Files
esp-idf/components/hal/esp32/include/hal/mmu_ll.h
2023-09-05 15:47:26 +08:00

463 lines
13 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
// The LL layer for MMU register operations
#pragma once
#include <stdbool.h>
#include "soc/ext_mem_defs.h"
#include "soc/dport_reg.h"
#include "soc/dport_access.h"
#include "hal/assert.h"
#include "hal/mmu_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define MMU_LL_PSRAM_ENTRY_START_ID 1152
/**
* Convert MMU virtual address to linear address
*
* @param vaddr virtual address
*
* @return linear address
*/
static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
{
return vaddr & SOC_MMU_LINEAR_ADDR_MASK;
}
/**
* Convert MMU linear address to virtual address
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_DATA) {
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
} else {
vaddr_base = SOC_MMU_IBUS_VADDR_BASE;
}
return vaddr_base | laddr;
}
/**
* Get MMU page size
*
* @param mmu_id MMU ID
*
* @return MMU page size code
*/
__attribute__((always_inline))
static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id)
{
//On esp32, MMU Page size is always 64KB
(void)mmu_id;
return MMU_PAGE_64KB;
}
/**
* Set MMU page size
*
* @param size MMU page size
*
* @note On esp32, only supports `MMU_PAGE_64KB`
*/
__attribute__((always_inline))
static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size)
{
//ONly supports `MMU_PAGE_64KB`
}
/**
* Check if the external memory vaddr region is valid
*
* @param mmu_id MMU ID
* @param vaddr_start start of the virtual address
* @param len length, in bytes
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
*
* @return
* True for valid
*/
__attribute__((always_inline))
static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t vaddr_start, uint32_t len, mmu_vaddr_t type)
{
(void)mmu_id;
uint32_t vaddr_end = vaddr_start + len - 1;
bool valid = false;
if (type & MMU_VADDR_DATA) {
valid |= (SOC_ADDRESS_IN_DRAM1_CACHE(vaddr_start) && SOC_ADDRESS_IN_DRAM1_CACHE(vaddr_end)) ||
(SOC_ADDRESS_IN_DROM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_DROM0_CACHE(vaddr_end));
}
if (type & MMU_VADDR_INSTRUCTION) {
valid |= (SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_IRAM0_CACHE(vaddr_end)) ||
(SOC_ADDRESS_IN_IRAM1_CACHE(vaddr_start) && SOC_ADDRESS_IN_IRAM1_CACHE(vaddr_end)) ||
(SOC_ADDRESS_IN_IROM0_CACHE(vaddr_start) && SOC_ADDRESS_IN_IROM0_CACHE(vaddr_end));
}
return valid;
}
/**
* Check if the paddr region is valid
*
* @param mmu_id MMU ID
* @param paddr_start start of the physical address
* @param len length, in bytes
*
* @return
* True for valid
*/
static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len)
{
(void)mmu_id;
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) &&
(len < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM)) &&
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * SOC_MMU_MAX_PADDR_PAGE_NUM));
}
/**
* To get the MMU table entry id to be mapped
*
* @param mmu_id MMU ID
* @param vaddr virtual address to be mapped
*
* @return
* MMU table entry id
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
{
(void)mmu_id;
uint32_t offset = 0;
uint32_t shift_code = 0;
uint32_t vaddr_mask = 0;
//On ESP32, we only use PID0 and PID1
if (SOC_ADDRESS_IN_DROM0_CACHE(vaddr)) {
offset = 0;
shift_code = 16;
vaddr_mask = SOC_MMU_VADDR_MASK;
} else if (SOC_ADDRESS_IN_IRAM0_CACHE(vaddr)) {
offset = 64;
shift_code = 16;
vaddr_mask = SOC_MMU_VADDR_MASK;
} else if (SOC_ADDRESS_IN_IRAM1_CACHE(vaddr)) {
offset = 128;
shift_code = 16;
vaddr_mask = SOC_MMU_VADDR_MASK;
} else if (SOC_ADDRESS_IN_IROM0_CACHE(vaddr)) {
offset = 192;
shift_code = 16;
vaddr_mask = SOC_MMU_VADDR_MASK;
} else if (SOC_ADDRESS_IN_DRAM1_CACHE(vaddr)) {
//PSRAM page size 32KB
offset = MMU_LL_PSRAM_ENTRY_START_ID;
shift_code = 15;
vaddr_mask = SOC_MMU_VADDR_MASK >> 1;
} else {
HAL_ASSERT(false);
}
return offset + ((vaddr & vaddr_mask) >> shift_code);
}
/**
* Format the paddr to be mappable
*
* @param mmu_id MMU ID
* @param paddr physical address to be mapped
* @param target paddr memory target, not used
*
* @return
* mmu_val - paddr in MMU table supported format
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target)
{
(void)mmu_id;
uint32_t shift_code = 0;
if (target == MMU_TARGET_FLASH0) {
shift_code = 16;
} else {
//PSRAM page size 32KB
shift_code = 15;
}
return paddr >> shift_code;
}
/**
* Write to the MMU table to map the virtual memory and the physical memory
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param mmu_val Value to be set into an MMU entry, for physical address
* @param target MMU target physical memory.
