UINT32_BE( lo, h,  12 );
 | |
|     vl = (uint64_t) hi << 32 | lo;
 | |
| 
 | |
|     /* 8 = 1000 corresponds to 1 in GF(2^128) */
 | |
|     ctx->HL[8] = vl;
 | |
|     ctx->HH[8] = vh;
 | |
| 
 | |
|     /* 0 corresponds to 0 in GF(2^128) */
 | |
|     ctx->HH[0] = 0;
 | |
|     ctx->HL[0] = 0;
 | |
| 
 | |
|     for ( i = 4; i > 0; i >>= 1 ) {
 | |
|         uint32_t T = ( vl & 1 ) * 0xe1000000U;
 | |
|         vl  = ( vh << 63 ) | ( vl >> 1 );
 | |
|         vh  = ( vh >> 1 ) ^ ( (uint64_t) T << 32);
 | |
| 
 | |
|         ctx->HL[i] = vl;
 | |
|         ctx->HH[i] = vh;
 | |
|     }
 | |
| 
 | |
|     for ( i = 2; i <= 8; i *= 2 ) {
 | |
|         uint64_t *HiL = ctx->HL + i, *HiH = ctx->HH + i;
 | |
|         vh = *HiH;
 | |
|         vl = *HiL;
 | |
|         for ( j = 1; j < i; j++ ) {
 | |
|             HiH[j] = vh ^ ctx->HH[j];
 | |
|             HiL[j] = vl ^ ctx->HL[j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ( 0 );
 | |
| }
 | |
| /*
 | |
|  * Shoup's method for multiplication use this table with
 | |
|  *      last4[x] = x times P^128
 | |
|  * where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
 | |
|  */
 | |
| static const uint64_t last4[16] = {
 | |
|     0x0000, 0x1c20, 0x3840, 0x2460,
 | |
|     0x7080, 0x6ca0, 0x48c0, 0x54e0,
 | |
|     0xe100, 0xfd20, 0xd940, 0xc560,
 | |
|     0x9180, 0x8da0, 0xa9c0, 0xb5e0
 | |
| };
 | |
| /* Based on MbedTLS's implemenation
 | |
|  *
 | |
|  * Sets output to x times H using the precomputed tables.
 | |
|  * x and output are seen as elements of GF(2^128) as in [MGV].
 | |
|  */
 | |
| static void gcm_mult( esp_gcm_context *ctx, const unsigned char x[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     int i = 0;
 | |
|     unsigned char lo, hi, rem;
 | |
|     uint64_t zh, zl;
 | |
| 
 | |
|     lo = x[15] & 0xf;
 | |
| 
 | |
|     zh = ctx->HH[lo];
 | |
|     zl = ctx->HL[lo];
 | |
| 
 | |
|     for ( i = 15; i >= 0; i-- ) {
 | |
|         lo = x[i] & 0xf;
 | |
|         hi = x[i] >> 4;
 | |
| 
 | |
|         if ( i != 15 ) {
 | |
|             rem = (unsigned char) zl & 0xf;
 | |
|             zl = ( zh << 60 ) | ( zl >> 4 );
 | |
|             zh = ( zh >> 4 );
 | |
|             zh ^= (uint64_t) last4[rem] << 48;
 | |
|             zh ^= ctx->HH[lo];
 | |
|             zl ^= ctx->HL[lo];
 | |
| 
 | |
|         }
 | |
| 
 | |
|         rem = (unsigned char) zl & 0xf;
 | |
|         zl = ( zh << 60 ) | ( zl >> 4 );
 | |
|         zh = ( zh >> 4 );
 | |
|         zh ^= (uint64_t) last4[rem] << 48;
 | |
|         zh ^= ctx->HH[hi];
 | |
|         zl ^= ctx->HL[hi];
 | |
|     }
 | |
| 
 | |
|     PUT_UINT32_BE( zh >> 32, output, 0 );
 | |
|     PUT_UINT32_BE( zh, output, 4 );
 | |
|     PUT_UINT32_BE( zl >> 32, output, 8 );
 | |
|     PUT_UINT32_BE( zl, output, 12 );
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Update the key value in gcm context */
 | |
| int esp_aes_gcm_setkey( esp_gcm_context *ctx,
 | |
|                         mbedtls_cipher_id_t cipher,
 | |
|                         const unsigned char *key,
 | |
|                         unsigned int keybits )
 | |
| {
 | |
