mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-28 04:05:39 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			400 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			400 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "soc/soc_caps.h"
 | |
| #include "hal/adc_hal.h"
 | |
| #include "hal/adc_hal_conf.h"
 | |
| #include "sdkconfig.h"
 | |
| #include <sys/param.h>
 | |
| 
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32C3
 | |
| #include "soc/gdma_channel.h"
 | |
| #include "soc/soc.h"
 | |
| #include "esp_rom_sys.h"
 | |
| 
 | |
| typedef enum {
 | |
|     ADC_EVENT_ADC1_DONE = BIT(0),
 | |
|     ADC_EVENT_ADC2_DONE = BIT(1),
 | |
| } adc_hal_event_t;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void adc_hal_init(void)
 | |
| {
 | |
|     // Set internal FSM wait time, fixed value.
 | |
|     adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT,
 | |
|                              SOC_ADC_FSM_STANDBY_WAIT_DEFAULT);
 | |
|     adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT);
 | |
|     adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
 | |
|     adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1));
 | |
|     adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2));
 | |
|     adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC calibration setting
 | |
| ---------------------------------------------------------------*/
 | |
| #if SOC_ADC_HW_CALIBRATION_V1
 | |
| // ESP32-S2 and C3 support HW offset calibration.
 | |
| 
 | |
| void adc_hal_calibration_init(adc_ll_num_t adc_n)
 | |
| {
 | |
|     adc_ll_calibration_init(adc_n);
 | |
| }
 | |
| 
 | |
| static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1};
 | |
| 
 | |
| void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
 | |
| {
 | |
|     if (param != s_previous_init_code[adc_n]) {
 | |
|         adc_ll_set_calibration_param(adc_n, param);
 | |
|         s_previous_init_code[adc_n] = param;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
 | |
| {
 | |
|     adc_hal_set_controller(adc_n, ADC_CTRL_RTC);    //Set controller
 | |
| 
 | |
|     /* Enable/disable internal connect GND (for calibration). */
 | |
|     if (internal_gnd) {
 | |
|         adc_ll_rtc_disable_channel(adc_n);
 | |
|         adc_ll_set_atten(adc_n, 0, atten);  // Note: when disable all channel, HW auto select channel0 atten param.
 | |
|     } else {
 | |
|         adc_ll_rtc_enable_channel(adc_n, channel);
 | |
|         adc_ll_set_atten(adc_n, channel, atten);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
 | |
| {
 | |
|     adc_ll_rtc_start_convert(adc_n, channel);
 | |
|     while (adc_ll_rtc_convert_is_done(adc_n) != true);
 | |
|     return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
 | |
| }
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32C3
 | |
| static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
 | |
| {
 | |
|     adc_ll_onetime_sample_enable(ADC_NUM_1, false);
 | |
|     adc_ll_onetime_sample_enable(ADC_NUM_2, false);
 | |
|     /* Enable/disable internal connect GND (for calibration). */
 | |
|     if (internal_gnd) {
 | |
|         const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
 | |
|         adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
 | |
|     } else {
 | |
|         adc_ll_onetime_set_channel(adc_n, channel);
 | |
|     }
 | |
|     adc_ll_onetime_set_atten(atten);
 | |
|     adc_ll_onetime_sample_enable(adc_n, true);
 | |
| }
 | |
| 
 | |
| static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
 | |
| {
 | |
|     adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE);
 | |
|     adc_ll_onetime_start(false);
 | |
|     esp_rom_delay_us(5);
 | |
|     adc_ll_onetime_start(true);
 | |
| 
 | |
|     while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
 | |
| 
 | |
|     uint32_t read_val = -1;
 | |
|     if (adc_n == ADC_NUM_1) {
 | |
|         read_val = adc_ll_adc1_read();
 | |
|     } else if (adc_n == ADC_NUM_2) {
 | |
|         read_val = adc_ll_adc2_read();
 | |
|         if (adc_ll_analysis_raw_data(adc_n, read_val)) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return read_val;
 | |
| }
 | |
| #endif //CONFIG_IDF_TARGET_*
 | |
| 
 | |
| #define ADC_HAL_CAL_TIMES        (10)
 | |
| #define ADC_HAL_CAL_OFFSET_RANGE (4096)
 | |
| 
 | |
| uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
 | |
| {
 | |
|     if (adc_n == ADC_NUM_2) {
 | |
|         adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
 | |
|         adc_hal_arbiter_config(&config);
 | |
|     }
 | |
| 
 | |
|     cal_setup(adc_n, channel, atten, internal_gnd);
 | |
| 
 | |
