Files
esp-idf/components/heap/heap_task_info.c
Guillaume Souchere d429b1fdbb feat(examples): Update heap task tracking examples
update example to showcasee the new API of heap task tracking

- Add basic heap task traacking example
- Add advanced example for task tracking
2025-03-25 10:22:30 +01:00

995 lines
42 KiB
C

/*
* SPDX-FileCopyrightText: 2018-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <inttypes.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <multi_heap.h>
#include "multi_heap_internal.h"
#include "heap_private.h"
#include "esp_heap_task_info.h"
#include "esp_heap_task_info_internal.h"
#include "heap_memory_layout.h"
#include "esp_log.h"
#ifdef CONFIG_HEAP_TASK_TRACKING
const static char *TAG = "heap_task_tracking";
static SemaphoreHandle_t s_task_tracking_mutex = NULL;
static StaticSemaphore_t s_task_tracking_mutex_buf;
typedef struct alloc_stats {
heap_task_block_t alloc_stat;
STAILQ_ENTRY(alloc_stats) next_alloc_stat;
} alloc_stats_t;
/**
* @brief Internal singly linked list used to gather information of the heap used
* by a given task.
*/
typedef struct heap_stats {
multi_heap_handle_t heap;
heap_stat_t heap_stat;
STAILQ_HEAD(alloc_stats_ll, alloc_stats) allocs_stats;
STAILQ_ENTRY(heap_stats) next_heap_stat;
} heap_stats_t;
/** @brief Internal singly linked list used to gather information on all created
* tasks since startup.
*/
typedef struct task_stats {
task_stat_t task_stat;
STAILQ_HEAD(heap_stats_ll, heap_stats) heaps_stats;
SLIST_ENTRY(task_stats) next_task_info;
} task_info_t;
static SLIST_HEAD(task_stats_ll, task_stats) task_stats = SLIST_HEAD_INITIALIZER(task_stats);
FORCE_INLINE_ATTR heap_t* find_biggest_heap(void)
{
heap_t *heap = NULL;
heap_t *biggest_heap = NULL;
SLIST_FOREACH(heap, &registered_heaps, next) {
if (biggest_heap == NULL) {
biggest_heap = heap;
} else if ((biggest_heap->end - biggest_heap->start) < (heap->end - heap->start)) {
biggest_heap = heap;
} else {
// nothing to do here
}
}
return biggest_heap;
}
/**
* @brief Create a new alloc stats entry object
*
* @param heap_stats The heap statistics of the heap used for the allocation
* @param task_handle The task handler of the task which performed the allocation
* @param ptr The address of the allocation
* @param size The size of the allocation
*/
static HEAP_IRAM_ATTR void create_new_alloc_stats_entry(heap_stats_t *heap_stats, alloc_stats_t *alloc_stats, TaskHandle_t task_handle, void *ptr, size_t size)
{
// init the list of allocs with a new entry in heap_stats->allocs_stats. No need
// to memset the memory since all field will be set later in the function.
if (!alloc_stats) {
// find the heap with the most available free memory to store the statistics
heap_t *heap_used_for_alloc = find_biggest_heap();
alloc_stats = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(alloc_stats_t));
if (!alloc_stats) {
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
return;
}
}
alloc_stats->alloc_stat.task = task_handle;
alloc_stats->alloc_stat.address = ptr;
alloc_stats->alloc_stat.size = size;
STAILQ_INSERT_TAIL(&heap_stats->allocs_stats, alloc_stats, next_alloc_stat);
}
/**
* @brief Create a new heap stats entry object
*
* @param task_stats The task statistics of the task that triggered the allocation
* @param used_heap Information about the heap used for the allocation
* @param caps The caps of the heap used for the allocation
* @param size The size of the allocation
*/
static HEAP_IRAM_ATTR void create_new_heap_stats_entry(task_info_t *task_stats, heap_t *used_heap, void *ptr, uint32_t caps, size_t size)
{
// find the heap with the most available free memory to store the statistics
heap_t *heap_used_for_alloc = find_biggest_heap();
// init the list of heap with a new entry in task_stats->heaps_stats. No need
// to memset the memory since all field will be set later in the function.
