mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 21:14:37 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			958 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			958 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2015-2025 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <stdbool.h>
 | |
| #include <stddef.h>
 | |
| #include <string.h>
 | |
| #include <sys/param.h>
 | |
| #include "esp_log.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_timer.h"
 | |
| #include "esp_check.h"
 | |
| #include "soc/soc_caps.h"
 | |
| #include "soc/soc_pins.h"
 | |
| #include "soc/gpio_periph.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "esp_rom_sys.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/sdmmc_host.h"
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| #include "sdmmc_private.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "soc/sdmmc_periph.h"
 | |
| #include "hal/gpio_hal.h"
 | |
| 
 | |
| #define SDMMC_EVENT_QUEUE_LENGTH 32
 | |
| 
 | |
| /* Number of DMA descriptors used for transfer.
 | |
|  * Increasing this value above 4 doesn't improve performance for the usual case
 | |
|  * of SD memory cards (most data transfers are multiples of 512 bytes).
 | |
|  */
 | |
| #define SDMMC_DMA_DESC_CNT  4
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t* ptr;
 | |
|     size_t size_remaining;
 | |
|     size_t next_desc;
 | |
|     size_t desc_remaining;
 | |
| } sdmmc_transfer_state_t;
 | |
| 
 | |
| static sdmmc_desc_t s_dma_desc[SDMMC_DMA_DESC_CNT];
 | |
| static sdmmc_transfer_state_t s_cur_transfer = {};
 | |
| 
 | |
| static void sdmmc_isr(void* arg);
 | |
| static void sdmmc_host_dma_init(void);
 | |
| 
 | |
| static const char* TAG = "sdmmc_periph";
 | |
| static intr_handle_t s_intr_handle;
 | |
| static QueueHandle_t s_event_queue;
 | |
| static SemaphoreHandle_t s_io_intr_event;
 | |
| 
 | |
| static size_t s_slot_width[2] = {1, 1};
 | |
| 
 | |
| /* The following definitions are used to simplify GPIO configuration in the driver,
 | |
|  * whether IOMUX or GPIO Matrix is used by the chip.
 | |
|  * Two simple "APIs" are provided to the driver code:
 | |
|  * - configure_pin(name, slot, mode): Configures signal "name" for the given slot and mode.
 | |
|  * - GPIO_NUM(slot, name): Returns the GPIO number of signal "name" for the given slot.
 | |
|  *
 | |
|  * To make this work, configure_pin is defined as a macro that picks the parameters required
 | |
|  * for configuring GPIO matrix or IOMUX from relevant arrays, and passes them to either of
 | |
|  * configure_pin_gpio_matrix, configure_pin_iomux functions.
 | |
|  * Likewise, GPIO_NUM is a macro that picks the pin number from one of the two structures.
 | |
|  *
 | |
|  * Macros are used rather than inline functions to look up members of different structures
 | |
|  * with same names. E.g. the number of pin d3 is obtained either from .d3 member of
 | |
|  * sdmmc_slot_gpio_num array (for IOMUX) or from .d3 member of s_sdmmc_slot_gpio_num array
 | |
|  * (for GPIO matrix).
 | |
|  */
 | |
| #ifdef SOC_SDMMC_USE_GPIO_MATRIX
 | |
| static void configure_pin_gpio_matrix(uint8_t gpio_num, uint8_t gpio_matrix_sig, gpio_mode_t mode, const char* name);
 | |
| #define configure_pin(name, slot, mode) \
 | |
|     configure_pin_gpio_matrix(s_sdmmc_slot_gpio_num[slot].name, sdmmc_slot_gpio_sig[slot].name, mode, #name)
 | |
| static sdmmc_slot_io_info_t s_sdmmc_slot_gpio_num[SOC_SDMMC_NUM_SLOTS];
 | |
| #define GPIO_NUM(slot, name) s_sdmmc_slot_gpio_num[slot].name
 | |
| 
 | |
| #elif SOC_SDMMC_USE_IOMUX
 | |
| static void configure_pin_iomux(uint8_t gpio_num);
 | |
| #define configure_pin(name, slot, mode) configure_pin_iomux(sdmmc_slot_gpio_num[slot].name)
 | |
| #define GPIO_NUM(slot, name) sdmmc_slot_gpio_num[slot].name
 | |
| 
 | |
| #endif // SOC_SDMMC_USE_GPIO_MATRIX
 | |
| 
 | |
| static esp_err_t sdmmc_host_pullup_en_internal(int slot, int width);
 | |
| 
 | |
| esp_err_t sdmmc_host_reset(void)
 | |
| {
 | |
|     // Set reset bits
 | |
|     SDMMC.ctrl.controller_reset = 1;
 | |
|     SDMMC.ctrl.dma_reset = 1;
 | |
|     SDMMC.ctrl.fifo_reset = 1;
 | |
| 
 | |
|     // Wait for the reset bits to be cleared by hardware
 | |
|     int64_t yield_delay_us = 100 * 1000; // initially 100ms
 | |
|     int64_t t0 = esp_timer_get_time();
 | |
|     int64_t t1 = 0;
 | |
|     while (SDMMC.ctrl.controller_reset || SDMMC.ctrl.fifo_reset || SDMMC.ctrl.dma_reset) {
 | |
|         t1 = esp_timer_get_time();
 | |
|         if (t1 - t0 > SDMMC_HOST_RESET_TIMEOUT_US) {
 | |
|             return ESP_ERR_TIMEOUT;
 | |
|         }
 | |
|         if (t1 - t0 > yield_delay_us) {
 | |
|             yield_delay_us *= 2;
 | |
|             vTaskDelay(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /* We have two clock divider stages:
 | |
|  * - one is the clock generator which drives SDMMC peripheral,
 | |
|  *   it can be configured using SDMMC.clock register. It can generate
 | |
|  *   frequencies 160MHz/(N + 1), where 0 < N < 16, I.e. from 10 to 80 MHz.