|     if (keybits != 128 && keybits != 192 && keybits != 256) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     ctx->aes_ctx.key_bytes = keybits / 8;
 | |
| 
 | |
|     memcpy(ctx->aes_ctx.key, key, ctx->aes_ctx.key_bytes);
 | |
| 
 | |
|     return ( 0 );
 | |
| }
 | |
| 
 | |
| 
 | |
| /* AES-GCM GHASH calculation z = GHASH(x) using h0 hash key
 | |
| */
 | |
| static void esp_gcm_ghash(esp_gcm_context *ctx, const unsigned char *x, size_t x_len, uint8_t *z)
 | |
| {
 | |
| 
 | |
|     uint8_t tmp[AES_BLOCK_BYTES];
 | |
| 
 | |
|     memset(tmp, 0, AES_BLOCK_BYTES);
 | |
|     /* GHASH(X) is calculated on input string which is multiple of 128 bits
 | |
|      * If input string bit length is not multiple of 128 bits it needs to
 | |
|      * be padded by 0
 | |
|      *
 | |
|      * Steps:
 | |
|      * 1. Let X1, X2, ... , Xm-1, Xm denote the unique sequence of blocks such
 | |
|      * that X = X1 || X2 || ... || Xm-1 || Xm.
 | |
|      * 2. Let Y0 be the “zero block,” 0128.
 | |
|      * 3. Fori=1,...,m,letYi =(Yi-1 ^ Xi)•H.
 | |
|      * 4. Return Ym
 | |
|      */
 | |
| 
 | |
|     /* If input bit string is >= 128 bits, process full 128 bit blocks */
 | |
|     while (x_len >= AES_BLOCK_BYTES) {
 | |
| 
 | |
|         xor_data(z, x);
 | |
|         gcm_mult(ctx, z, z);
 | |
| 
 | |
|         x += AES_BLOCK_BYTES;
 | |
|         x_len -= AES_BLOCK_BYTES;
 | |
|     }
 | |
| 
 | |
|     /* If input bit string is not multiple of 128 create last 128 bit
 | |
|      * block by padding necessary 0s
 | |
|      */
 | |
|     if (x_len) {
 | |
|         memcpy(tmp, x, x_len);
 | |
|         xor_data(z, tmp);
 | |
|         gcm_mult(ctx, z, z);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Function to init AES GCM context to zero */
 | |
| void esp_aes_gcm_init( esp_gcm_context *ctx)
 | |
| {
 | |
|     if (ctx == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bzero(ctx, sizeof(esp_gcm_context));
 | |
| 
 | |
|     ctx->gcm_state = ESP_AES_GCM_STATE_INIT;
 | |
| }
 | |
| 
 | |
| /* Function to clear AES-GCM context */
 | |
| void esp_aes_gcm_free( esp_gcm_context *ctx)
 | |
| {
 | |
|     if (ctx == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     bzero(ctx, sizeof(esp_gcm_context));
 | |
| }
 | |
| 
 | |
| /* Setup AES-GCM */
 | |
| int esp_aes_gcm_starts( esp_gcm_context *ctx,
 | |
|                         int mode,
 | |
|                         const unsigned char *iv,
 | |
|                         size_t iv_len,
 | |
|                         const unsigned char *aad,
 | |
|                         size_t aad_len )
 | |
| {
 | |
|     /* IV and AD are limited to 2^32 bits, so 2^29 bytes */
 | |
|     /* IV is not allowed to be zero length */
 | |
|     if ( iv_len == 0 ||
 | |
|             ( (uint32_t) iv_len  ) >> 29 != 0 ||
 | |
|             ( (uint32_t) aad_len ) >> 29 != 0 ) {
 | |
|         return ( MBEDTLS_ERR_GCM_BAD_INPUT );
 | |
|     }
 | |
| 
 | |
|     if (!ctx) {
 | |
|         ESP_LOGE(TAG, "No AES context supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if ( (aad_len > 0) && !aad) {
 | |
|         ESP_LOGE(TAG, "No aad supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Initialize AES-GCM context */
