mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-19 15:59:08 +00:00
463 lines
13 KiB
C
463 lines
13 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
// The LL layer for MMU register operations
|
|
|
|
#pragma once
|
|
|
|
#include <stdbool.h>
|
|
#include "soc/ext_mem_defs.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/dport_access.h"
|
|
#include "hal/assert.h"
|
|
#include "hal/mmu_types.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define MMU_LL_PSRAM_ENTRY_START_ID 1152
|
|
|
|
/**
|
|
* Convert MMU virtual address to linear address
|
|
*
|
|
* @param vaddr virtual address
|
|
*
|
|
* @return linear address
|
|
*/
|
|
static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
|
|
{
|
|
return vaddr & SOC_MMU_LINEAR_ADDR_MASK;
|
|
}
|
|
|
|
/**
|
|
* Convert MMU linear address to virtual address
|
|
*
|
|
* @param laddr linear address
|
|
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
|
|
* @param target virtual address aimed physical memory target, not used
|
|
*
|
|
* @return virtual address
|
|
*/
|
|
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
|
|
{
|
|
(void)target;
|
|
uint32_t vaddr_base = 0;
|
|
if (vaddr_type == MMU_VADDR_DATA) {
|
|
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
|
|
} else {
|
|
vaddr_base = SOC_MMU_IBUS_VADDR_BASE;
|
|
}
|
|
|
|
return vaddr_base | laddr;
|
|
}
|
|
|
|
/**
|
|
* Get MMU page size
|
|
*
|
|
* @param mmu_id MMU ID
|
|
*
|
|
* @return MMU page size code
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id)
|
|
{
|
|
//On esp32, MMU Page size is always 64KB
|
|
(void)mmu_id;
|
|
return MMU_PAGE_64KB;
|
|
}
|
|
|
|
/**
|
|
* Set MMU page size
|
|
*
|
|
* @param size MMU page size
|
|
*
|
|
* @note On esp32, only supports `MMU_PAGE_64KB`
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size)
|
|
{
|
|
//ONly supports `MMU_PAGE_64KB`
|
|
}
|
|
|
|
/**
|
|
* Check if the external memory vaddr region is valid
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param vaddr_start start of the virtual address
|
|
* @param len length, in bytes
|
|
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
|
|
*
|
|
* @return
|
|
* True for valid
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t vaddr_start, uint32_t len, mmu_vaddr_t type)
|
|
{
|
|
(void)mmu_id;
|
|
uint32_t vaddr_end = vaddr_start + len - 1;
|
|
bool valid = false;
|
|
|
|
if (type & MMU_VADDR_DATA) {
|
|
valid |= (SOC_ADDRESS_IN_DRAM1_CACHE(vaddr_start) && SOC_ADDRESS_IN_DRAM1_CACHE(vaddr_end)) ||
|
|
(SOC_ADDRESS_IN_DROM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_DROM0_CACHE(vaddr_end));
|
|
}
|
|
|
|
if (type & MMU_VADDR_INSTRUCTION) {
|
|
valid |= (SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_end)) ||
|
|
(SOC_ADDRESS_IN_IRAM1_CACHE(vaddr_start) && SOC_ADDRESS_IN_IRAM1_CACHE(vaddr_end)) ||
|
|
(SOC_ADDRESS_IN_IROM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_IROM0_CACHE(vaddr_end));
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
/**
|
|
* Check if the paddr region is valid
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param paddr_start start of the physical address
|
|
* @param len length, in bytes
|
|
*
|
|
* @return
|
|
* True for valid
|
|
*/
|
|
static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len)
|
|
{
|
|
(void)mmu_id;
|
|
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) &&
|
|
(len < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) &&
|
|
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM));
|
|
}
|
|
|
|
/**
|
|
* To get the MMU table entry id to be mapped
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param vaddr virtual address to be mapped
|
|
*
|
|
* @return
|
|
* MMU table entry id
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
|
|
{
|
|
(void)mmu_id;
|
|
uint32_t offset = 0;
|
|
uint32_t shift_code = 0;
|
|
uint32_t vaddr_mask = 0;
|
|
|
|
//On ESP32, we only use PID0 and PID1
|
|
if (SOC_ADDRESS_IN_DROM0_CACHE(vaddr)) {
|
|
offset = 0;
|
|
shift_code = 16;
|
|
vaddr_mask = SOC_MMU_VADDR_MASK;
|
|
} else if (SOC_ADDRESS_IN_IRAM0_CACHE(vaddr)) {
