mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-08 04:02:27 +00:00

peripheral enable/disable usually should be managed by driver itself, so make it as espressif private APIs, not recommended for user to use it in application code. However, if user want to re-write the driver or ports to other platform, this is still possible by including the header in this way: "esp_private/peripheral_ctrl.h"
292 lines
10 KiB
C
292 lines
10 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "sys/param.h"
|
|
#include "esp_timer_impl.h"
|
|
#include "esp_timer.h"
|
|
#include "esp_err.h"
|
|
#include "esp_system.h"
|
|
#include "esp_task.h"
|
|
#include "esp_attr.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "esp32/clk.h"
|
|
#include "esp_private/periph_ctrl.h"
|
|
#include "soc/soc.h"
|
|
#include "soc/timer_group_reg.h"
|
|
#include "soc/rtc.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
|
|
/**
|
|
* @file esp_timer_lac.c
|
|
* @brief Implementation of chip-specific part of esp_timer
|
|
*
|
|
* This implementation uses TG0 LAC timer of the ESP32. This timer is
|
|
* a 64-bit up-counting timer, with a programmable compare value (called 'alarm'
|
|
* hereafter). When the timer reaches compare value, interrupt is raised.
|
|
* The timer can be configured to produce an edge or a level interrupt.
|
|
*/
|
|
|
|
/* Selects which Timer Group peripheral to use */
|
|
#define LACT_MODULE 0
|
|
|
|
#if LACT_MODULE == 0
|
|
#define INTR_SOURCE_LACT ETS_TG0_LACT_LEVEL_INTR_SOURCE
|
|
#define PERIPH_LACT PERIPH_TIMG0_MODULE
|
|
#elif LACT_MODULE == 1
|
|
#define INTR_SOURCE_LACT ETS_TG1_LACT_LEVEL_INTR_SOURCE
|
|
#define PERIPH_LACT PERIPH_TIMG1_MODULE
|
|
#else
|
|
#error "Incorrect the number of LACT module (only 0 or 1)"
|
|
#endif
|
|
|
|
/* Desired number of timer ticks per microsecond.
|
|
* This value should be small enough so that all possible APB frequencies
|
|
* could be divided by it without remainder.
|
|
* On the other hand, the smaller this value is, the longer we need to wait
|
|
* after setting UPDATE_REG before the timer value can be read.
|
|
* If TICKS_PER_US == 1, then we need to wait up to 1 microsecond, which
|
|
* makes esp_timer_impl_get_time function take too much time.
|
|
* The value TICKS_PER_US == 2 allows for most of the APB frequencies, and
|
|
* allows reading the counter quickly enough.
|
|
*/
|
|
#define TICKS_PER_US 2
|
|
|
|
/* Shorter register names, used in this file */
|
|
#define CONFIG_REG (TIMG_LACTCONFIG_REG(LACT_MODULE))
|
|
#define RTC_STEP_REG (TIMG_LACTRTC_REG(LACT_MODULE))
|
|
#define ALARM_LO_REG (TIMG_LACTALARMLO_REG(LACT_MODULE))
|
|
#define ALARM_HI_REG (TIMG_LACTALARMHI_REG(LACT_MODULE))
|
|
#define COUNT_LO_REG (TIMG_LACTLO_REG(LACT_MODULE))
|
|
#define COUNT_HI_REG (TIMG_LACTHI_REG(LACT_MODULE))
|
|
#define UPDATE_REG (TIMG_LACTUPDATE_REG(LACT_MODULE))
|
|
#define LOAD_REG (TIMG_LACTLOAD_REG(LACT_MODULE))
|
|
#define LOAD_LO_REG (TIMG_LACTLOADLO_REG(LACT_MODULE))
|
|
#define LOAD_HI_REG (TIMG_LACTLOADHI_REG(LACT_MODULE))
|
|
#define INT_ENA_REG (TIMG_INT_ENA_TIMERS_REG(LACT_MODULE))
|
|
#define INT_ST_REG (TIMG_INT_ST_TIMERS_REG(LACT_MODULE))
|
|
#define INT_CLR_REG (TIMG_INT_CLR_TIMERS_REG(LACT_MODULE))
|
|
|
|
/* Helper type to convert between a 64-bit value and a pair of 32-bit values without shifts and masks */
|
|
typedef struct {
|
|
union {
|
|
struct {
|
|
uint32_t lo;
|
|
uint32_t hi;
|
|
};
|
|
uint64_t val;
|
|
};
|
|
} timer_64b_reg_t;
|
|
|
|
static const char* TAG = "esp_timer_impl";
|
|
|
|
/* Interrupt handle returned by the interrupt allocator */
|
|
static intr_handle_t s_timer_interrupt_handle;
|
|
|
|
/* Function from the upper layer to be called when the interrupt happens.