 | |
|     memset(ctx->ghash, 0, sizeof(ctx->ghash));
 | |
|     ctx->data_len = 0;
 | |
| 
 | |
|     ctx->iv = iv;
 | |
|     ctx->iv_len = iv_len;
 | |
|     ctx->aad = aad;
 | |
|     ctx->aad_len = aad_len;
 | |
|     ctx->mode = mode;
 | |
| 
 | |
|     /* H and the lookup table are only generated once per ctx */
 | |
|     if (ctx->gcm_state == ESP_AES_GCM_STATE_INIT) {
 | |
|         /* Lock the AES engine to calculate ghash key H in hardware */
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->aes_ctx.key_in_hardware = aes_hal_setkey(ctx->aes_ctx.key, ctx->aes_ctx.key_bytes, mode);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_GCM);
 | |
| 
 | |
|         aes_hal_gcm_calc_hash(ctx->H);
 | |
| 
 | |
|         esp_aes_release_hardware();
 | |
| 
 | |
|         gcm_gen_table(ctx);
 | |
|     }
 | |
| 
 | |
|     ctx->gcm_state = ESP_AES_GCM_STATE_START;
 | |
| 
 | |
|     /* Once H is obtained we need to derive J0 (Initial Counter Block) */
 | |
|     esp_gcm_derive_J0(ctx);
 | |
| 
 | |
|     /* The initial counter block keeps updating during the esp_gcm_update call
 | |
|      * however to calculate final authentication tag T we need original J0
 | |
|      * so we make a copy here
 | |
|      */
 | |
|     memcpy(ctx->ori_j0, ctx->J0, 16);
 | |
| 
 | |
|     esp_gcm_ghash(ctx, ctx->aad, ctx->aad_len, ctx->ghash);
 | |
| 
 | |
|     return ( 0 );
 | |
| }
 | |
| 
 | |
| /* Perform AES-GCM operation */
 | |
| int esp_aes_gcm_update( esp_gcm_context *ctx,
 | |
|                         size_t length,
 | |
|                         const unsigned char *input,
 | |
|                         unsigned char *output )
 | |
| {
 | |
|     size_t nc_off = 0;
 | |
|     uint8_t nonce_counter[AES_BLOCK_BYTES] = {0};
 | |
|     uint8_t stream[AES_BLOCK_BYTES] = {0};
 | |
| 
 | |
|     if (!ctx) {
 | |
|         ESP_LOGE(TAG, "No GCM context supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!input) {
 | |
|         ESP_LOGE(TAG, "No input supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!output) {
 | |
|         ESP_LOGE(TAG, "No output supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if ( output > input && (size_t) ( output - input ) < length ) {
 | |
|         return ( MBEDTLS_ERR_GCM_BAD_INPUT );
 | |
|     }
 | |
|     /* If this is the first time esp_gcm_update is getting called
 | |
|      * calculate GHASH on aad and preincrement the ICB
 | |
|      */
 | |
|     if (ctx->gcm_state == ESP_AES_GCM_STATE_START) {
 | |
|         /* Jo needs to be incremented first time, later the CTR
 | |
|          * operation will auto update it
 | |
|          */
 | |
|         increment32_j0(ctx, nonce_counter);
 | |
|         ctx->gcm_state = ESP_AES_GCM_STATE_UPDATE;
 | |
|     } else if (ctx->gcm_state == ESP_AES_GCM_STATE_UPDATE) {
 | |
|         memcpy(nonce_counter, ctx->J0, AES_BLOCK_BYTES);
 | |
|     }
 | |
| 
 | |
|     /* Perform intermediate GHASH on "encrypted" data during decryption */
 | |
|     if (ctx->mode == ESP_AES_DECRYPT) {
 | |
|         esp_gcm_ghash(ctx, input, length, ctx->ghash);
 | |
|     }
 | |
| 
 | |
|     /* Output = GCTR(J0, Input): Encrypt/Decrypt the input */