|
|
offset = 64;
|
|
shift_code = 16;
|
|
vaddr_mask = SOC_MMU_VADDR_MASK;
|
|
} else if (SOC_ADDRESS_IN_IRAM1_CACHE(vaddr)) {
|
|
offset = 128;
|
|
shift_code = 16;
|
|
vaddr_mask = SOC_MMU_VADDR_MASK;
|
|
} else if (SOC_ADDRESS_IN_IROM0_CACHE(vaddr)) {
|
|
offset = 192;
|
|
shift_code = 16;
|
|
vaddr_mask = SOC_MMU_VADDR_MASK;
|
|
} else if (SOC_ADDRESS_IN_DRAM1_CACHE(vaddr)) {
|
|
//PSRAM page size 32KB
|
|
offset = MMU_LL_PSRAM_ENTRY_START_ID;
|
|
shift_code = 15;
|
|
vaddr_mask = SOC_MMU_VADDR_MASK >> 1;
|
|
} else {
|
|
HAL_ASSERT(false);
|
|
}
|
|
|
|
return offset + ((vaddr & vaddr_mask) >> shift_code);
|
|
}
|
|
|
|
/**
|
|
* Format the paddr to be mappable
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param paddr physical address to be mapped
|
|
* @param target paddr memory target, not used
|
|
*
|
|
* @return
|
|
* mmu_val - paddr in MMU table supported format
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target)
|
|
{
|
|
(void)mmu_id;
|
|
uint32_t shift_code = 0;
|
|
|
|
if (target == MMU_TARGET_FLASH0) {
|
|
shift_code = 16;
|
|
} else {
|
|
//PSRAM page size 32KB
|
|
shift_code = 15;
|
|
}
|
|
|
|
return paddr >> shift_code;
|
|
}
|
|
|
|
/**
|
|
* Write to the MMU table to map the virtual memory and the physical memory
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param entry_id MMU entry ID
|
|
* @param mmu_val Value to be set into an MMU entry, for physical address
|
|
* @param target MMU target physical memory.
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target)
|
|
{
|
|
(void)target;
|
|
|
|
DPORT_INTERRUPT_DISABLE();
|
|
switch (mmu_id) {
|
|
case MMU_TABLE_CORE0:
|
|
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id], mmu_val);
|
|
break;
|
|
case MMU_TABLE_CORE1:
|
|
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id], mmu_val);
|
|
break;
|
|
default:
|
|
HAL_ASSERT(false);
|
|
}
|
|
DPORT_INTERRUPT_RESTORE();
|
|
}
|
|
|
|
/**
|
|
* Read the raw value from MMU table
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param entry_id MMU entry ID
|
|
* @param mmu_val Value to be read from MMU table
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id)
|
|
{
|
|
uint32_t mmu_value;
|
|
|
|
DPORT_INTERRUPT_DISABLE();
|
|
switch (mmu_id) {
|
|
case MMU_TABLE_CORE0:
|
|
mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]);
|
|
break;
|
|
case MMU_TABLE_CORE1:
|
|
mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id]);
|
|
break;
|
|
default:
|
|
HAL_ASSERT(false);
|
|
}
|
|
DPORT_INTERRUPT_RESTORE();
|
|
return mmu_value;
|
|
}
|
|
|
|
/**
|
|
* Set MMU table entry as invalid
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param entry_id MMU entry ID
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id)
|
|
{
|
|
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
|
|
DPORT_INTERRUPT_DISABLE();
|
|
switch (mmu_id) {
|
|
case MMU_TABLE_CORE0:
|
|
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id], SOC_MMU_INVALID);
|
|
break;
|
|
case MMU_TABLE_CORE1:
|
|
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id], SOC_MMU_INVALID);
|
|
break;
|
|
default:
|
|
HAL_ASSERT(false);
|
|
}
|
|
DPORT_INTERRUPT_RESTORE();
|
|
}
|
|
|
|
/**
|
|
* Unmap all the items in the MMU table
|
|
*
|
|
* @param mmu_id MMU ID
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline void mmu_ll_unmap_all(uint32_t mmu_id)
|
|
{
|
|
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
|
|
mmu_ll_set_entry_invalid(mmu_id, i);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check MMU table entry value is valid
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param entry_id MMU entry ID
|
|
*
|
|
* @return Ture for MMU entry is valid; False for invalid
|
|
*/
|
|
static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
|
|
{
|
|
(void)mmu_id;
|
|
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
|
|
|
|
DPORT_INTERRUPT_DISABLE();
|
|
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]);
|
|
DPORT_INTERRUPT_RESTORE();
|
|
|
|
return (mmu_value & SOC_MMU_INVALID) ? false : true;
|
|
}
|
|
|
|
/**
|
|