heap_stats_t *heap_stats = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(heap_stats_t));
if (!heap_stats) {
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
return;
}
// create the alloc stats for the new heap entry
STAILQ_INIT(&heap_stats->allocs_stats);
task_stats->task_stat.heap_count += 1;
heap_stats->heap = used_heap->heap;
heap_stats->heap_stat.name = used_heap->name;
heap_stats->heap_stat.size = used_heap->end - used_heap->start;
heap_stats->heap_stat.caps = caps;
heap_stats->heap_stat.current_usage = size;
heap_stats->heap_stat.peak_usage = size;
heap_stats->heap_stat.alloc_count = 1;
heap_stats->heap_stat.alloc_stat = NULL; // this will be used to point at the user defined array of alloc_stat
STAILQ_INSERT_TAIL(&task_stats->heaps_stats, heap_stats, next_heap_stat);
create_new_alloc_stats_entry(heap_stats, NULL, task_stats->task_stat.handle, ptr, size);
}
/**
* @brief Create a new task info entry in task_stats if the tasks allocating memory is not in task_stats already.
*
* @param heap The heap by the task to allocate memory
* @param task_handle The task handle of the task allocating memory
* @param task_stats The task entry in task_stats. If NULL, the task allocating memory is allocating for the first time
* @param ptr The address of the allocation
* @param size The size of the allocation
* @param caps The ORED caps of the heap used for the allocation
*/
static HEAP_IRAM_ATTR void create_new_task_stats_entry(heap_t *used_heap, TaskHandle_t task_handle, task_info_t *task_info, void *ptr, size_t size, uint32_t caps)
{
// If task_info passed as parameter is NULL, it means the this task is doing
// its first allocation. Add the task entry to task_info and add heap_stats
// to this new task_info entry.
// If task_info is not NULL, it means that the task already allocated memory
// but now it is allocating in a new heap for the first time. Don't add a new
// task entry to task_info but add a new heap_stats to the task_info
if (!task_info) {
// find the heap with the most available free memory to store the statistics
heap_t *heap_used_for_alloc = find_biggest_heap();
// create the task_stats entry. No need to memset since all fields are set later
task_info = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(task_info_t));
if (!task_info) {
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
return;
}
// create the heap stats for the new task entry
STAILQ_INIT(&task_info->heaps_stats);
task_info->task_stat.handle = task_handle;
task_info->task_stat.is_alive = true;
task_info->task_stat.overall_peak_usage = size;
task_info->task_stat.overall_current_usage = size;
task_info->task_stat.heap_count = 0;
task_info->task_stat.heap_stat = NULL; // this will be used to point at the user defined array of heap_stat
if (task_handle == 0x00) {
char task_name[] = "Pre-scheduler";
strcpy(task_info->task_stat.name, task_name);
} else {
strcpy(task_info->task_stat.name, pcTaskGetName(task_handle));
}
// Add the new / first task_info in the list (sorted by decreasing address).
// The decreasing order is chosen because the task_handle 0x00000000 is used for pre-scheduler
// operations and therefore need to appear last so it is not parsed when trying to find a suitable
// task to update the stats from.
if (SLIST_EMPTY(&task_stats) || task_info->task_stat.handle >= SLIST_FIRST(&task_stats)->task_stat.handle) {
// the list is empty, or the new task handler is at a higher address than the one from the first item
SLIST_INSERT_HEAD(&task_stats, task_info, next_task_info);
} else {
// the new task handle is at a lower address than the first item in the list, go through the list to
// properly insert the new item
task_info_t *cur_task_info = NULL;
task_info_t *prev_task_info = NULL;
SLIST_FOREACH(cur_task_info, &task_stats, next_task_info) {
if (cur_task_info->task_stat.handle < task_info->task_stat.handle) {
SLIST_INSERT_AFTER(prev_task_info, task_info, next_task_info);
break;
} else {
prev_task_info = cur_task_info;
}
}
// here should be a last case handling: new task info as a task handle address smaller than all existing
// items in the list. But this is case is impossible given that the pre-scheduler allocations always
// happen first and the task handle defaults to 0x00000000 for the pre-scheduler so it will always be
// last in the list.