|
|
* Registered in esp_timer_impl_init.
|
|
*/
|
|
static intr_handler_t s_alarm_handler = NULL;
|
|
|
|
/* Spinlock used to protect access to the hardware registers. */
|
|
portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
|
|
void esp_timer_impl_lock(void)
|
|
{
|
|
portENTER_CRITICAL(&s_time_update_lock);
|
|
}
|
|
|
|
void esp_timer_impl_unlock(void)
|
|
{
|
|
portEXIT_CRITICAL(&s_time_update_lock);
|
|
}
|
|
|
|
uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void)
|
|
{
|
|
uint32_t lo, hi;
|
|
uint32_t lo_start = REG_READ(COUNT_LO_REG);
|
|
uint32_t div = REG_GET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER);
|
|
/* The peripheral doesn't have a bit to indicate that the update is done, so we poll the
|
|
* lower 32 bit part of the counter until it changes, or a timeout expires.
|
|
*/
|
|
REG_WRITE(UPDATE_REG, 1);
|
|
do {
|
|
lo = REG_READ(COUNT_LO_REG);
|
|
} while (lo == lo_start && div-- > 0);
|
|
|
|
/* Since this function is called without a critical section, verify that LO and HI
|
|
* registers are consistent. That is, if an interrupt happens between reading LO and
|
|
* HI registers, and esp_timer_impl_get_time is called from an ISR, then try to
|
|
* detect this by the change in LO register value, and re-read both registers.
|
|
*/
|
|
do {
|
|
lo_start = lo;
|
|
hi = REG_READ(COUNT_HI_REG);
|
|
lo = REG_READ(COUNT_LO_REG);
|
|
} while (lo != lo_start);
|
|
|
|
timer_64b_reg_t result = {
|
|
.lo = lo,
|
|
.hi = hi
|
|
};
|
|
return result.val;
|
|
}
|
|
|
|
int64_t IRAM_ATTR esp_timer_impl_get_time(void)
|
|
{
|
|
return esp_timer_impl_get_counter_reg() / TICKS_PER_US;
|
|
}
|
|
|
|
int64_t esp_timer_get_time(void) __attribute__((alias("esp_timer_impl_get_time")));
|
|
|
|
void IRAM_ATTR esp_timer_impl_set_alarm_id(uint64_t timestamp, unsigned alarm_id)
|
|
{
|
|
static uint64_t timestamp_id[2] = { UINT64_MAX, UINT64_MAX };
|
|
portENTER_CRITICAL_SAFE(&s_time_update_lock);
|
|
timestamp_id[alarm_id] = timestamp;
|
|
timestamp = MIN(timestamp_id[0], timestamp_id[1]);
|
|
if (timestamp != UINT64_MAX) {
|
|
int64_t offset = TICKS_PER_US * 2;
|
|
uint64_t now_time = esp_timer_impl_get_counter_reg();
|
|
timer_64b_reg_t alarm = { .val = MAX(timestamp * TICKS_PER_US, now_time + offset) };
|
|
do {
|
|
REG_CLR_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
|
|
REG_WRITE(ALARM_LO_REG, alarm.lo);
|
|
REG_WRITE(ALARM_HI_REG, alarm.hi);
|
|
REG_SET_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
|
|
now_time = esp_timer_impl_get_counter_reg();
|
|
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
|
|
if (delta <= 0 && REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) == 0) {
|
|
// new alarm is less than the counter and the interrupt flag is not set
|
|
offset += abs((int)delta) + TICKS_PER_US * 2;
|
|
alarm.val = now_time + offset;
|
|
} else {
|
|
// finish if either (alarm > counter) or the interrupt flag is already set.