*/
__attribute__((always_inline))
static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target)
{
(void)target;
DPORT_INTERRUPT_DISABLE();
switch (mmu_id) {
case MMU_TABLE_CORE0:
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id], mmu_val);
break;
case MMU_TABLE_CORE1:
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id], mmu_val);
break;
default:
HAL_ASSERT(false);
}
DPORT_INTERRUPT_RESTORE();
}
/**
* Read the raw value from MMU table
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param mmu_val Value to be read from MMU table
*/
__attribute__((always_inline))
static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t mmu_value;
DPORT_INTERRUPT_DISABLE();
switch (mmu_id) {
case MMU_TABLE_CORE0:
mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]);
break;
case MMU_TABLE_CORE1:
mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id]);
break;
default:
HAL_ASSERT(false);
}
DPORT_INTERRUPT_RESTORE();
return mmu_value;
}
/**
* Set MMU table entry as invalid
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*/
__attribute__((always_inline))
static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id)
{
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
DPORT_INTERRUPT_DISABLE();
switch (mmu_id) {
case MMU_TABLE_CORE0:
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id], SOC_MMU_INVALID);
break;
case MMU_TABLE_CORE1:
DPORT_WRITE_PERI_REG((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[entry_id], SOC_MMU_INVALID);
break;
default:
HAL_ASSERT(false);
}
DPORT_INTERRUPT_RESTORE();
}
/**
* Unmap all the items in the MMU table
*
* @param mmu_id MMU ID
*/
__attribute__((always_inline))
static inline void mmu_ll_unmap_all(uint32_t mmu_id)
{
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
mmu_ll_set_entry_invalid(mmu_id, i);
}
}
/**
* Check MMU table entry value is valid
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return Ture for MMU entry is valid; False for invalid
*/
static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
DPORT_INTERRUPT_DISABLE();
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]);
DPORT_INTERRUPT_RESTORE();
return (mmu_value & SOC_MMU_INVALID) ? false : true;
}
/**
* Get the MMU table entry target
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return Target, see `mmu_target_t`
*/
static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id)
{
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
HAL_ASSERT(mmu_ll_check_entry_valid(mmu_id, entry_id));
return (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) ? MMU_TARGET_PSRAM0 : MMU_TARGET_FLASH0;
}
/**
* Convert MMU entry ID to paddr base
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
*
* @return paddr base
*/
static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < SOC_MMU_ENTRY_NUM);
DPORT_INTERRUPT_DISABLE();
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[entry_id]);
DPORT_INTERRUPT_RESTORE();
return (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) ? (mmu_value << 15) : (mmu_value << 16);
}
/**
* Find the MMU table entry ID based on table map value
* @note This function can only find the first match entry ID. However it is possible that a physical address
* is mapped to multiple virtual addresses
*
* @param mmu_id MMU ID
* @param mmu_val map value to be read from MMU table standing for paddr
* @param target physical memory target, see `mmu_target_t`
*
* @return MMU entry ID, -1 for invalid
*/
static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target)
{
(void)mmu_id;
(void)target;
DPORT_INTERRUPT_DISABLE();
if (target == MMU_TARGET_FLASH0) {
for (int i = 0; i < SOC_MMU_ENTRY_NUM; i++) {
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]);
if (!(mmu_value & SOC_MMU_INVALID)) {
if (mmu_value == mmu_val) {
DPORT_INTERRUPT_RESTORE();
return i;
}
}
}
} else {
//For PSRAM, we only use PID 0/1. Its start entry ID is MMU_LL_PSRAM_ENTRY_START_ID (1152), and 128 entries are used for PSRAM
for (int i = MMU_LL_PSRAM_ENTRY_START_ID; i < 1280; i++) {
uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_PRO_FLASH_MMU_TABLE[i]);
if (!(mmu_value & SOC_MMU_INVALID)) {
if (mmu_value == mmu_val) {
DPORT_INTERRUPT_RESTORE();
return i;
}
}
}
}
DPORT_INTERRUPT_RESTORE();
return -1;
}
/**
* Convert MMU entry ID to vaddr base
*
* @param mmu_id MMU ID
* @param entry_id MMU entry ID
* @param type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
*/
static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type)
{
(void)mmu_id;
(void)type;
uint32_t vaddr_base = 0;
uint32_t shift_code = 0;
if (entry_id < 64) {
//first 64 entries are for DROM0
if (type != MMU_VADDR_DATA) {
return 0;
}
entry_id -= 0;
shift_code = 16;
vaddr_base = 0x3f400000;
} else if (entry_id >= 64 && entry_id < 128) {
//second 64 entries are for IRAM0
if (type != MMU_VADDR_INSTRUCTION) {
return 0;
}
entry_id -= 64;
shift_code = 16;
vaddr_base = 0x40000000;
} else if (entry_id >= 128 && entry_id < 192) {
//third 64 entries are for IRAM1
if (type != MMU_VADDR_INSTRUCTION) {
return 0;
}
entry_id -= 128;
shift_code = 16;
vaddr_base = 0x40000000;
} else if (entry_id >= 192 && entry_id < 256) {
//fourth 64 entries are for IROM0
if (type != MMU_VADDR_INSTRUCTION) {
return 0;
}
entry_id -= 192;
shift_code = 16;
vaddr_base = 0x40000000;
} else if (entry_id >= MMU_LL_PSRAM_ENTRY_START_ID) {
//starting from 1152, 128 entries are for DRAM1
if (type != MMU_VADDR_DATA) {
return 0;
}
entry_id -= MMU_LL_PSRAM_ENTRY_START_ID;
shift_code = 15;
vaddr_base = 0x3f800000;
} else {
HAL_ASSERT(false);
}
return vaddr_base + (entry_id << shift_code);
}
#ifdef __cplusplus
}
#endif