}
}
create_new_heap_stats_entry(task_info, used_heap, ptr, caps, size);
}
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
/**
* @brief Delete an entry from the list of task statistics
*
* @param task_info The task statistics to delete from the list of task statistics
*/
static HEAP_IRAM_ATTR void delete_task_info_entry(task_info_t *task_info)
{
if (task_info == NULL) {
return;
}
heap_stats_t *current_heap_stat = STAILQ_FIRST(&task_info->heaps_stats);
heap_stats_t *prev_heap_stat = NULL;
// pointer used to free the memory of the statistics
heap_t *containing_heap = NULL;
// remove all entries from task_info->heaps_stats and free the memory
while(current_heap_stat != NULL) {
prev_heap_stat = current_heap_stat;
current_heap_stat = STAILQ_NEXT(current_heap_stat, next_heap_stat);
/* remove all entries from heap_stats->allocs_stats */
alloc_stats_t *alloc_stat = NULL;
while ((alloc_stat = STAILQ_FIRST( &prev_heap_stat->allocs_stats)) != NULL) {
STAILQ_REMOVE(&prev_heap_stat->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
containing_heap = find_containing_heap(alloc_stat);
// prev_heap_stat must be allocated somewhere
if (containing_heap != NULL) {
multi_heap_free(containing_heap->heap, alloc_stat);
}
}
if (STAILQ_EMPTY(&prev_heap_stat->allocs_stats)) {
STAILQ_REMOVE(&task_info->heaps_stats, prev_heap_stat, heap_stats, next_heap_stat);
containing_heap = find_containing_heap(prev_heap_stat);
// prev_heap_stat must be allocated somewhere
if (containing_heap != NULL) {
multi_heap_free(containing_heap->heap, prev_heap_stat);
}
}
}
if (STAILQ_EMPTY(&task_info->heaps_stats)) {
// remove task_info from task_stats (and free the memory)
SLIST_REMOVE(&task_stats, task_info, task_stats, next_task_info);
containing_heap = find_containing_heap(task_info);
if (containing_heap != NULL) {
multi_heap_free(containing_heap->heap, task_info);
}
}
}
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_alloc(heap_t *heap, void *ptr, size_t size, uint32_t caps)
{
if (s_task_tracking_mutex == NULL) {
s_task_tracking_mutex = xSemaphoreCreateMutexStatic(&s_task_tracking_mutex_buf);
assert(s_task_tracking_mutex);
}
TaskHandle_t task_handle = xTaskGetCurrentTaskHandle();
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
/* find the task in the list and update the overall stats */
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
if (task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
task_info->task_stat.overall_current_usage += size;
if (task_info->task_stat.overall_current_usage > task_info->task_stat.overall_peak_usage) {
task_info->task_stat.overall_peak_usage = task_info->task_stat.overall_current_usage;
}
heap_stats_t *heap_stats = NULL;
/* find the heap in the list and update the overall stats */
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
if (heap_stats->heap == heap->heap) {
heap_stats->heap_stat.current_usage += size;
heap_stats->heap_stat.alloc_count++;
if (heap_stats->heap_stat.current_usage > heap_stats->heap_stat.peak_usage) {
heap_stats->heap_stat.peak_usage = heap_stats->heap_stat.current_usage;
}
/* add the alloc info to the list */
create_new_alloc_stats_entry(heap_stats, NULL, task_handle, ptr, size);
xSemaphoreGive(s_task_tracking_mutex);
return;
}
}
break;
}
// since the list of task info is sorted by decreasing size, if the current task info
// has a smaller task handle address than the one we are checking against, we can be sure
// the task handle will not be found in the list, and we can break the loop.
if (task_info->task_stat.handle < task_handle) {
task_info = NULL;
break;
}
}
// No task entry was found OR no heap in the task entry was found.