|     adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
 | |
| 
 | |
|     uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
 | |
|     uint32_t code_sum = 0;
 | |
|     uint32_t code_h = 0;
 | |
|     uint32_t code_l = 0;
 | |
|     uint32_t chk_code = 0;
 | |
| 
 | |
|     for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
 | |
|         code_h = ADC_HAL_CAL_OFFSET_RANGE;
 | |
|         code_l = 0;
 | |
|         chk_code = (code_h + code_l) / 2;
 | |
|         adc_ll_set_calibration_param(adc_n, chk_code);
 | |
|         uint32_t self_cal = read_cal_channel(adc_n, channel);
 | |
|         while (code_h - code_l > 1) {
 | |
|             if (self_cal == 0) {
 | |
|                 code_h = chk_code;
 | |
|             } else {
 | |
|                 code_l = chk_code;
 | |
|             }
 | |
|             chk_code = (code_h + code_l) / 2;
 | |
|             adc_ll_set_calibration_param(adc_n, chk_code);
 | |
|             self_cal = read_cal_channel(adc_n, channel);
 | |
|             if ((code_h - code_l == 1)) {
 | |
|                 chk_code += 1;
 | |
|                 adc_ll_set_calibration_param(adc_n, chk_code);
 | |
|                 self_cal = read_cal_channel(adc_n, channel);
 | |
|             }
 | |
|         }
 | |
|         code_list[rpt] = chk_code;
 | |
|         code_sum += chk_code;
 | |
|     }
 | |
| 
 | |
|     code_l = code_list[0];
 | |
|     code_h = code_list[0];
 | |
|     for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
 | |
|         code_l = MIN(code_l, code_list[i]);
 | |
|         code_h = MAX(code_h, code_list[i]);
 | |
|     }
 | |
| 
 | |
|     chk_code = code_h + code_l;
 | |
|     uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
 | |
|            ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
 | |
|            : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
 | |
| 
 | |
|     adc_ll_calibration_finish(adc_n);
 | |
|     return ret;
 | |
| }
 | |
| #endif //SOC_ADC_HW_CALIBRATION_V1
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32C3
 | |
| //This feature is currently supported on ESP32C3, will be supported on other chips soon
 | |
| /*---------------------------------------------------------------
 | |
|                     DMA setting
 | |
| ---------------------------------------------------------------*/
 | |
| void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config)
 | |
| {
 | |
|     hal->dev = &GDMA;
 | |
|     hal->desc_dummy_head.next = hal->rx_desc;
 | |
|     hal->desc_max_num = config->desc_max_num;
 | |
|     hal->dma_chan = config->dma_chan;
 | |
|     hal->eof_num = config->eof_num;
 | |
| }
 | |
| 
 | |
| void adc_hal_digi_init(adc_hal_context_t *hal)
 | |
| {
 | |
|     gdma_ll_clear_interrupt_status(hal->dev, hal->dma_chan, UINT32_MAX);
 | |
|     gdma_ll_enable_interrupt(hal->dev, hal->dma_chan, GDMA_LL_EVENT_RX_SUC_EOF, true);
 | |
|     adc_ll_digi_dma_set_eof_num(hal->eof_num);
 | |
|     adc_ll_onetime_sample_enable(ADC_NUM_1, false);
 | |
|     adc_ll_onetime_sample_enable(ADC_NUM_2, false);
 | |
| }
 | |
| 
 | |
| void adc_hal_fifo_reset(adc_hal_context_t *hal)
 | |
| {
 | |
|     adc_ll_digi_reset();
 | |
|     gdma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
 | |
| }
 | |
| 
 | |
| static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
 | |
| {
 | |
|     assert(((uint32_t)data_buf % 4) == 0);
 | |
|     assert((size % 4) == 0);
 | |
|     uint32_t n = 0;
 | |
| 
 | |
|     while (num--) {
 | |
|         desc[n].dw0.size = size;
 | |
|         desc[n].dw0.suc_eof = 0;
 | |
|         desc[n].dw0.owner = 1;
 | |
|         desc[n].buffer = data_buf;
 | |
|         desc[n].next = &desc[n+1];
 | |
|         data_buf += size;
 | |
|         n++;
 | |
|     }
 | |
|     desc[n-1].next = NULL;
 | |
| }
 | |
| 
 | |
| void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf)
 | |
| {
 | |
|     //reset the current descriptor address
 | |
|     hal->cur_desc_ptr = &hal->desc_dummy_head;
 | |
|     adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num);
 | |
|     gdma_ll_rx_set_desc_addr(hal->dev, hal->dma_chan, (uint32_t)hal->rx_desc);
 | |
|     gdma_ll_rx_start(hal->dev, hal->dma_chan);
 | |
| }
 | |
| 
 | |
| void adc_hal_digi_start(adc_hal_context_t *hal)
 | |
| {
 | |
|     //the ADC data will be sent to the DMA
 | |
|     adc_ll_digi_dma_enable();
 | |
|     //enable sar adc timer
 | |
|     adc_ll_digi_trigger_enable();
 | |
| }
 | |
| 
 | |
| adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
 | |
| {
 | |
|     assert(hal->cur_desc_ptr);
 | |
|     if (!hal->cur_desc_ptr->next) {
 | |
|         return ADC_HAL_DMA_DESC_NULL;
 | |