 | |
|     esp_aes_crypt_ctr(&ctx->aes_ctx, length, &nc_off, nonce_counter, stream, input, output);
 | |
| 
 | |
|     /* ICB gets auto incremented after GCTR operation here so update the context */
 | |
|     memcpy(ctx->J0, nonce_counter, AES_BLOCK_BYTES);
 | |
| 
 | |
|     /* Keep updating the length counter for final tag calculation */
 | |
|     ctx->data_len += length;
 | |
| 
 | |
|     /* Perform intermediate GHASH on "encrypted" data during encryption*/
 | |
|     if (ctx->mode == ESP_AES_ENCRYPT) {
 | |
|         esp_gcm_ghash(ctx, output, length, ctx->ghash);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Function to read the tag value */
 | |
| int esp_aes_gcm_finish( esp_gcm_context *ctx,
 | |
|                         unsigned char *tag,
 | |
|                         size_t tag_len )
 | |
| {
 | |
|     size_t nc_off = 0;
 | |
|     uint8_t len_block[AES_BLOCK_BYTES] = {0};
 | |
| 
 | |
|     if ( tag_len > 16 || tag_len < 4 ) {
 | |
|         return ( MBEDTLS_ERR_GCM_BAD_INPUT );
 | |
|     }
 | |
| 
 | |
|     /* Calculate final GHASH on aad_len, data length */
 | |
|     ESP_PUT_BE64(len_block, ctx->aad_len * 8);
 | |
|     ESP_PUT_BE64(len_block + 8, ctx->data_len * 8);
 | |
|     esp_gcm_ghash(ctx, len_block, AES_BLOCK_BYTES, ctx->ghash);
 | |
| 
 | |
|     /* Tag T = GCTR(J0, ) where T is truncated to tag_len */
 | |
|     esp_aes_crypt_ctr(&ctx->aes_ctx, tag_len, &nc_off, ctx->ori_j0, 0, ctx->ghash, tag);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Due to restrictions in the hardware (e.g. need to do the whole conversion in one go),
 | |
|    some combinations of inputs are not supported */
 | |
| static bool esp_aes_gcm_input_support_hw_accel(size_t length, const unsigned char *aad, size_t aad_len,
 | |
|                                                const unsigned char *input, unsigned char *output, uint8_t *stream_in)
 | |
| {
 | |
|     bool support_hw_accel = true;
 | |
| 
 | |
|     if (aad_len > ESP_AES_GCM_AAD_MAX_BYTES) {
 | |
|         support_hw_accel = false;
 | |
|     } else if (!esp_ptr_dma_capable(aad) && aad_len > 0) {
 | |
|         /* aad in non internal DMA memory */
 | |
|         support_hw_accel = false;
 | |
|     } else if (!esp_ptr_dma_capable(input) && length > 0) {
 | |
|         /* input in non internal DMA memory */
 | |
|         support_hw_accel = false;
 | |
|     } else if (!esp_ptr_dma_capable(output) && length > 0) {
 | |
|         /* output in non internal DMA memory */
 | |
|         support_hw_accel = false;
 | |
|     } else if (!esp_ptr_dma_capable(stream_in)) {
 | |
|         /* Stream in (and therefor other descriptors and buffers that come from the stack)
 | |
|            in non internal DMA memory */
 | |
|         support_hw_accel = false;
 | |
|     } else if (length == 0) {
 | |
|         support_hw_accel = false;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     return support_hw_accel;
 | |
| }
 | |
| 
 | |
| static int esp_aes_gcm_crypt_and_tag_partial_hw( esp_gcm_context *ctx,
 | |
|         int mode,
 | |
|         size_t length,
 | |
|         const unsigned char *iv,
 | |
|         size_t iv_len,