// Add the info to the list (either new task stats or new heap stat if task_info not NULL)
create_new_task_stats_entry(heap, task_handle, task_info, ptr, size, caps);
xSemaphoreGive(s_task_tracking_mutex);
}
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_realloc(heap_t *heap, void *old_ptr, void *new_ptr,
size_t old_size, TaskHandle_t old_task,
size_t new_size, uint32_t caps)
{
TaskHandle_t task_handle = xTaskGetCurrentTaskHandle();
bool task_in_list = false;
task_info_t *task_info = NULL;
alloc_stats_t *alloc_stat = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
if (task_info->task_stat.handle == old_task) {
heap_stats_t *heap_stats = NULL;
task_info->task_stat.overall_current_usage -= old_size;
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
if (heap_stats->heap == heap->heap) {
heap_stats->heap_stat.current_usage -= old_size;
heap_stats->heap_stat.alloc_count--;
/* remove the alloc from the list. The updated alloc stats are added later
* in the function */
STAILQ_FOREACH(alloc_stat, &heap_stats->allocs_stats, next_alloc_stat) {
if (alloc_stat->alloc_stat.address == old_ptr) {
STAILQ_REMOVE(&heap_stats->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
/* keep the memory used to store alloc_stat since we will fill it with new alloc
* info later in the function */
break;
}
}
break;
}
}
}
if (task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
heap_stats_t *heap_stats = NULL;
task_info->task_stat.overall_current_usage += new_size;
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
if (heap_stats->heap == heap->heap) {
heap_stats->heap_stat.current_usage += new_size;
heap_stats->heap_stat.alloc_count++;
if (heap_stats->heap_stat.current_usage > heap_stats->heap_stat.peak_usage) {
heap_stats->heap_stat.peak_usage = heap_stats->heap_stat.current_usage;
}
create_new_alloc_stats_entry(heap_stats, alloc_stat, task_handle, new_ptr, new_size);
break;
}
}
task_in_list = true;
}
if (task_info->task_stat.overall_current_usage > task_info->task_stat.overall_peak_usage) {
task_info->task_stat.overall_peak_usage = task_info->task_stat.overall_current_usage;
}
}
if (!task_in_list) {
// No task entry was found OR no heap in the task entry was found.
// Add the info to the list (either new task stats or new heap stat if task_info not NULL)
create_new_task_stats_entry(heap, task_handle, task_info, new_ptr, new_size, caps);
}
xSemaphoreGive(s_task_tracking_mutex);
}
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_free(heap_t *heap, void *ptr)
{
void *block_owner_ptr = MULTI_HEAP_REMOVE_BLOCK_OWNER_OFFSET(ptr);
TaskHandle_t task_handle = MULTI_HEAP_GET_BLOCK_OWNER(block_owner_ptr);
if (!task_handle) {
return;
}
task_info_t *task_info = NULL;
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
task_info_t *task_info_to_delete = NULL;
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
/* find the matching task */
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
/* check all tasks (alive and deleted) since the free can come from any tasks,
* not necessarily the one which allocated the memory. */
if (task_info->task_stat.handle == task_handle) {
heap_stats_t *heap_stats = NULL;
alloc_stats_t *alloc_stat = NULL;
/* find the matching heap */
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
if(heap_stats->heap == heap->heap) {
/* find the matching allocation and remove it from the list*/
STAILQ_FOREACH(alloc_stat, &heap_stats->allocs_stats, next_alloc_stat) {
if (alloc_stat->alloc_stat.address == ptr) {
STAILQ_REMOVE(&heap_stats->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
/* keep the memory used to store alloc_stat since we will fill it with new alloc
* info later in the function */
break;
}
}
if (alloc_stat != NULL) {
heap_stats->heap_stat.alloc_count--;
heap_stats->heap_stat.current_usage -= alloc_stat->alloc_stat.size;
task_info->task_stat.overall_current_usage -= alloc_stat->alloc_stat.size;
}
}
}
/* free the memory used to store alloc_stat */
heap_t *containing_heap = find_containing_heap(alloc_stat);
// task_stats must be allocated somewhere
if (containing_heap != NULL) {
multi_heap_free(containing_heap->heap, alloc_stat);
}
}
// when a task is deleted, esp_caps_free is called to delete the TCB of the task from vTaskDelete.
// Try to make a TaskHandle out of ptr and compare it to the list of tasks in task_stats.
// If one task_info contains the newly made TaskHandle from ptr it means that esp_caps_free
// was indeed called from vTaskDelete. We can then update the task_stats by marking the corresponding
// task as deleted.
if (task_info->task_stat.handle == ptr) {
// we found the task info from the task that is being deleted.
task_info->task_stat.is_alive = false;
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
task_info_to_delete = task_info;
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
}
}
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
// remove the entry related to the task that was just deleted.
if (task_info_to_delete != NULL) {
delete_task_info_entry(task_info_to_delete);
}
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
xSemaphoreGive(s_task_tracking_mutex);
}
esp_err_t heap_caps_get_all_task_stat(heap_all_tasks_stat_t *tasks_stat)
{
if (tasks_stat == NULL ||
(tasks_stat->stat_arr == NULL && tasks_stat->task_count != 0) ||
(tasks_stat->heap_stat_start == NULL && tasks_stat->heap_count != 0) ||
(tasks_stat->alloc_stat_start == NULL && tasks_stat->alloc_count != 0)) {
return ESP_ERR_INVALID_ARG;
}
size_t task_index = 0;
size_t heap_index = 0;
size_t alloc_index = 0;
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
// If there is no more task stat entries available in tasks_stat->stat_arr
// break the loop and return the function.