 | |
|  * - 4 clock dividers inside SDMMC peripheral, which can divide clock
 | |
|  *   from the first stage by 2 * M, where 0 < M < 255
 | |
|  *   (they can also be bypassed).
 | |
|  *
 | |
|  * For cards which aren't UHS-1 or UHS-2 cards, which we don't support,
 | |
|  * maximum bus frequency in high speed (HS) mode is 50 MHz.
 | |
|  * Note: for non-UHS-1 cards, HS mode is optional.
 | |
|  * Default speed (DS) mode is mandatory, it works up to 25 MHz.
 | |
|  * Whether the card supports HS or not can be determined using TRAN_SPEED
 | |
|  * field of card's CSD register.
 | |
|  *
 | |
|  * 50 MHz can not be obtained exactly, closest we can get is 53 MHz.
 | |
|  *
 | |
|  * The first stage divider is set to the highest possible value for the given
 | |
|  * frequency, and the the second stage dividers are used if division factor
 | |
|  * is >16.
 | |
|  *
 | |
|  * Of the second stage dividers, div0 is used for card 0, and div1 is used
 | |
|  * for card 1.
 | |
|  */
 | |
| 
 | |
| static void sdmmc_host_set_clk_div(int div)
 | |
| {
 | |
|     /**
 | |
|      * Set frequency to 160MHz / div
 | |
|      *
 | |
|      * n: counter resets at div_factor_n.
 | |
|      * l: negedge when counter equals div_factor_l.
 | |
|      * h: posedge when counter equals div_factor_h.
 | |
|      *
 | |
|      * We set the duty cycle to 1/2
 | |
|      */
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     assert (div > 1 && div <= 16);
 | |
|     int h = div - 1;
 | |
|     int l = div / 2 - 1;
 | |
| 
 | |
|     SDMMC.clock.div_factor_h = h;
 | |
|     SDMMC.clock.div_factor_l = l;
 | |
|     SDMMC.clock.div_factor_n = h;
 | |
| 
 | |
|     // Set phases for in/out clocks
 | |
|     // 180 degree phase on input and output clocks
 | |
|     SDMMC.clock.phase_dout = 4;
 | |
|     SDMMC.clock.phase_din = 4;
 | |
|     SDMMC.clock.phase_core = 0;
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
|     assert (div > 1 && div <= 16);
 | |
|     int l = div - 1;
 | |
|     int h = div / 2 - 1;
 | |
| 
 | |
|     SDMMC.clock.div_factor_h = h;
 | |
|     SDMMC.clock.div_factor_l = l;
 | |
|     SDMMC.clock.div_factor_n = l;
 | |
| 
 | |
|     // Make sure 160 MHz source clock is used
 | |
| #if SOC_SDMMC_SUPPORT_XTAL_CLOCK
 | |
|     SDMMC.clock.clk_sel = 1;
 | |
| #endif
 | |
| 
 | |
|     SDMMC.clock.phase_core = 0;
 | |
|     /* 90 deg. delay for cclk_out to satisfy large hold time for SDR12 (up to 25MHz) and SDR25 (up to 50MHz) modes.
 | |
|      * Whether this delayed clock will be used depends on use_hold_reg bit in CMD structure,
 | |
|      * determined when sending out the command.
 | |
|      */
 | |
|     SDMMC.clock.phase_dout = 1;
 | |
|     SDMMC.clock.phase_din = 0;
 | |
| #endif  //CONFIG_IDF_TARGET_ESP32S3
 | |
| 
 | |
|     // Wait for the clock to propagate
 | |
|     esp_rom_delay_us(10);
 | |
| }
 | |
| 
 | |
| static inline int s_get_host_clk_div(void)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     return SDMMC.clock.div_factor_h + 1;
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
|     return SDMMC.clock.div_factor_l + 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void sdmmc_host_input_clk_disable(void)
 | |
| {
 | |
|     SDMMC.clock.val = 0;
 | |
| }
 | |
| 
 | |
| static esp_err_t sdmmc_host_clock_update_command(int slot)
 | |
| {
 | |
|     // Clock update command (not a real command; just updates CIU registers)
 | |
|     sdmmc_hw_cmd_t cmd_val = {
 | |
|         .card_num = slot,
 | |
|         .update_clk_reg = 1,
 | |
|         .wait_complete = 1
 | |
|     };
 | |
|     bool repeat = true;
 | |
|     while(repeat) {
 | |
| 
 | |
|         ESP_RETURN_ON_ERROR(sdmmc_host_start_command(slot, cmd_val, 0), TAG, "sdmmc_host_start_command returned 0x%x", err_rc_);
 | |
| 
 | |
|         int64_t yield_delay_us = 100 * 1000; // initially 100ms
 | |
|         int64_t t0 = esp_timer_get_time();
 | |
|         int64_t t1 = 0;
 | |
|         while (true) {
 | |
|             t1 = esp_timer_get_time();
 | |
|             if (t1 - t0  > SDMMC_HOST_CLOCK_UPDATE_CMD_TIMEOUT_US) {
 | |
|                 return ESP_ERR_TIMEOUT;
 | |
|             }
 | |
|             // Sending clock update command to the CIU can generate HLE error.
