Files
esp-idf/components/hal/esp32p4/include/hal/ldo_ll.h

281 lines
8.8 KiB
C

/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "soc/chip_revision.h"
#include "esp_bit_defs.h"
#include "hal/misc.h"
#include "hal/efuse_hal.h"
#include "hal/pmu_types.h"
#include "soc/pmu_struct.h"
#include "soc/efuse_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define LDO_LL_NUM_UNITS 4 // Number of LDO units
#define LDO_LL_ADJUSTABLE_CHAN_MASK 0x0F // all the 4 channels are adjustable by setting "mul" and "dref" registers
#define LDO_LL_MAX_VOLTAGE_MV 3300
#define LDO_LL_MIN_VOLTAGE_MV 500
/**
* @brief In the analog design, the LDO output "channel" is index from 1, i.e., VO1, VO2, VO3, VO4.
* But in software, we mapped them to "LDO unit", which is index from 0, i.e., 0, 1, 2, 3.
*/
#define LDO_ID2UNIT(ldo_id) ((ldo_id) - 1)
/**
* @brief LDO unit owner
*/
typedef enum {
LDO_LL_UNIT_OWNER_HW, // LDO unit is controlled by hardware
LDO_LL_UNIT_OWNER_SW, // LDO unit is controlled by software
} ldo_ll_unit_owner_t;
/**
* @brief Check if a LDO channel is valid
*
* @param ldo_chan LDO channel ID, note, this is indexed from 1
* @return True for valid, false for invalid
*/
__attribute__((always_inline))
static inline bool ldo_ll_is_valid_ldo_channel(int ldo_chan)
{
return (ldo_chan > 0) && (ldo_chan <= LDO_LL_NUM_UNITS);
}
/**
* @brief Convert voltage to dref and mul value
*
* @note Vref = (dref < 9)?(0.5+dref*0.05):(1+(dref-9)*0.1)
* @note Vout = (Vref*K+Vos)*(1+0.25*mul*C), K, Vos, C are constants saved in the eFuse, for calibration
*
* @param ldo_unit LDO unit
* @param voltage_mv Voltage in mV
* @param dref Returned dref value
* @param mul Returned mul value
*/
__attribute__((always_inline))
static inline void ldo_ll_voltage_to_dref_mul(int ldo_unit, int voltage_mv, uint8_t *dref, uint8_t *mul)
{
uint8_t efuse_k = 0;
uint8_t efuse_vos = 0;
uint8_t efuse_c = 0;
// to avoid using FPU, enlarge the constants by 1000 as fixed point
int K_1000 = 1000;
int Vos_1000 = 0;
int C_1000 = 1000;
if (efuse_hal_blk_version() >= 1) {
// load the calibration values from the eFuse
if (ldo_unit == 2) {
efuse_k = EFUSE.rd_mac_sys_3.ldo_vo3_k;
efuse_vos = EFUSE.rd_mac_sys_3.ldo_vo3_vos;
efuse_c = EFUSE.rd_mac_sys_3.ldo_vo3_c;
}
if (ldo_unit == 3) {
efuse_k = (EFUSE.rd_mac_sys_4.ldo_vo4_k_1 << 6) + EFUSE.rd_mac_sys_3.ldo_vo4_k;
efuse_vos = EFUSE.rd_mac_sys_4.ldo_vo4_vos;
efuse_c = EFUSE.rd_mac_sys_4.ldo_vo4_c;
}
// convert the eFuse calibration values to fixed point, note these values are signed
if (efuse_k) {
K_1000 = efuse_k & 0x80 ? -1 * (efuse_k & 0x7F) + 975 : efuse_k + 975;
}
if (efuse_vos) {
Vos_1000 = efuse_vos & 0x20 ? -1 * (efuse_vos & 0x1F) - 3 : efuse_vos - 3;
}
if (efuse_c) {
C_1000 = efuse_c & 0x20 ? -1 * (efuse_c & 0x1F) + 990 : efuse_c + 990;
}
}
// iterate all the possible dref and mul values to find the best match
int min_voltage_diff = 400000000;
uint8_t matched_dref = 0;
uint8_t matched_mul = 0;
for (uint8_t dref_val = 0; dref_val < 16; dref_val++) {
int vref_20 = (dref_val < 9) ? (10 + dref_val) : (20 + (dref_val - 9) * 2);
for (uint8_t mul_val = 0; mul_val < 8; mul_val++) {
int vout_80000000 = (vref_20 * K_1000 + 20 * Vos_1000) * (4000 + mul_val * C_1000);
int diff = voltage_mv * 80000 - vout_80000000;
if (diff < 0) {
diff = -diff;
}
if (diff < min_voltage_diff) {
min_voltage_diff = diff;
matched_dref = dref_val;
matched_mul = mul_val;
}
}
}
if (efuse_hal_blk_version() >= 1) {
// For unit0 and unit1, the mul and dref value are calibrated and saved in the efuse, load them when available
if (ldo_unit == 0 && voltage_mv == 1800) {
if (EFUSE.rd_mac_sys_2.ldo_vo1_dref && EFUSE.rd_mac_sys_3.ldo_vo1_mul) {
matched_mul = EFUSE.rd_mac_sys_3.ldo_vo1_mul;
matched_dref = EFUSE.rd_mac_sys_2.ldo_vo1_dref;
}
}
if (ldo_unit == 1 && voltage_mv == 1900) {
if (EFUSE.rd_mac_sys_2.ldo_vo2_dref && EFUSE.rd_mac_sys_3.ldo_vo2_mul) {
matched_mul = EFUSE.rd_mac_sys_3.ldo_vo2_mul;
matched_dref = EFUSE.rd_mac_sys_2.ldo_vo2_dref;
}
}
}
*dref = matched_dref;