|
|
break;
|
|
}
|
|
} while(1);
|
|
}
|
|
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
|
|
}
|
|
|
|
void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
|
|
{
|
|
esp_timer_impl_set_alarm_id(timestamp, 0);
|
|
}
|
|
|
|
static void IRAM_ATTR timer_alarm_isr(void *arg)
|
|
{
|
|
/* Clear interrupt status */
|
|
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
/* Call the upper layer handler */
|
|
(*s_alarm_handler)(arg);
|
|
}
|
|
|
|
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
|
|
{
|
|
portENTER_CRITICAL(&s_time_update_lock);
|
|
assert(apb_ticks_per_us >= 3 && "divider value too low");
|
|
assert(apb_ticks_per_us % TICKS_PER_US == 0 && "APB frequency (in MHz) should be divisible by TICK_PER_US");
|
|
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, apb_ticks_per_us / TICKS_PER_US);
|
|
portEXIT_CRITICAL(&s_time_update_lock);
|
|
}
|
|
|
|
void esp_timer_impl_advance(int64_t time_diff_us)
|
|
{
|
|
portENTER_CRITICAL(&s_time_update_lock);
|
|
uint64_t now = esp_timer_impl_get_time();
|
|
timer_64b_reg_t dst = { .val = (now + time_diff_us) * TICKS_PER_US };
|
|
REG_WRITE(LOAD_LO_REG, dst.lo);
|
|
REG_WRITE(LOAD_HI_REG, dst.hi);
|
|
REG_WRITE(LOAD_REG, 1);
|
|
portEXIT_CRITICAL(&s_time_update_lock);
|
|
}
|
|
|
|
esp_err_t esp_timer_impl_early_init(void)
|
|
{
|
|
periph_module_enable(PERIPH_LACT);
|
|
|
|
REG_WRITE(CONFIG_REG, 0);
|
|
REG_WRITE(LOAD_LO_REG, 0);
|
|
REG_WRITE(LOAD_HI_REG, 0);
|
|
REG_WRITE(ALARM_LO_REG, UINT32_MAX);
|
|
REG_WRITE(ALARM_HI_REG, UINT32_MAX);
|
|
REG_WRITE(LOAD_REG, 1);
|
|
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, APB_CLK_FREQ / 1000000 / TICKS_PER_US);
|
|
REG_SET_BIT(CONFIG_REG, TIMG_LACT_INCREASE |
|
|
TIMG_LACT_LEVEL_INT_EN |
|
|
TIMG_LACT_EN);
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
|
|
{
|
|
s_alarm_handler = alarm_handler;
|
|
|
|
const int interrupt_lvl = (1 << CONFIG_ESP_TIMER_INTERRUPT_LEVEL) & ESP_INTR_FLAG_LEVELMASK;
|
|
esp_err_t err = esp_intr_alloc(INTR_SOURCE_LACT,
|
|
ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM | interrupt_lvl,
|
|
&timer_alarm_isr, NULL, &s_timer_interrupt_handle);
|
|
|
|
if (err != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
|
|
return err;
|
|
}
|
|
|
|
/* In theory, this needs a shared spinlock with the timer group driver.
|
|
* However since esp_timer_impl_init is called early at startup, this
|
|
* will not cause issues in practice.
|
|
*/
|
|
REG_SET_BIT(INT_ENA_REG, TIMG_LACT_INT_ENA);
|
|
|
|
esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
|
|
|
|
// Set the step for the sleep mode when the timer will work
|
|
// from a slow_clk frequency instead of the APB frequency.
|
|
uint32_t slowclk_ticks_per_us = esp_clk_slowclk_cal_get() * TICKS_PER_US;
|
|
REG_SET_FIELD(RTC_STEP_REG, TIMG_LACT_RTC_STEP_LEN, slowclk_ticks_per_us);
|
|
|
|
ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
void esp_timer_impl_deinit(void)
|
|
{
|
|
REG_WRITE(CONFIG_REG, 0);
|
|
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
|
/* TODO: also clear TIMG_LACT_INT_ENA; however see the note in esp_timer_impl_init. */
|
|
|
|
esp_intr_disable(s_timer_interrupt_handle);
|
|
esp_intr_free(s_timer_interrupt_handle);
|
|
s_timer_interrupt_handle = NULL;
|
|
}
|
|
|
|
/* FIXME: This value is safe for 80MHz APB frequency, should be modified to depend on clock frequency. */
|
|
uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us(void)
|
|
{
|
|
return 50;
|
|
}
|
|
|
|
uint64_t esp_timer_impl_get_alarm_reg(void)
|
|
{
|
|
portENTER_CRITICAL_SAFE(&s_time_update_lock);
|
|
timer_64b_reg_t alarm = {
|
|
.lo = REG_READ(ALARM_LO_REG),
|
|
.hi = REG_READ(ALARM_HI_REG)
|
|
};
|
|
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
|
|
return alarm.val;
|
|
}
|
|
|
|
void esp_timer_private_update_apb_freq(uint32_t apb_ticks_per_us) __attribute__((alias("esp_timer_impl_update_apb_freq")));
|
|
void esp_timer_private_advance(int64_t time_us) __attribute__((alias("esp_timer_impl_advance")));
|
|
void esp_timer_private_lock(void) __attribute__((alias("esp_timer_impl_lock")));
|
|
void esp_timer_private_unlock(void) __attribute__((alias("esp_timer_impl_unlock")));
|