 | |
|             // According to the manual, this is okay and we must retry the command.
 | |
|             if (SDMMC.rintsts.hle) {
 | |
|                 SDMMC.rintsts.hle = 1;
 | |
|                 repeat = true;
 | |
|                 break;
 | |
|             }
 | |
|             // When the command is accepted by CIU, start_command bit will be
 | |
|             // cleared in SDMMC.cmd register.
 | |
|             if (SDMMC.cmd.start_command == 0) {
 | |
|                 repeat = false;
 | |
|                 break;
 | |
|             }
 | |
|             if (t1 - t0 > yield_delay_us) {
 | |
|                 yield_delay_us *= 2;
 | |
|                 vTaskDelay(1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| void sdmmc_host_get_clk_dividers(const uint32_t freq_khz, int *host_div, int *card_div)
 | |
| {
 | |
|     // Calculate new dividers
 | |
|     if (freq_khz >= SDMMC_FREQ_HIGHSPEED) {
 | |
|         *host_div = 4;       // 160 MHz / 4 = 40 MHz
 | |
|         *card_div = 0;
 | |
|     } else if (freq_khz == SDMMC_FREQ_DEFAULT) {
 | |
|         *host_div = 8;       // 160 MHz / 8 = 20 MHz
 | |
|         *card_div = 0;
 | |
|     } else if (freq_khz == SDMMC_FREQ_PROBING) {
 | |
|         *host_div = 10;      // 160 MHz / 10 / (20 * 2) = 400 kHz
 | |
|         *card_div = 20;
 | |
|     } else {
 | |
|         /*
 | |
|          * for custom frequencies use maximum range of host divider (1-16), find the closest <= div. combination
 | |
|          * if exceeded, combine with the card divider to keep reasonable precision (applies mainly to low frequencies)
 | |
|          * effective frequency range: 400 kHz - 32 MHz (32.1 - 39.9 MHz cannot be covered with given divider scheme)
 | |
|          */
 | |
|         *host_div = (2 * APB_CLK_FREQ) / (freq_khz * 1000);
 | |
|         if (*host_div > 15 ) {
 | |
|             *host_div = 2;
 | |
|             *card_div = APB_CLK_FREQ / (2 * freq_khz * 1000);
 | |
|             if ( (APB_CLK_FREQ % (2 * freq_khz * 1000)) > 0 ) {
 | |
|                 (*card_div)++;
 | |
|             }
 | |
|         } else if ( ((2 * APB_CLK_FREQ) % (freq_khz * 1000)) > 0 ) {
 | |
|             (*host_div)++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int sdmmc_host_calc_freq(const int host_div, const int card_div)
 | |
| {
 | |
|     return 2 * APB_CLK_FREQ / host_div / ((card_div == 0) ? 1 : card_div * 2) / 1000;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_set_card_clk(int slot, uint32_t freq_khz)
 | |
| {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     // Disable clock first
 | |
|     SDMMC.clkena.cclk_enable &= ~BIT(slot);
 | |
|     esp_err_t err = sdmmc_host_clock_update_command(slot);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "disabling clk failed");
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_host_clock_update_command returned 0x%x", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     int host_div = 0;   /* clock divider of the host (SDMMC.clock) */
 | |
|     int card_div = 0;   /* 1/2 of card clock divider (SDMMC.clkdiv) */
 | |
|     sdmmc_host_get_clk_dividers(freq_khz, &host_div, &card_div);
 | |
| 
 | |
|     int real_freq = sdmmc_host_calc_freq(host_div, card_div);
 | |
|     ESP_LOGD(TAG, "slot=%d host_div=%d card_div=%d freq=%dkHz (max %" PRIu32 "kHz)", slot, host_div, card_div, real_freq, freq_khz);
 | |
| 
 | |
|     // Program CLKDIV and CLKSRC, send them to the CIU
 | |
|     switch(slot) {
 | |
|         case 0:
 | |
|             SDMMC.clksrc.card0 = 0;
 | |
|             SDMMC.clkdiv.div0 = card_div;
 | |
|             break;
 | |
|         case 1:
 | |
|             SDMMC.clksrc.card1 = 1;
 | |
|             SDMMC.clkdiv.div1 = card_div;
 | |
|             break;
 | |
|     }
 | |
|     sdmmc_host_set_clk_div(host_div);
 | |
|     err = sdmmc_host_clock_update_command(slot);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "setting clk div failed");
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_host_clock_update_command returned 0x%x", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     // Re-enable clocks
 | |
|     SDMMC.clkena.cclk_enable |= BIT(slot);
 | |
|     SDMMC.clkena.cclk_low_power |= BIT(slot);
 | |
|     err = sdmmc_host_clock_update_command(slot);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "re-enabling clk failed");