*mul = matched_mul;
}
/**
* @brief Set owner of a LDO unit
*
* @note Even if the LDO unit is controlled by hardware, its voltage can still be changed by software by `ldo_ll_adjust_voltage`
*
* @param ldo_unit LDO unit
* @param owner Owner of the LDO unit
*/
__attribute__((always_inline))
static inline void ldo_ll_set_owner(int ldo_unit, ldo_ll_unit_owner_t owner)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
/*
* force_tieh_sel:
* - 0: efuse, i.e. by hardware
* - 1: tieh_sel, i.e. by software
*/
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo.force_tieh_sel = owner;
/**
* tieh_sel:
* - 0: tieh;
* - 1: sdmmc0_tieh;
* - 2: 3.3V;
* - 3: sdmmc1_tieh;
*/
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo.tieh_sel = 0;
}
/**
* @brief Adjust voltage of a LDO unit
*
* @note When bypass is enabled, the input voltage is sourced directly to the output.
* The dref and mul values will be ignored.
*
* @param ldo_unit LDO unit
* @param dref A parameter which controls the internal reference voltage
* @param mul Multiply factor
* @param bypass True: bypass; False: not bypass.
*/
__attribute__((always_inline))
static inline void ldo_ll_adjust_voltage(int ldo_unit, uint8_t dref, uint8_t mul, bool bypass)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
/**
* tieh:
* - 0: Vref * Mul
* - 1: 3.3V
*/
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo.tieh = bypass;
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo_ana.dref = dref;
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo_ana.mul = mul;
}
/**
* @brief Enable a LDO unit
*
* @param ldo_unit LDO unit
* @param enable True: enable; False: disable
*/
__attribute__((always_inline))
static inline void ldo_ll_enable(int ldo_unit, bool enable)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
if (ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 100) && (ldo_unit == 0)) {
// If chip_rev >= v1.0, slp_mem_dbias[3] is used to control the volt output of VO1.
PMU.hp_sys[PMU_MODE_HP_ACTIVE].regulator0.xpd_0p1a = (enable ? 8 : 0);
}
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo.xpd = enable;
}
/**
* @brief Enable power on delay of a LDO unit
*
* @param ldo_unit LDO unit
* @param enable True: enable; False: disable
*/
__attribute__((always_inline))
static inline void ldo_ll_enable_power_on_delay(int ldo_unit, bool enable)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo.tieh_pos_en = enable;
}
/**
* @brief Enable power off delay of a LDO unit
*
* @param ldo_unit LDO unit
* @param enable True: enable; False: disable
*/
__attribute__((always_inline))
static inline void ldo_ll_enable_power_off_delay(int ldo_unit, bool enable)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo.tieh_neg_en = enable;
}
/**
* @brief Set power on delay target of a LDO unit
*
* @param ldo_unit LDO unit
* @param target0 Target 0
* @param target1 Target 1
*/
__attribute__((always_inline))
static inline void ldo_ll_set_delay_target(int ldo_unit, uint8_t target0, uint8_t target1)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
HAL_FORCE_MODIFY_U32_REG_FIELD(PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo, target0, target0);
HAL_FORCE_MODIFY_U32_REG_FIELD(PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo, target1, target1);
}
/**
* @brief Enable current limit of a LDO unit to avoid inrush current
*
* @param ldo_unit LDO unit
* @param enable True: enable; False: disable
*/
__attribute__((always_inline))
static inline void ldo_ll_enable_current_limit(int ldo_unit, bool enable)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo_ana.en_cur_lim = enable;
}
/**
* @brief Enable ripple suppression of a LDO unit
*
* @param ldo_unit LDO unit
* @param enable True: enable; False: disable
*/
__attribute__((always_inline))
static inline void ldo_ll_enable_ripple_suppression(int ldo_unit, bool enable)
{
uint8_t index_array[LDO_LL_NUM_UNITS] = {0, 3, 1, 4};
PMU.ext_ldo[index_array[ldo_unit]].pmu_ext_ldo_ana.en_vdet = enable;
}
#ifdef __cplusplus
}
#endif