if (task_index >= tasks_stat->task_count) {
break;
}
memcpy(tasks_stat->stat_arr + task_index, &task_info->task_stat, sizeof(task_stat_t));
task_stat_t *current_task_stat = tasks_stat->stat_arr + task_index;
task_index++;
// If no more heap stat entries in the array are available, just proceed
// with filling task stats but skip filling info on heap stat and alloc stat.
if (heap_index + task_info->task_stat.heap_count > tasks_stat->heap_count) {
current_task_stat->heap_stat = NULL;
continue;
}
// set the pointer where the heap info for the given task will
// be in the user array
current_task_stat->heap_stat = tasks_stat->heap_stat_start + heap_index;
heap_index += task_info->task_stat.heap_count;
// copy the stats of the different heaps the task has used and the different allocs
// allocated in those heaps. If the number of entries remaining for alloc stats is
// inferior to the number of allocs allocated on the current heap no alloc stat will
// be copied at all.
size_t h_index = 0;
heap_stats_t *heap_info = STAILQ_FIRST(&task_info->heaps_stats);
while(h_index < task_info->task_stat.heap_count || heap_info != NULL) {
// increase alloc_index before filling the alloc info of the given heap
// to avoid running out of alloc stat entry while doing it.
if (alloc_index + heap_info->heap_stat.alloc_count > tasks_stat->alloc_count) {
heap_info->heap_stat.alloc_stat = NULL;
} else {
// set the pointer where the alloc info for the given heap will
// be in the user array
heap_info->heap_stat.alloc_stat = tasks_stat->alloc_stat_start + alloc_index;
// fill the alloc array in heap_info by running through all blocks of a given heap
// and storing info about the blocks allocated by the given task
alloc_stats_t *alloc_stats = NULL;
size_t a_index = 0;
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
heap_info->heap_stat.alloc_stat[a_index] = alloc_stats->alloc_stat;
a_index++;
}
alloc_index += heap_info->heap_stat.alloc_count;
}
memcpy(current_task_stat->heap_stat + h_index, &heap_info->heap_stat, sizeof(heap_stat_t));
h_index++;
heap_info = STAILQ_NEXT(heap_info, next_heap_stat);
}
}
xSemaphoreGive(s_task_tracking_mutex);
tasks_stat->task_count = task_index;
tasks_stat->heap_count = heap_index;
tasks_stat->alloc_count = alloc_index;
return ESP_OK;
}
esp_err_t heap_caps_get_single_task_stat(heap_single_task_stat_t *task_stat, TaskHandle_t task_handle)
{
if (task_stat == NULL ||
(task_stat->heap_stat_start == NULL && task_stat->heap_count != 0) ||
(task_stat->alloc_stat_start == NULL && task_stat->alloc_count != 0)) {
return ESP_ERR_INVALID_ARG;
}
if (task_handle == NULL) {
task_handle = xTaskGetCurrentTaskHandle();
}
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
if(task_info->task_stat.handle == task_handle) {
// copy the task_stat of the task itself
memcpy(&task_stat->stat, &task_info->task_stat, sizeof(task_stat_t));
break;
}
}
xSemaphoreGive(s_task_tracking_mutex);
if (task_info == NULL) {
return ESP_FAIL;
}
task_stat->stat.heap_stat = task_stat->heap_stat_start;
// copy the stats of the different heaps the task has used and the different blocks
// allocated in those heaps. If the number of entries remaining for block stats is
// inferior to the number of blocks allocated on the current heap no block stat will
// be copied at all.
size_t heap_index = 0;
size_t alloc_index = 0;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
heap_stats_t *heap_info = STAILQ_FIRST(&task_info->heaps_stats);
while(heap_index < task_info->task_stat.heap_count || heap_info != NULL) {
// check that there is enough heap_stat entry left to add another one to the user defined
// array of heap_stat
if (heap_index >= task_stat->heap_count) {
break;
}
// increase alloc_index before filling the block info of the given heap
// to avoid running out of block stat entry while doing it.
