mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			195 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include "hal/hal_utils.h"
 | |
| #include "hal/assert.h"
 | |
| 
 | |
| #ifndef BIT
 | |
| #define BIT(n)          (1UL << (n))
 | |
| #endif
 | |
| 
 | |
| #ifndef BIT_MASK
 | |
| #define BIT_MASK(n)     (BIT(n) - 1)
 | |
| #endif
 | |
| 
 | |
| __attribute__((always_inline))
 | |
| static inline uint32_t _sub_abs(uint32_t a, uint32_t b)
 | |
| {
 | |
|     return a > b ? a - b : b - a;
 | |
| }
 | |
| 
 | |
| uint32_t hal_utils_calc_clk_div_frac_fast(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
 | |
| {
 | |
|     HAL_ASSERT(clk_info->max_fract > 2);
 | |
|     uint32_t div_denom = 2;
 | |
|     uint32_t div_numer = 0;
 | |
|     uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
 | |
|     uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
 | |
| 
 | |
|     // fractional divider
 | |
|     if (freq_error) {
 | |
|         // Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
 | |
|         if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
 | |
|             // Calculate the Greatest Common Divisor, time complexity O(log n)
 | |
|             uint32_t gcd = hal_utils_gcd(clk_info->exp_freq_hz, freq_error);
 | |
|             // divide by the Greatest Common Divisor to get the accurate fraction before normalization
 | |
|             div_denom = clk_info->exp_freq_hz / gcd;
 | |
|             div_numer = freq_error / gcd;
 | |
|             // normalize div_denom and div_numer
 | |
|             uint32_t d = div_denom / clk_info->max_fract + 1;
 | |
|             // divide by the normalization coefficient to get the denominator and numerator within range of clk_info->max_fract
 | |
|             div_denom /= d;
 | |
|             div_numer /= d;
 | |
|         } else {
 | |
|             div_integ++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
 | |
|     if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // Assign result
 | |
|     clk_div->integer     = div_integ;
 | |
|     clk_div->denominator = div_denom;
 | |
|     clk_div->numerator   = div_numer;
 | |
| 
 | |
|     // Return the actual frequency
 | |
|     if (div_numer) {
 | |
|         uint32_t temp = div_integ * div_denom + div_numer;
 | |
|         return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp);
 | |
|     }
 | |
|     return clk_info->src_freq_hz / div_integ;
 | |
| }
 | |
| 
 | |
| uint32_t hal_utils_calc_clk_div_frac_accurate(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
 | |
| {
 | |
|     HAL_ASSERT(clk_info->max_fract > 2);
 | |
|     uint32_t div_denom = 2;
 | |
|     uint32_t div_numer = 0;
 | |
|     uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
 | |
|     uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
 | |
| 
 | |
|     if (freq_error) {
 | |
|         // Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
 | |
|         if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
 | |
|             // Search the closest fraction, time complexity O(n)
 | |
|             for (uint32_t sub = 0, a = 2, b = 0, min = UINT32_MAX; min && a < clk_info->max_fract; a++) {
 | |
|                 b = (a * freq_error + clk_info->exp_freq_hz / 2) / clk_info->exp_freq_hz;
 | |
|                 sub = _sub_abs(clk_info->exp_freq_hz * b, freq_error * a);
 | |
|                 if (sub < min) {
 | |
|                     div_denom = a;
 | |
|                     div_numer = b;
 | |
|                     min = sub;
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             div_integ++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
 | |
|     if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // Assign result
 | |
|     clk_div->integer     = div_integ;
 | |
|     clk_div->denominator = div_denom;