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_host_clock_update_command returned 0x%x", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     // set data timeout
 | |
|     const uint32_t data_timeout_ms = 100;
 | |
|     uint32_t data_timeout_cycles = data_timeout_ms * freq_khz;
 | |
|     const uint32_t data_timeout_cycles_max = 0xffffff;
 | |
|     if (data_timeout_cycles > data_timeout_cycles_max) {
 | |
|         data_timeout_cycles = data_timeout_cycles_max;
 | |
|     }
 | |
|     SDMMC.tmout.data = data_timeout_cycles;
 | |
|     // always set response timeout to highest value, it's small enough anyway
 | |
|     SDMMC.tmout.response = 255;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_get_real_freq(int slot, int* real_freq_khz)
 | |
| {
 | |
|     if (real_freq_khz == NULL) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     int host_div = s_get_host_clk_div();
 | |
|     int card_div = slot == 0 ? SDMMC.clkdiv.div0 : SDMMC.clkdiv.div1;
 | |
|     *real_freq_khz = sdmmc_host_calc_freq(host_div, card_div);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_start_command(int slot, sdmmc_hw_cmd_t cmd, uint32_t arg) {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if ((SDMMC.cdetect.cards & BIT(slot)) != 0) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
|     if (cmd.data_expected && cmd.rw && (SDMMC.wrtprt.cards & BIT(slot)) != 0) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     /* Outputs should be synchronized to cclk_out */
 | |
|     cmd.use_hold_reg = 1;
 | |
| 
 | |
|     int64_t yield_delay_us = 100 * 1000; // initially 100ms
 | |
|     int64_t t0 = esp_timer_get_time();
 | |
|     int64_t t1 = 0;
 | |
|     while (SDMMC.cmd.start_command == 1) {
 | |
|         t1 = esp_timer_get_time();
 | |
|         if (t1 - t0 > SDMMC_HOST_START_CMD_TIMEOUT_US) {
 | |
|             return ESP_ERR_TIMEOUT;
 | |
|         }
 | |
|         if (t1 - t0 > yield_delay_us) {
 | |
|             yield_delay_us *= 2;
 | |
|             vTaskDelay(1);
 | |
|         }
 | |
|     }
 | |
|     SDMMC.cmdarg = arg;
 | |
|     cmd.card_num = slot;
 | |
|     cmd.start_command = 1;
 | |
|     SDMMC.cmd = cmd;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_init(void)
 | |
| {
 | |
|     if (s_intr_handle) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     periph_module_reset(PERIPH_SDMMC_MODULE);
 | |
|     periph_module_enable(PERIPH_SDMMC_MODULE);
 | |
| 
 | |
|     // Enable clock to peripheral. Use smallest divider first.
 | |
|     sdmmc_host_set_clk_div(2);
 | |
| 
 | |
|     // Reset
 | |
|     esp_err_t err = sdmmc_host_reset();
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_host_reset returned 0x%x", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     ESP_LOGD(TAG, "peripheral version %"PRIx32", hardware config %08"PRIx32, SDMMC.verid, SDMMC.hcon);
 | |
| 
 | |
|     // Clear interrupt status and set interrupt mask to known state
 | |
|     SDMMC.rintsts.val = 0xffffffff;
 | |
|     SDMMC.intmask.val = 0;
 | |
|     SDMMC.ctrl.int_enable = 0;
 | |
| 
 | |
|     // Allocate event queue
 | |
|     s_event_queue = xQueueCreate(SDMMC_EVENT_QUEUE_LENGTH, sizeof(sdmmc_event_t));
 | |
|     if (!s_event_queue) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     s_io_intr_event = xSemaphoreCreateBinary();
 | |
|     if (!s_io_intr_event) {
 | |
|         vQueueDelete(s_event_queue);
 | |
|         s_event_queue = NULL;
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     // Attach interrupt handler
 | |
|     esp_err_t ret = esp_intr_alloc(ETS_SDIO_HOST_INTR_SOURCE, 0, &sdmmc_isr, s_event_queue, &s_intr_handle);
 | |
|     if (ret != ESP_OK) {
 | |
|         vQueueDelete(s_event_queue);
 | |
|         s_event_queue = NULL;
 | |
|         vSemaphoreDelete(s_io_intr_event);
 | |
|         s_io_intr_event = NULL;
 | |
|         return ret;
 | |
|     }
 | |
|     // Enable interrupts
 | |
|     SDMMC.intmask.val =
 | |
|             SDMMC_INTMASK_CD |
 | |
|             SDMMC_INTMASK_CMD_DONE |
 | |
|             SDMMC_INTMASK_DATA_OVER |
 | |
|             SDMMC_INTMASK_RCRC | SDMMC_INTMASK_DCRC |
 | |
|             SDMMC_INTMASK_RTO | SDMMC_INTMASK_DTO | SDMMC_INTMASK_HTO |
 | |
|             SDMMC_INTMASK_SBE | SDMMC_INTMASK_EBE |
 | |
|             SDMMC_INTMASK_RESP_ERR | SDMMC_INTMASK_HLE; //sdio is enabled only when use.