if (alloc_index + heap_info->heap_stat.alloc_count > task_stat->alloc_count) {
heap_info->heap_stat.alloc_stat = NULL;
} else {
// set the pointer where the block info for the given heap will
// be in the user array
heap_info->heap_stat.alloc_stat = task_stat->alloc_stat_start + alloc_index;
// fill the alloc array in heap_info by running through all blocks of a given heap
// and storing info about the blocks allocated by the given task
alloc_stats_t *alloc_stats = NULL;
size_t a_index = 0;
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
heap_info->heap_stat.alloc_stat[a_index] = alloc_stats->alloc_stat;
a_index++;
}
alloc_index += heap_info->heap_stat.alloc_count;
}
memcpy(task_stat->stat.heap_stat + heap_index, &heap_info->heap_stat, sizeof(heap_stat_t));
heap_index++;
heap_info = STAILQ_NEXT(heap_info, next_heap_stat);
}
xSemaphoreGive(s_task_tracking_mutex);
task_stat->heap_count = heap_index;
task_stat->alloc_count = alloc_index;
return ESP_OK;
}
static void heap_caps_print_task_info(FILE *stream, task_info_t *task_info, bool is_last_task_info)
{
if (stream == NULL) {
stream = stdout;
}
const char *task_info_visual = is_last_task_info ? " " : "";
const char *task_info_visual_start = is_last_task_info ? "" : "";
fprintf(stream, "%s %s: %s, CURRENT MEMORY USAGE %d, PEAK MEMORY USAGE %d, TOTAL HEAP USED %d:\n", task_info_visual_start,
task_info->task_stat.is_alive ? "ALIVE" : "DELETED",
task_info->task_stat.name,
task_info->task_stat.overall_current_usage,
task_info->task_stat.overall_peak_usage,
task_info->task_stat.heap_count);
heap_stats_t *heap_info = NULL;
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
char *next_heap_visual = !STAILQ_NEXT(heap_info, next_heap_stat) ? " " : "";
char *next_heap_visual_start = !STAILQ_NEXT(heap_info, next_heap_stat) ? "" : "";
fprintf(stream, "%s %s HEAP: %s, CAPS: 0x%08lx, SIZE: %d, USAGE: CURRENT %d (%d%%), PEAK %d (%d%%), ALLOC COUNT: %d\n",
task_info_visual,
next_heap_visual_start,
heap_info->heap_stat.name,
heap_info->heap_stat.caps,
heap_info->heap_stat.size,
heap_info->heap_stat.current_usage,
(heap_info->heap_stat.current_usage * 100) / heap_info->heap_stat.size,
heap_info->heap_stat.peak_usage,
(heap_info->heap_stat.peak_usage * 100) / heap_info->heap_stat.size,
heap_info->heap_stat.alloc_count);
alloc_stats_t *alloc_stats = NULL;
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
fprintf(stream, "%s %s ├ ALLOC %p, SIZE %" PRIu32 "\n", task_info_visual,
next_heap_visual,
alloc_stats->alloc_stat.address,
alloc_stats->alloc_stat.size);
}
}
}
static void heap_caps_print_task_overview(FILE *stream, task_info_t *task_info, bool is_first_task_info, bool is_last_task_info)
{
if (stream == NULL) {
stream = stdout;
}
if (is_first_task_info) {
fprintf(stream, "┌────────────────────┬─────────┬──────────────────────┬───────────────────┬─────────────────┐\n");
fprintf(stream, "│ TASK │ STATUS │ CURRENT MEMORY USAGE │ PEAK MEMORY USAGE │ TOTAL HEAP USED │\n");
fprintf(stream, "├────────────────────┼─────────┼──────────────────────┼───────────────────┼─────────────────┤\n");
}
task_stat_t task_stat = task_info->task_stat;
fprintf(stream, "│ %18s │ %7s │ %20d │ %17d │ %15d │\n",
task_stat.name,
task_stat.is_alive ? "ALIVE " : "DELETED",
task_stat.overall_current_usage,
task_stat.overall_peak_usage,
task_stat.heap_count);
if (is_last_task_info) {
fprintf(stream, "└────────────────────┴─────────┴──────────────────────┴───────────────────┴─────────────────┘\n");
}
}
void heap_caps_print_single_task_stat(FILE *stream, TaskHandle_t task_handle)
{
if (task_handle == NULL) {
task_handle = xTaskGetCurrentTaskHandle();
}
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
if (task_info->task_stat.handle == task_handle) {
heap_caps_print_task_info(stream, task_info, true);
xSemaphoreGive(s_task_tracking_mutex);
return;
}
}
xSemaphoreGive(s_task_tracking_mutex);
}
void heap_caps_print_all_task_stat(FILE *stream)
{
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