 | |
|         const unsigned char *aad,
 | |
|         size_t aad_len,
 | |
|         const unsigned char *input,
 | |
|         unsigned char *output,
 | |
|         size_t tag_len,
 | |
|         unsigned char *tag )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     if ( ( ret = esp_aes_gcm_starts( ctx, mode, iv, iv_len, aad, aad_len ) ) != 0 ) {
 | |
|         return ( ret );
 | |
|     }
 | |
| 
 | |
|     if ( ( ret = esp_aes_gcm_update( ctx, length, input, output ) ) != 0 ) {
 | |
|         return ( ret );
 | |
|     }
 | |
| 
 | |
|     if ( ( ret = esp_aes_gcm_finish( ctx, tag, tag_len ) ) != 0 ) {
 | |
|         return ( ret );
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int esp_aes_gcm_crypt_and_tag( esp_gcm_context *ctx,
 | |
|                                int mode,
 | |
|                                size_t length,
 | |
|                                const unsigned char *iv,
 | |
|                                size_t iv_len,
 | |
|                                const unsigned char *aad,
 | |
|                                size_t aad_len,
 | |
|                                const unsigned char *input,
 | |
|                                unsigned char *output,
 | |
|                                size_t tag_len,
 | |
|                                unsigned char *tag )
 | |
| {
 | |
|     int ret;
 | |
|     lldesc_t aad_desc[2] = {};
 | |
|     lldesc_t *aad_head_desc = NULL;
 | |
|     size_t remainder_bit;
 | |
|     uint8_t stream_in[AES_BLOCK_BYTES] = {};
 | |
|     unsigned stream_bytes = aad_len % AES_BLOCK_BYTES; // bytes which aren't in a full block
 | |
|     unsigned block_bytes = aad_len - stream_bytes;     // bytes which are in a full block
 | |
| 
 | |
|     /* Due to hardware limition only certain cases are fully supported in HW */
 | |
|     if (!esp_aes_gcm_input_support_hw_accel(length, aad, aad_len, input, output, stream_in)) {
 | |
|         return esp_aes_gcm_crypt_and_tag_partial_hw(ctx, mode, length, iv, iv_len, aad, aad_len, input, output, tag_len, tag);
 | |
|     }
 | |
| 
 | |
|     /* Limit aad len to a single DMA descriptor to simplify DMA handling
 | |
|        In practice, e.g. with mbedtls the length of aad will always be short
 | |
|     */
 | |
|     if (aad_len > LLDESC_MAX_NUM_PER_DESC) {
 | |
|         return -1;
 | |
|     }
 | |
|     /* IV and AD are limited to 2^32 bits, so 2^29 bytes */
 | |
|     /* IV is not allowed to be zero length */
 | |
|     if ( iv_len == 0 ||
 | |
|             ( (uint32_t) iv_len  ) >> 29 != 0 ||
 | |
|             ( (uint32_t) aad_len ) >> 29 != 0 ) {
 | |
|         return ( MBEDTLS_ERR_GCM_BAD_INPUT );
 | |
|     }
 | |
| 
 | |
|     if (!ctx) {
 | |
|         ESP_LOGE(TAG, "No AES context supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if ( (aad_len > 0) && !aad) {
 | |
|         ESP_LOGE(TAG, "No aad supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Initialize AES-GCM context */
 | |
|     memset(ctx->ghash, 0, sizeof(ctx->ghash));
 | |
|     ctx->data_len = 0;
 | |
| 
 | |
|     ctx->iv = iv;
 | |
|     ctx->iv_len = iv_len;
 | |
|     ctx->aad = aad;
 | |
|     ctx->aad_len = aad_len;