 | |
|     SDMMC.ctrl.int_enable = 1;
 | |
| 
 | |
|     // Disable generation of Busy Clear Interrupt
 | |
|     SDMMC.cardthrctl.busy_clr_int_en = 0;
 | |
| 
 | |
|     // Enable DMA
 | |
|     sdmmc_host_dma_init();
 | |
| 
 | |
|     // Initialize transaction handler
 | |
|     ret = sdmmc_host_transaction_handler_init();
 | |
|     if (ret != ESP_OK) {
 | |
|         vQueueDelete(s_event_queue);
 | |
|         s_event_queue = NULL;
 | |
|         vSemaphoreDelete(s_io_intr_event);
 | |
|         s_io_intr_event = NULL;
 | |
|         esp_intr_free(s_intr_handle);
 | |
|         s_intr_handle = NULL;
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #ifdef SOC_SDMMC_USE_IOMUX
 | |
| 
 | |
| static void configure_pin_iomux(uint8_t gpio_num)
 | |
| {
 | |
|     const int sdmmc_func = 3;
 | |
|     const int drive_strength = 3;
 | |
|     assert(gpio_num != (uint8_t) GPIO_NUM_NC);
 | |
|     gpio_pulldown_dis(gpio_num);
 | |
| 
 | |
|     uint32_t reg = GPIO_PIN_MUX_REG[gpio_num];
 | |
|     assert(reg != UINT32_MAX);
 | |
|     PIN_INPUT_ENABLE(reg);
 | |
|     gpio_hal_iomux_func_sel(reg, sdmmc_func);
 | |
|     PIN_SET_DRV(reg, drive_strength);
 | |
| }
 | |
| 
 | |
| #elif SOC_SDMMC_USE_GPIO_MATRIX
 | |
| 
 | |
| static void configure_pin_gpio_matrix(uint8_t gpio_num, uint8_t gpio_matrix_sig, gpio_mode_t mode, const char* name)
 | |
| {
 | |
|     assert (gpio_num != (uint8_t) GPIO_NUM_NC);
 | |
|     ESP_LOGD(TAG, "using GPIO%d as %s pin", gpio_num, name);
 | |
|     gpio_reset_pin(gpio_num);
 | |
|     gpio_set_direction(gpio_num, mode);
 | |
|     gpio_pulldown_dis(gpio_num);
 | |
|     if (mode == GPIO_MODE_INPUT || mode == GPIO_MODE_INPUT_OUTPUT) {
 | |
|         esp_rom_gpio_connect_in_signal(gpio_num, gpio_matrix_sig, false);
 | |
|     }
 | |
|     if (mode == GPIO_MODE_OUTPUT || mode == GPIO_MODE_INPUT_OUTPUT) {
 | |
|         esp_rom_gpio_connect_out_signal(gpio_num, gpio_matrix_sig, false, false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // SOC_SDMMC_USE_{IOMUX,GPIO_MATRIX}
 | |
| 
 | |
| esp_err_t sdmmc_host_init_slot(int slot, const sdmmc_slot_config_t* slot_config)
 | |
| {
 | |
|     if (!s_intr_handle) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (slot_config == NULL) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     int gpio_cd = slot_config->cd;
 | |
|     int gpio_wp = slot_config->wp;
 | |
|     uint8_t slot_width = slot_config->width;
 | |
| 
 | |
|     // Configure pins
 | |
|     const sdmmc_slot_info_t* slot_info = &sdmmc_slot_info[slot];
 | |
| 
 | |
|     if (slot_width == SDMMC_SLOT_WIDTH_DEFAULT) {
 | |
|         slot_width = slot_info->width;
 | |
|     }
 | |
|     else if (slot_width > slot_info->width) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     s_slot_width[slot] = slot_width;
 | |
| 
 | |
| #if SOC_SDMMC_USE_GPIO_MATRIX
 | |
|     /* Save pin configuration for this slot */
 | |
|     s_sdmmc_slot_gpio_num[slot].clk = slot_config->clk;
 | |
|     s_sdmmc_slot_gpio_num[slot].cmd = slot_config->cmd;
 | |
|     s_sdmmc_slot_gpio_num[slot].d0 = slot_config->d0;
 | |
|     /* Save d1 even in 1-line mode, it might be needed for SDIO INT line */
 | |
|     s_sdmmc_slot_gpio_num[slot].d1 = slot_config->d1;
 | |
|     if (slot_width >= 4) {
 | |
|         s_sdmmc_slot_gpio_num[slot].d2 = slot_config->d2;
 | |
|     }
 | |
|     /* Save d3 even for 1-line mode, as it needs to be set high */
 | |
|     s_sdmmc_slot_gpio_num[slot].d3 = slot_config->d3;
 | |
|     if (slot_width >= 8) {
 | |
|         s_sdmmc_slot_gpio_num[slot].d4 = slot_config->d4;
 | |
|         s_sdmmc_slot_gpio_num[slot].d5 = slot_config->d5;
 | |
|         s_sdmmc_slot_gpio_num[slot].d6 = slot_config->d6;
 | |
|         s_sdmmc_slot_gpio_num[slot].d7 = slot_config->d7;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     bool pullup = slot_config->flags & SDMMC_SLOT_FLAG_INTERNAL_PULLUP;
 | |
|     if (pullup) {
 | |
|         sdmmc_host_pullup_en_internal(slot, slot_config->width);
 | |
|     }
 | |
| 
 | |
|     configure_pin(clk, slot, GPIO_MODE_OUTPUT);
 | |
|     configure_pin(cmd, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|     configure_pin(d0, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
| 
 | |
|     if (slot_width >= 4) {
 | |
|         configure_pin(d1, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|         configure_pin(d2, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|         // Force D3 high to make slave enter SD mode.
 | |
|         // Connect to peripheral after width configuration.