const bool last_task_info = (SLIST_NEXT(task_info, next_task_info) == NULL);
heap_caps_print_task_info(stream, task_info, last_task_info);
}
xSemaphoreGive(s_task_tracking_mutex);
}
void heap_caps_print_single_task_stat_overview(FILE *stream, TaskHandle_t task_handle)
{
if (task_handle == NULL) {
task_handle = xTaskGetCurrentTaskHandle();
}
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
if (task_info->task_stat.handle == task_handle) {
heap_caps_print_task_overview(stream, task_info, true, true);
xSemaphoreGive(s_task_tracking_mutex);
return;
}
}
xSemaphoreGive(s_task_tracking_mutex);
}
void heap_caps_print_all_task_stat_overview(FILE *stream)
{
task_info_t *task_info = NULL;
bool is_first_task_info = true;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
const bool last_task_info = (SLIST_NEXT(task_info, next_task_info) == NULL);
heap_caps_print_task_overview(stream, task_info, is_first_task_info, last_task_info);
is_first_task_info = false;
}
xSemaphoreGive(s_task_tracking_mutex);
}
esp_err_t heap_caps_alloc_single_task_stat_arrays(heap_single_task_stat_t *task_stat, TaskHandle_t task_handle)
{
if (task_handle == NULL) {
task_handle = xTaskGetCurrentTaskHandle();
}
task_stat->heap_stat_start = NULL;
task_stat->alloc_stat_start = NULL;
task_stat->heap_count = 0;
task_stat->alloc_count = 0;
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
if(task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
task_stat->heap_count = task_info->task_stat.heap_count;
heap_stats_t *heap_info = NULL;
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
task_stat->alloc_count += heap_info->heap_stat.alloc_count;
}
break;
}
}
xSemaphoreGive(s_task_tracking_mutex);
// allocate the memory used to store the statistics of allocs, heaps
if (task_stat->heap_count != 0) {
heap_t *heap_used_for_alloc = find_biggest_heap();
task_stat->heap_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, task_stat->heap_count * sizeof(heap_stat_t));
if (task_stat->heap_stat_start == NULL) {
return ESP_FAIL;
}
}
if (task_stat->alloc_count != 0) {
heap_t *heap_used_for_alloc = find_biggest_heap();
task_stat->alloc_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, task_stat->alloc_count * sizeof(heap_task_block_t));
if (task_stat->alloc_stat_start == NULL) {
return ESP_FAIL;
}
}
return ESP_OK;
}
void heap_caps_free_single_task_stat_arrays(heap_single_task_stat_t *task_stat)
{
if (task_stat->heap_stat_start != NULL) {
heap_t *heap_used_for_alloc = find_containing_heap(task_stat->heap_stat_start);
assert(heap_used_for_alloc != NULL);
multi_heap_free(heap_used_for_alloc->heap, task_stat->heap_stat_start);
task_stat->heap_stat_start = NULL;
task_stat->heap_count = 0;
}
if (task_stat->alloc_stat_start != NULL) {
heap_t *heap_used_for_alloc = find_containing_heap(task_stat->alloc_stat_start);
assert(heap_used_for_alloc != NULL);
multi_heap_free(heap_used_for_alloc->heap, task_stat->alloc_stat_start);
task_stat->alloc_stat_start = NULL;
task_stat->alloc_count = 0;
}
}
esp_err_t heap_caps_alloc_all_task_stat_arrays(heap_all_tasks_stat_t *tasks_stat)
{
tasks_stat->stat_arr = NULL;
tasks_stat->heap_stat_start = NULL;
tasks_stat->alloc_stat_start = NULL;
tasks_stat->task_count = 0;
tasks_stat->heap_count = 0;
tasks_stat->alloc_count = 0;
task_info_t *task_info = NULL;
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
tasks_stat->task_count += 1;
tasks_stat->heap_count += task_info->task_stat.heap_count;
heap_stats_t *heap_info = NULL;
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
tasks_stat->alloc_count += heap_info->heap_stat.alloc_count;
}
}
xSemaphoreGive(s_task_tracking_mutex);
// allocate the memory used to store the statistics of allocs, heaps and tasks
if (tasks_stat->task_count != 0) {
heap_t *heap_used_for_alloc = find_biggest_heap();
tasks_stat->stat_arr = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->task_count * sizeof(task_stat_t));
if (tasks_stat->stat_arr == NULL) {
return ESP_FAIL;
}
}
if (tasks_stat->heap_count != 0) {
heap_t *heap_used_for_alloc = find_biggest_heap();