 | |
|     clk_div->numerator   = div_numer;
 | |
| 
 | |
|     // Return the actual frequency
 | |
|     if (div_numer) {
 | |
|         uint32_t temp = div_integ * div_denom + div_numer;
 | |
|         return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp);
 | |
|     }
 | |
|     return clk_info->src_freq_hz / div_integ;
 | |
| }
 | |
| 
 | |
| uint32_t hal_utils_calc_clk_div_integer(const hal_utils_clk_info_t *clk_info, uint32_t *int_div)
 | |
| {
 | |
|     uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
 | |
|     uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;
 | |
| 
 | |
|     /* If there is error and always round up,
 | |
|        Or, do the normal rounding and error >= (src/n + src/(n+1)) / 2,
 | |
|        then carry the bit */
 | |
|     if ((freq_error && clk_info->round_opt == HAL_DIV_ROUND_UP) || (clk_info->round_opt == HAL_DIV_ROUND &&
 | |
|         (freq_error >= clk_info->src_freq_hz / (2 * div_integ * (div_integ + 1))))) {
 | |
|         div_integ++;
 | |
|     }
 | |
|     /* Check the integral division whether in range [min_integ, max_integ)  */
 | |
|     /* If the result is less than the minimum, set the division to the minimum but return 0 */
 | |
|     if (div_integ < clk_info->min_integ) {
 | |
|         *int_div = clk_info->min_integ;
 | |
|         return 0;
 | |
|     }
 | |
|     /* if the result is greater or equal to the maximum , set the division to the maximum but return 0 */
 | |
|     if (div_integ >= clk_info->max_integ) {
 | |
|         *int_div = clk_info->max_integ - 1;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     // Assign result
 | |
|     *int_div = div_integ;
 | |
|     // Return the actual frequency
 | |
|     return clk_info->src_freq_hz / div_integ;
 | |
| }
 | |
| 
 | |
| typedef union {
 | |
|     struct {
 | |
|         uint32_t mantissa: 23;
 | |
|         uint32_t exponent: 8;
 | |
|         uint32_t sign: 1;
 | |
|     };
 | |
|     uint32_t val;
 | |
| } hal_utils_ieee754_float_t;
 | |
| 
 | |
| int hal_utils_float_to_fixed_point_32b(float flt, const hal_utils_fixed_point_t *fp_cfg, uint32_t *fp_out)
 | |
| {
 | |
|     int ret = 0;
 | |
|     uint32_t output = 0;
 | |
|     const hal_utils_ieee754_float_t *f = (const hal_utils_ieee754_float_t *)&flt;
 | |
|     if (fp_cfg->int_bit + fp_cfg->frac_bit > 31) {
 | |
|         // Not supported
 | |
|         return -3;
 | |
|     }
 | |
| 
 | |
|     if (f->val == 0) {  // Zero case
 | |
|         *fp_out = 0;
 | |
|         return 0;
 | |
|     }
 | |
|     if (f->exponent != 0xFF) {  // Normal case
 | |
|         int real_exp = (int)f->exponent - 127;
 | |
|         uint32_t real_mant = f->mantissa | BIT(23);  // Add the hidden bit
 | |
|         // Overflow check
 | |
|         if (real_exp >= (int)fp_cfg->int_bit) {
 | |
|             ret = -1;
 | |
|         }
 | |
|         // Determine sign
 | |
|         output |= f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit);
 | |
|         // Determine integer and fraction part
 | |
|         int shift = 23 - fp_cfg->frac_bit - real_exp;
 | |
|         output |= shift >= 0 ? real_mant >> shift : real_mant << -shift;
 | |
|     } else {
 | |
|         if (f->mantissa && f->mantissa < BIT(23) - 1) {  // NaN (Not-a-Number) case
 | |
|             return -2;
 | |
|         } else {  // Infinity or Largest Number case
 | |
|             output = f->sign ? ~(uint32_t)0 : BIT(31) - 1;
 | |
|             ret = -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ret != 0 && fp_cfg->saturation) {
 | |
|         *fp_out = (f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit)) |
 | |
|                 (BIT_MASK(fp_cfg->int_bit + fp_cfg->frac_bit));
 | |
|     } else {
 | |
|         *fp_out = output;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | 