 | |
|         gpio_config_t gpio_conf = {
 | |
|             .pin_bit_mask = BIT64(GPIO_NUM(slot, d3)),
 | |
|             .mode = GPIO_MODE_OUTPUT,
 | |
|             .pull_up_en = 0,
 | |
|             .pull_down_en = 0,
 | |
|             .intr_type = GPIO_INTR_DISABLE,
 | |
|         };
 | |
|         gpio_config(&gpio_conf);
 | |
|         gpio_set_level(GPIO_NUM(slot, d3), 1);
 | |
|     }
 | |
|     if (slot_width == 8) {
 | |
|         configure_pin(d4, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|         configure_pin(d5, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|         configure_pin(d6, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|         configure_pin(d7, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|     }
 | |
| 
 | |
|     // SDIO slave interrupt is edge sensitive to ~(int_n | card_int | card_detect)
 | |
|     // set this and card_detect to high to enable sdio interrupt
 | |
|     esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, slot_info->card_int, false);
 | |
| 
 | |
|     // Set up Card Detect input
 | |
|     int matrix_in_cd;
 | |
|     if (gpio_cd != SDMMC_SLOT_NO_CD) {
 | |
|         ESP_LOGD(TAG, "using GPIO%d as CD pin", gpio_cd);
 | |
|         esp_rom_gpio_pad_select_gpio(gpio_cd);
 | |
|         gpio_set_direction(gpio_cd, GPIO_MODE_INPUT);
 | |
|         matrix_in_cd = gpio_cd;
 | |
|     } else {
 | |
|         // if not set, default to CD low (card present)
 | |
|         matrix_in_cd = GPIO_MATRIX_CONST_ZERO_INPUT;
 | |
|     }
 | |
|     esp_rom_gpio_connect_in_signal(matrix_in_cd, slot_info->card_detect, false);
 | |
| 
 | |
|     // Set up Write Protect input
 | |
|     int matrix_in_wp;
 | |
|     if (gpio_wp != SDMMC_SLOT_NO_WP) {
 | |
|         ESP_LOGD(TAG, "using GPIO%d as WP pin", gpio_wp);
 | |
|         esp_rom_gpio_pad_select_gpio(gpio_wp);
 | |
|         gpio_set_direction(gpio_wp, GPIO_MODE_INPUT);
 | |
|         matrix_in_wp = gpio_wp;
 | |
|     } else {
 | |
|         // if not set, default to WP high (not write protected)
 | |
|         matrix_in_wp = GPIO_MATRIX_CONST_ONE_INPUT;
 | |
|     }
 | |
|     // WP signal is normally active low, but hardware expects
 | |
|     // an active-high signal, so invert it in GPIO matrix
 | |
|     esp_rom_gpio_connect_in_signal(matrix_in_wp, slot_info->write_protect, true);
 | |
| 
 | |
|     // By default, set probing frequency (400kHz) and 1-bit bus
 | |
|     esp_err_t ret = sdmmc_host_set_card_clk(slot, 400);
 | |
|     if (ret != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "setting probing freq and 1-bit bus failed");
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_host_set_card_clk returned 0x%x", __func__, ret);
 | |
|         return ret;
 | |
|     }
 | |
|     ret = sdmmc_host_set_bus_width(slot, 1);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_deinit(void)
 | |
| {
 | |
|     if (!s_intr_handle) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     esp_intr_free(s_intr_handle);
 | |
|     s_intr_handle = NULL;
 | |
|     vQueueDelete(s_event_queue);
 | |
|     s_event_queue = NULL;
 | |
|     vQueueDelete(s_io_intr_event);
 | |
|     s_io_intr_event = NULL;
 | |
|     sdmmc_host_input_clk_disable();
 | |
|     sdmmc_host_transaction_handler_deinit();
 | |
|     periph_module_disable(PERIPH_SDMMC_MODULE);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_wait_for_event(int tick_count, sdmmc_event_t* out_event)
 | |
| {
 | |
|     if (!out_event) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (!s_event_queue) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     int ret = xQueueReceive(s_event_queue, out_event, tick_count);
 | |
|     if (ret == pdFALSE) {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_set_bus_width(int slot, size_t width)
 | |
| {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (sdmmc_slot_info[slot].width < width) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     const uint16_t mask = BIT(slot);
 | |
|     if (width == 1) {
 | |
|         SDMMC.ctype.card_width_8 &= ~mask;
 | |
|         SDMMC.ctype.card_width &= ~mask;
 | |
|     } else if (width == 4) {
 | |
|         SDMMC.ctype.card_width_8 &= ~mask;
 | |
|         SDMMC.ctype.card_width |= mask;
 | |
|         // D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
 | |
|         configure_pin(d3, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|     } else if (width == 8) {
 | |
|         SDMMC.ctype.card_width_8 |= mask;
 | |
|         // D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
 | |
|         configure_pin(d3, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|     } else {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     ESP_LOGD(TAG, "slot=%d width=%d", slot, width);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| size_t sdmmc_host_get_slot_width(int slot)
 | |
| {
 | |
|     assert( slot == 0 || slot == 1 );
 | |
|     return s_slot_width[slot];
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_set_bus_ddr_mode(int slot, bool ddr_enabled)
 | |
| {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (s_slot_width[slot] == 8 && ddr_enabled) {
 | |
|         ESP_LOGW(TAG, "DDR mode with 8-bit bus width is not supported yet");
 | |
|         // requires reconfiguring controller clock for 2x card frequency
 | |
|         return ESP_ERR_NOT_SUPPORTED;
 | |
|     }
 | |
|     uint32_t mask = BIT(slot);
 | |
|     if (ddr_enabled) {
 | |
|         SDMMC.uhs.ddr |= mask;
 | |
|         SDMMC.emmc_ddr_reg |= mask;
 | |
|     } else {
 | |
|         SDMMC.uhs.ddr &= ~mask;
 | |
|         SDMMC.emmc_ddr_reg &= ~mask;
 | |
|     }
 | |
|     ESP_LOGD(TAG, "slot=%d ddr=%d", slot, ddr_enabled ? 1 : 0);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_set_cclk_always_on(int slot, bool cclk_always_on)
 | |
| {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (cclk_always_on) {
 | |
|         SDMMC.clkena.cclk_low_power &= ~BIT(slot);
 | |
|     } else {
 | |
|         SDMMC.clkena.cclk_low_power |= BIT(slot);
 | |
|     }
 | |
|     sdmmc_host_clock_update_command(slot);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void sdmmc_host_dma_init(void)
 | |
| {
 | |
|     SDMMC.ctrl.dma_enable = 1;
 | |
|     SDMMC.bmod.val = 0;
 | |
|     SDMMC.bmod.sw_reset = 1;
 | |
|     SDMMC.idinten.ni = 1;
 | |
|     SDMMC.idinten.ri = 1;
 | |
|     SDMMC.idinten.ti = 1;
 | |
| }
 | |
| 
 | |
| static size_t get_free_descriptors_count(void)
 | |
| {
 | |
|     const size_t next = s_cur_transfer.next_desc;
 | |
|     size_t count = 0;
 | |
|     /* Starting with the current DMA descriptor, count the number of
 | |
|      * descriptors which have 'owned_by_idmac' set to 0. These are the
 | |
|      * descriptors already processed by the DMA engine.