* Get the MMU table entry target
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param entry_id MMU entry ID
|
|
*
|
|
* @return Target, see `mmu_target_t`
|
|
*/
|
|
static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id)
|
|
{
|
|
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
|
|
HAL_ASSERT(mmu_ll_check_entry_valid(mmu_id, entry_id));
|
|
|
|
return (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) ? MMU_TARGET_PSRAM0 : MMU_TARGET_FLASH0;
|
|
}
|
|
|
|
/**
|
|
* Convert MMU entry ID to paddr base
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param entry_id MMU entry ID
|
|
*
|
|
* @return paddr base
|
|
*/
|
|
static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id)
|
|
{
|
|
(void)mmu_id;
|
|
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
|
|
|
|
DPORT_INTERRUPT_DISABLE();
|
|
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]);
|
|
DPORT_INTERRUPT_RESTORE();
|
|
|
|
return (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) ? (mmu_value << 15) : (mmu_value << 16);
|
|
}
|
|
|
|
/**
|
|
* Find the MMU table entry ID based on table map value
|
|
* @note This function can only find the first match entry ID. However it is possible that a physical address
|
|
* is mapped to multiple virtual addresses
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param mmu_val map value to be read from MMU table standing for paddr
|
|
* @param target physical memory target, see `mmu_target_t`
|
|
*
|
|
* @return MMU entry ID, -1 for invalid
|
|
*/
|
|
static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target)
|
|
{
|
|
(void)mmu_id;
|
|
(void)target;
|
|
|
|
DPORT_INTERRUPT_DISABLE();
|
|
if (target == MMU_TARGET_FLASH0) {
|
|
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
|
|
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]);
|
|
if (!(mmu_value & SOC_MMU_INVALID)) {
|
|
if (mmu_value == mmu_val) {
|
|
DPORT_INTERRUPT_RESTORE();
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
//For PSRAM, we only use PID 0/1. Its start entry ID is MMU_LL_PSRAM_ENTRY_START_ID (1152), and 128 entries are used for PSRAM
|
|
for (int i = MMU_LL_PSRAM_ENTRY_START_ID; i < 1280; i++) {
|
|
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]);
|
|
if (!(mmu_value & SOC_MMU_INVALID)) {
|
|
if (mmu_value == mmu_val) {
|
|
DPORT_INTERRUPT_RESTORE();
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DPORT_INTERRUPT_RESTORE();
|
|
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Convert MMU entry ID to vaddr base
|
|
*
|
|
* @param mmu_id MMU ID
|
|
* @param entry_id MMU entry ID
|
|
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
|
|
*/
|
|
static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type)
|
|
{
|
|
(void)mmu_id;
|
|
(void)type;
|
|
uint32_t vaddr_base = 0;
|
|
uint32_t shift_code = 0;
|
|
|
|
if (entry_id < 64) {
|
|
//first 64 entries are for DROM0
|
|
if (type != MMU_VADDR_DATA) {
|
|
return 0;
|
|
}
|
|
entry_id -= 0;
|
|
shift_code = 16;
|
|
vaddr_base = 0x3f400000;
|
|
} else if (entry_id >= 64 && entry_id < 128) {
|
|
//second 64 entries are for IRAM0
|
|
if (type != MMU_VADDR_INSTRUCTION) {
|
|
return 0;
|
|
}
|
|
entry_id -= 64;
|
|
shift_code = 16;
|
|
vaddr_base = 0x40000000;
|
|
} else if (entry_id >= 128 && entry_id < 192) {
|
|
//third 64 entries are for IRAM1
|
|
if (type != MMU_VADDR_INSTRUCTION) {
|
|
return 0;
|
|
}
|
|
entry_id -= 128;
|
|
shift_code = 16;
|
|
vaddr_base = 0x40000000;
|
|
} else if (entry_id >= 192 && entry_id < 256) {
|
|
//fourth 64 entries are for IROM0
|
|
if (type != MMU_VADDR_INSTRUCTION) {
|
|
return 0;
|
|
}
|
|
entry_id -= 192;
|
|
shift_code = 16;
|
|
vaddr_base = 0x40000000;
|
|
} else if (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) {
|
|
//starting from 1152, 128 entries are for DRAM1
|
|
if (type != MMU_VADDR_DATA) {
|
|
return 0;
|
|
}
|
|
entry_id -= MMU_LL_PSRAM_ENTRY_START_ID;
|
|
shift_code = 15;
|
|
vaddr_base = 0x3f800000;
|
|
} else {
|
|
HAL_ASSERT(false);
|
|
}
|
|
|
|
return vaddr_base + (entry_id << shift_code);
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|