 | |
|     ctx->mode = mode;
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->aes_ctx.key_in_hardware = 0;
 | |
|     ctx->aes_ctx.key_in_hardware = aes_hal_setkey(ctx->aes_ctx.key, ctx->aes_ctx.key_bytes, mode);
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
|         aad_desc[0].length = block_bytes;
 | |
|         aad_desc[0].size = block_bytes;
 | |
|         aad_desc[0].owner = 1;
 | |
|         aad_desc[0].buf = aad;
 | |
|     }
 | |
| 
 | |
|     if (stream_bytes > 0) {
 | |
|         memcpy(stream_in, aad + block_bytes, stream_bytes);
 | |
| 
 | |
|         aad_desc[0].empty = (uint32_t)&aad_desc[1];
 | |
|         aad_desc[1].length = AES_BLOCK_BYTES;
 | |
|         aad_desc[1].size = AES_BLOCK_BYTES;
 | |
|         aad_desc[1].owner = 1;
 | |
|         aad_desc[1].buf = stream_in;
 | |
|     }
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
|         aad_head_desc = &aad_desc[0];
 | |
|     } else if (stream_bytes > 0) {
 | |
|         aad_head_desc = &aad_desc[1];
 | |
|     }
 | |
| 
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_GCM);
 | |
| 
 | |
|     /* See TRM GCM chapter for description of this calculation */
 | |
|     remainder_bit = (8 * length) % 128;
 | |
|     aes_hal_gcm_init( (aad_len + AES_BLOCK_BYTES - 1) / AES_BLOCK_BYTES, remainder_bit);
 | |
|     aes_hal_gcm_calc_hash(ctx->H);
 | |
| 
 | |
|     gcm_gen_table(ctx);
 | |
|     esp_gcm_derive_J0(ctx);
 | |
| 
 | |
|     aes_hal_gcm_set_j0(ctx->J0);
 | |
| 
 | |
|     ret = esp_aes_process_dma_gcm(&ctx->aes_ctx, input, output, length, aad_head_desc, aad_len);
 | |
| 
 | |
|     aes_hal_gcm_read_tag(tag, tag_len);
 | |
| 
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return ( ret );
 | |
| }
 | |
| 
 | |
| 
 | |
| int esp_aes_gcm_auth_decrypt( esp_gcm_context *ctx,
 | |
|                               size_t length,
 | |
|                               const unsigned char *iv,
 | |
|                               size_t iv_len,
 | |
|                               const unsigned char *aad,
 | |
|                               size_t aad_len,
 | |
|                               const unsigned char *tag,
 | |
|                               size_t tag_len,
 | |
|                               const unsigned char *input,
 | |
|                               unsigned char *output )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char check_tag[16];
 | |
|     size_t i;
 | |
|     int diff;
 | |
| 
 | |
|     if ( ( ret = esp_aes_gcm_crypt_and_tag( ctx, ESP_AES_DECRYPT, length,
 | |
|                                             iv, iv_len, aad, aad_len,
 | |
|                                             input, output, tag_len, check_tag ) ) != 0 ) {
 | |
|         return ( ret );
 | |
|     }
 | |
| 
 | |
|     /* Check tag in "constant-time" */
 | |
|     for ( diff = 0, i = 0; i < tag_len; i++ ) {
 | |
|         diff |= tag[i] ^ check_tag[i];
 | |
|     }
 | |
| 
 | |
|     if ( diff != 0 ) {
 | |
|         bzero( output, length );
 | |
|         return ( MBEDTLS_ERR_GCM_AUTH_FAILED );
 | |
|     }
 | |
| 
 | |
|     return ( 0 );
 | |
| }
 | |
| 
 | |
| #endif //SOC_AES_SUPPORT_GCM
 |