 | |
|      */
 | |
|     for (size_t i = 0; i < SDMMC_DMA_DESC_CNT; ++i) {
 | |
|         sdmmc_desc_t* desc = &s_dma_desc[(next + i) % SDMMC_DMA_DESC_CNT];
 | |
|         if (desc->owned_by_idmac) {
 | |
|             break;
 | |
|         }
 | |
|         ++count;
 | |
|         if (desc->next_desc_ptr == NULL) {
 | |
|             /* final descriptor in the chain */
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| static void fill_dma_descriptors(size_t num_desc)
 | |
| {
 | |
|     for (size_t i = 0; i < num_desc; ++i) {
 | |
|         if (s_cur_transfer.size_remaining == 0) {
 | |
|             return;
 | |
|         }
 | |
|         const size_t next = s_cur_transfer.next_desc;
 | |
|         sdmmc_desc_t* desc = &s_dma_desc[next];
 | |
|         assert(!desc->owned_by_idmac);
 | |
|         size_t size_to_fill =
 | |
|             (s_cur_transfer.size_remaining < SDMMC_DMA_MAX_BUF_LEN) ?
 | |
|                 s_cur_transfer.size_remaining : SDMMC_DMA_MAX_BUF_LEN;
 | |
|         bool last = size_to_fill == s_cur_transfer.size_remaining;
 | |
|         desc->last_descriptor = last;
 | |
|         desc->second_address_chained = 1;
 | |
|         desc->owned_by_idmac = 1;
 | |
|         desc->buffer1_ptr = s_cur_transfer.ptr;
 | |
|         desc->next_desc_ptr = (last) ? NULL : &s_dma_desc[(next + 1) % SDMMC_DMA_DESC_CNT];
 | |
|         assert(size_to_fill < 4 || size_to_fill % 4 == 0);
 | |
|         desc->buffer1_size = (size_to_fill + 3) & (~3);
 | |
| 
 | |
|         s_cur_transfer.size_remaining -= size_to_fill;
 | |
|         s_cur_transfer.ptr += size_to_fill;
 | |
|         s_cur_transfer.next_desc = (s_cur_transfer.next_desc + 1) % SDMMC_DMA_DESC_CNT;
 | |
|         ESP_LOGV(TAG, "fill %d desc=%d rem=%d next=%d last=%d sz=%d",
 | |
|                 num_desc, next, s_cur_transfer.size_remaining,
 | |
|                 s_cur_transfer.next_desc, desc->last_descriptor, desc->buffer1_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void sdmmc_host_dma_stop(void)
 | |
| {
 | |
|     SDMMC.ctrl.use_internal_dma = 0;
 | |
|     SDMMC.ctrl.dma_reset = 1;
 | |
|     SDMMC.bmod.fb = 0;
 | |
|     SDMMC.bmod.enable = 0;
 | |
| }
 | |
| 
 | |
| void sdmmc_host_dma_prepare(void* data_ptr, size_t data_size, size_t block_size)
 | |
| {
 | |
|     // this clears "owned by IDMAC" bits
 | |
|     memset(s_dma_desc, 0, sizeof(s_dma_desc));
 | |
|     // initialize first descriptor
 | |
|     s_dma_desc[0].first_descriptor = 1;
 | |
|     // save transfer info
 | |
|     s_cur_transfer.ptr = (uint8_t*) data_ptr;
 | |
|     s_cur_transfer.size_remaining = data_size;
 | |
|     s_cur_transfer.next_desc = 0;
 | |
|     s_cur_transfer.desc_remaining = (data_size + SDMMC_DMA_MAX_BUF_LEN - 1) / SDMMC_DMA_MAX_BUF_LEN;
 | |
|     // prepare descriptors
 | |
|     fill_dma_descriptors(SDMMC_DMA_DESC_CNT);
 | |
| 
 | |
|     // Set size of data and DMA descriptor pointer
 | |
|     SDMMC.bytcnt = data_size;
 | |
|     SDMMC.blksiz = block_size;
 | |
|     SDMMC.dbaddr = &s_dma_desc[0];
 | |
| 
 | |
|     // Enable everything needed to use DMA
 | |
|     SDMMC.ctrl.dma_enable = 1;
 | |
|     SDMMC.ctrl.use_internal_dma = 1;
 | |
|     SDMMC.bmod.enable = 1;
 | |
|     SDMMC.bmod.fb = 1;
 | |
|     sdmmc_host_dma_resume();
 | |
| }
 | |
| 
 | |
| void sdmmc_host_dma_resume(void)
 | |
| {
 | |
|     SDMMC.pldmnd = 1;
 | |
| }
 | |
| 
 | |
| bool sdmmc_host_card_busy(void)
 | |
| {
 | |
|     return SDMMC.status.data_busy == 1;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_io_int_enable(int slot)
 | |
| {
 | |
|     configure_pin(d1, slot, GPIO_MODE_INPUT_OUTPUT);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_io_int_wait(int slot, TickType_t timeout_ticks)
 | |
| {
 | |
|     /* SDIO interrupts are negedge sensitive ones: the status bit is only set
 | |
|      * when first interrupt triggered.