tasks_stat->heap_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->heap_count * sizeof(heap_stat_t));
if (tasks_stat->heap_stat_start == NULL) {
return ESP_FAIL;
}
}
if (tasks_stat->alloc_count != 0) {
heap_t *heap_used_for_alloc = find_biggest_heap();
tasks_stat->alloc_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->alloc_count * sizeof(heap_task_block_t));
if (tasks_stat->alloc_stat_start == NULL) {
return ESP_FAIL;
}
}
return ESP_OK;
}
void heap_caps_free_all_task_stat_arrays(heap_all_tasks_stat_t *tasks_stat)
{
if (tasks_stat->stat_arr != NULL) {
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->stat_arr);
assert(heap_used_for_alloc != NULL);
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->stat_arr);
tasks_stat->stat_arr = NULL;
tasks_stat->task_count = 0;
}
if (tasks_stat->heap_stat_start != NULL) {
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->heap_stat_start);
assert(heap_used_for_alloc != NULL);
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->heap_stat_start);
tasks_stat->heap_stat_start = NULL;
tasks_stat->heap_count = 0;
}
if (tasks_stat->alloc_stat_start != NULL) {
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->alloc_stat_start);
assert(heap_used_for_alloc != NULL);
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->alloc_stat_start);
tasks_stat->alloc_stat_start = NULL;
tasks_stat->alloc_count = 0;
}
}
/*
* Return per-task heap allocation totals and lists of blocks.
*
* For each task that has allocated memory from the heap, return totals for
* allocations within regions matching one or more sets of capabilities.
*
* Optionally also return an array of structs providing details about each
* block allocated by one or more requested tasks, or by all tasks.
*
* Returns the number of block detail structs returned.
*/
size_t heap_caps_get_per_task_info(heap_task_info_params_t *params)
{
heap_t *reg;
heap_task_block_t *blocks = params->blocks;
size_t count = *params->num_totals;
size_t remaining = params->max_blocks;
// Clear out totals for any prepopulated tasks.
if (params->totals) {
for (size_t i = 0; i < count; ++i) {
for (size_t type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
params->totals[i].size[type] = 0;
params->totals[i].count[type] = 0;
}
}
}
SLIST_FOREACH(reg, &registered_heaps, next) {
multi_heap_handle_t heap = reg->heap;
if (heap == NULL) {
continue;
}
// Find if the capabilities of this heap region match on of the desired
// sets of capabilities.
uint32_t caps = get_all_caps(reg);
uint32_t type;
for (type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
if ((caps & params->mask[type]) == params->caps[type]) {
break;
}
}
if (type == NUM_HEAP_TASK_CAPS) {
continue;
}
multi_heap_block_handle_t b = multi_heap_get_first_block(heap);
multi_heap_internal_lock(heap);
for ( ; b ; b = multi_heap_get_next_block(heap, b)) {
if (multi_heap_is_free(b)) {
continue;
}
void *p = multi_heap_get_block_address(b); // Safe, only arithmetic
size_t bsize = multi_heap_get_allocated_size(heap, p); // Validates
TaskHandle_t btask = MULTI_HEAP_GET_BLOCK_OWNER(p);
// Accumulate per-task allocation totals.
if (params->totals) {
size_t i;
for (i = 0; i < count; ++i) {
if (params->totals[i].task == btask) {
break;
}
}
if (i < count) {
params->totals[i].size[type] += bsize;
params->totals[i].count[type] += 1;
} else {
if (count < params->max_totals) {
params->totals[count].task = btask;
params->totals[count].size[type] = bsize;
params->totals[i].count[type] = 1;
++count;
}
}
}
// Return details about allocated blocks for selected tasks.
if (blocks && remaining > 0) {
if (params->tasks) {
size_t i;
for (i = 0; i < params->num_tasks; ++i) {
if (btask == params->tasks[i]) {
break;
}
}
if (i == params->num_tasks) {
continue;
}
}
blocks->task = btask;
blocks->address = p;
blocks->size = bsize;
++blocks;
--remaining;
}
}
multi_heap_internal_unlock(heap);
}
*params->num_totals = count;
return params->max_blocks - remaining;
}
#endif // CONFIG_HEAP_TASK_TRACKING