|     }
 | |
|     if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
 | |
|         return ADC_HAL_DMA_DESC_WAITING;
 | |
|     }
 | |
| 
 | |
|     hal->cur_desc_ptr = hal->cur_desc_ptr->next;
 | |
|     *cur_desc = hal->cur_desc_ptr;
 | |
| 
 | |
|     return ADC_HAL_DMA_DESC_VALID;
 | |
| }
 | |
| 
 | |
| void adc_hal_digi_rxdma_stop(adc_hal_context_t *hal)
 | |
| {
 | |
|     gdma_ll_rx_stop(hal->dev, hal->dma_chan);
 | |
| }
 | |
| 
 | |
| void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask)
 | |
| {
 | |
|     gdma_ll_clear_interrupt_status(hal->dev, hal->dma_chan, mask);
 | |
| }
 | |
| 
 | |
| void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask)
 | |
| {
 | |
|     gdma_ll_enable_interrupt(hal->dev, hal->dma_chan, mask, false);
 | |
| }
 | |
| 
 | |
| void adc_hal_digi_stop(adc_hal_context_t *hal)
 | |
| {
 | |
|     //Set to 0: the ADC data won't be sent to the DMA
 | |
|     adc_ll_digi_dma_disable();
 | |
|     //disable sar adc timer
 | |
|     adc_ll_digi_trigger_disable();
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     Single Read
 | |
| ---------------------------------------------------------------*/
 | |
| 
 | |
| //--------------------INTR-------------------------------//
 | |
| static adc_ll_intr_t get_event_intr(adc_hal_event_t event)
 | |
| {
 | |
|     adc_ll_intr_t intr_mask = 0;
 | |
|     if (event & ADC_EVENT_ADC1_DONE) {
 | |
|         intr_mask |= ADC_LL_INTR_ADC1_DONE;
 | |
|     }
 | |
|     if (event & ADC_EVENT_ADC2_DONE) {
 | |
|         intr_mask |= ADC_LL_INTR_ADC2_DONE;
 | |
|     }
 | |
|     return intr_mask;
 | |
| }
 | |
| 
 | |
| static void adc_hal_intr_clear(adc_hal_event_t event)
 | |
| {
 | |
|     adc_ll_intr_clear(get_event_intr(event));
 | |
| }
 | |
| 
 | |
| static bool adc_hal_intr_get_raw(adc_hal_event_t event)
 | |
| {
 | |
|     return adc_ll_intr_get_raw(get_event_intr(event));
 | |
| }
 | |
| 
 | |
| //--------------------Single Read-------------------------------//
 | |
| static void adc_hal_onetime_start(void)
 | |
| {
 | |
|     /**
 | |
|      * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
 | |
|      * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
 | |
|      * clock cycle.
 | |
|      *
 | |
|      * This limitation will be removed in hardware future versions.
 | |
|      *
 | |
|      */
 | |
|     uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
 | |
|     //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
 | |
|     uint32_t delay = (1000 * 1000) / digi_clk + 1;
 | |
|     //3 ADC digital controller clock cycle
 | |
|     delay = delay * 3;
 | |
|     //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
 | |
|     if (digi_clk >= APB_CLK_FREQ/8) {
 | |
|         delay = 0;
 | |
|     }
 | |
| 
 | |
|     adc_ll_onetime_start(false);
 | |
|     esp_rom_delay_us(delay);
 | |
|     adc_ll_onetime_start(true);
 | |
|     //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
 | |
| {
 | |
|     if (adc_n == ADC_NUM_1) {
 | |
|         *out_raw = adc_ll_adc1_read();
 | |
|     } else if (adc_n == ADC_NUM_2) {
 | |
|         *out_raw = adc_ll_adc2_read();
 | |
|         if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
 | |
|             return ESP_ERR_INVALID_STATE;
 | |
|         }
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
 | |
| {
 | |
|     esp_err_t ret;
 | |
|     adc_hal_event_t event;
 | |
| 
 | |
|     if (adc_n == ADC_NUM_1) {
 | |
|         event = ADC_EVENT_ADC1_DONE;
 | |
|     } else {
 | |
|         event = ADC_EVENT_ADC2_DONE;
 | |
|     }
 | |
| 
 | |
|     adc_hal_intr_clear(event);
 | |
|     adc_ll_onetime_sample_enable(ADC_NUM_1, false);
 | |
|     adc_ll_onetime_sample_enable(ADC_NUM_2, false);
 | |
|     adc_ll_onetime_sample_enable(adc_n, true);
 | |
|     adc_ll_onetime_set_channel(adc_n, channel);
 | |
| 
 | |
|     //Trigger single read.
 | |
|     adc_hal_onetime_start();
 | |
|     while (!adc_hal_intr_get_raw(event));
 | |
|     ret = adc_hal_single_read(adc_n, out_raw);
 | |
|     //HW workaround: when enabling periph clock, this should be false
 | |
|     adc_ll_onetime_sample_enable(adc_n, false);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #else // !CONFIG_IDF_TARGET_ESP32C3
 | |
| esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw)
 | |
| {
 | |
|     adc_ll_rtc_enable_channel(adc_n, channel);
 | |
|     adc_ll_rtc_start_convert(adc_n, channel);
 | |
|     while (adc_ll_rtc_convert_is_done(adc_n) != true);
 | |
|     *out_raw = adc_ll_rtc_get_convert_value(adc_n);
 | |
| 
 | |
|     if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif  //#if !CONFIG_IDF_TARGET_ESP32C3
 | 