 | |
|      *
 | |
|      * If D1 GPIO is low when entering this function, we know that interrupt
 | |
|      * (in SDIO sense) has occurred and we don't need to use SDMMC peripheral
 | |
|      * interrupt.
 | |
|      */
 | |
| 
 | |
|     SDMMC.intmask.sdio &= ~BIT(slot);   /* Disable SDIO interrupt */
 | |
|     SDMMC.rintsts.sdio = BIT(slot);
 | |
|     if (gpio_get_level(GPIO_NUM(slot, d1)) == 0) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     /* Otherwise, need to wait for an interrupt. Since D1 was high,
 | |
|      * SDMMC peripheral interrupt is guaranteed to trigger on negedge.
 | |
|      */
 | |
|     xSemaphoreTake(s_io_intr_event, 0);
 | |
|     SDMMC.intmask.sdio |= BIT(slot);    /* Re-enable SDIO interrupt */
 | |
| 
 | |
|     if (xSemaphoreTake(s_io_intr_event, timeout_ticks) == pdTRUE) {
 | |
|         return ESP_OK;
 | |
|     } else {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief SDMMC interrupt handler
 | |
|  *
 | |
|  * All communication in SD protocol is driven by the master, and the hardware
 | |
|  * handles things like stop commands automatically.
 | |
|  * So the interrupt handler doesn't need to do much, we just push interrupt
 | |
|  * status into a queue, clear interrupt flags, and let the task currently
 | |
|  * doing communication figure out what to do next.
 | |
|  * This also applies to SDIO interrupts which are generated by the slave.
 | |
|  *
 | |
|  * Card detect interrupts pose a small issue though, because if a card is
 | |
|  * plugged in and out a few times, while there is no task to process
 | |
|  * the events, event queue can become full and some card detect events
 | |
|  * may be dropped. We ignore this problem for now, since the there are no other
 | |
|  * interesting events which can get lost due to this.
 | |
|  */
 | |
| static void sdmmc_isr(void* arg) {
 | |
|     QueueHandle_t queue = (QueueHandle_t) arg;
 | |
|     sdmmc_event_t event;
 | |
|     int higher_priority_task_awoken = pdFALSE;
 | |
| 
 | |
|     uint32_t pending = SDMMC.mintsts.val & 0xFFFF;
 | |
|     SDMMC.rintsts.val = pending;
 | |
|     event.sdmmc_status = pending;
 | |
| 
 | |
|     uint32_t dma_pending = SDMMC.idsts.val;
 | |
|     SDMMC.idsts.val = dma_pending;
 | |
| 
 | |
|     if (dma_pending & SDMMC_IDMAC_INTMASK_NI) {
 | |
|         // refill DMA descriptors
 | |
|         size_t free_desc = get_free_descriptors_count();
 | |
|         if (free_desc > 0) {
 | |
|             fill_dma_descriptors(free_desc);
 | |
|             sdmmc_host_dma_resume();
 | |
|         }
 | |
|         //NI, logic OR of TI and RI. This is a sticky bit and must be cleared each time TI or RI is cleared.
 | |
|         dma_pending &= ~(SDMMC_IDMAC_INTMASK_NI | SDMMC_IDMAC_INTMASK_TI | SDMMC_IDMAC_INTMASK_RI);
 | |
|     }
 | |
| 
 | |
|     //NI and AI will be indicated by TI/RI and FBE/DU respectively
 | |
|     event.dma_status = dma_pending & 0x1f;
 | |
| 
 | |
|     if (pending != 0 || dma_pending != 0) {
 | |
|         xQueueSendFromISR(queue, &event, &higher_priority_task_awoken);
 | |
|     }
 | |
| 
 | |
|     uint32_t sdio_pending = SDMMC.mintsts.sdio;
 | |
|     if (sdio_pending) {
 | |
|         // disable the interrupt (no need to clear here, this is done in sdmmc_host_io_int_wait)
 | |
|         SDMMC.intmask.sdio &= ~sdio_pending;
 | |
|         xSemaphoreGiveFromISR(s_io_intr_event, &higher_priority_task_awoken);
 | |
|     }
 | |
| 
 | |
|     if (higher_priority_task_awoken == pdTRUE) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static esp_err_t sdmmc_host_pullup_en_internal(int slot, int width)
 | |
| {
 | |
|     if (width > sdmmc_slot_info[slot].width) {
 | |
|         //in esp32 we only support 8 bit in slot 0, note this is occupied by the flash by default
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     // according to the spec, the host controls the clk, we don't to pull it up here
 | |
|     gpio_pullup_en(GPIO_NUM(slot, cmd));
 | |
|     gpio_pullup_en(GPIO_NUM(slot, d0));
 | |
|     if (width >= 4) {
 | |
|         gpio_pullup_en(GPIO_NUM(slot, d1));
 | |
|         gpio_pullup_en(GPIO_NUM(slot, d2));
 | |
|         gpio_pullup_en(GPIO_NUM(slot, d3));
 | |
|     }
 | |
|     if (width == 8) {
 | |
|         gpio_pullup_en(GPIO_NUM(slot, d4));
 | |
|         gpio_pullup_en(GPIO_NUM(slot, d5));
 | |
|         gpio_pullup_en(GPIO_NUM(slot, d6));
 | |
|         gpio_pullup_en(GPIO_NUM(slot, d7));
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | 
