mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-27 20:04:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			533 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			533 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include <freertos/FreeRTOS.h>
 | |
| #include <freertos/task.h>
 | |
| #include <freertos/semphr.h>
 | |
| #include "soc/soc.h"
 | |
| #include "soc/soc_memory_layout.h"
 | |
| #include "soc/dport_access.h"
 | |
| #include "sdkconfig.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_spi_flash.h"
 | |
| #include "esp_flash_encrypt.h"
 | |
| #include "esp_log.h"
 | |
| #include "cache_utils.h"
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #include "soc/dport_reg.h"
 | |
| #include "esp32/rom/cache.h"
 | |
| #include "esp32/rom/spi_flash.h"
 | |
| #include "esp32/spiram.h"
 | |
| #include "soc/mmu.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
| #include "esp32s2/rom/cache.h"
 | |
| #include "esp32s2/rom/spi_flash.h"
 | |
| #include "esp32s2/spiram.h"
 | |
| #include "soc/extmem_reg.h"
 | |
| #include "soc/cache_memory.h"
 | |
| #include "soc/mmu.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
| #include "esp32s3/rom/spi_flash.h"
 | |
| #include "esp32s3/rom/cache.h"
 | |
| #include "esp32s3/spiram.h"
 | |
| #include "soc/extmem_reg.h"
 | |
| #include "soc/cache_memory.h"
 | |
| #include "soc/mmu.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C3
 | |
| #include "esp32c3/rom/cache.h"
 | |
| #include "esp32c3/rom/spi_flash.h"
 | |
| #include "soc/cache_memory.h"
 | |
| #include "soc/mmu.h"
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // Enable built-in checks in queue.h in debug builds
 | |
| #define INVARIANTS
 | |
| #endif
 | |
| #include "sys/queue.h"
 | |
| 
 | |
| #define IROM0_PAGES_NUM (SOC_MMU_IROM0_PAGES_END - SOC_MMU_IROM0_PAGES_START)
 | |
| #define DROM0_PAGES_NUM (SOC_MMU_DROM0_PAGES_END - SOC_MMU_DROM0_PAGES_START)
 | |
| #define PAGES_LIMIT ((SOC_MMU_IROM0_PAGES_END > SOC_MMU_DROM0_PAGES_END) ? SOC_MMU_IROM0_PAGES_END:SOC_MMU_DROM0_PAGES_END)
 | |
| 
 | |
| #if !CONFIG_SPI_FLASH_ROM_IMPL
 | |
| 
 | |
| typedef struct mmap_entry_{
 | |
|     uint32_t handle;
 | |
|     int page;
 | |
|     int count;
 | |
|     LIST_ENTRY(mmap_entry_) entries;
 | |
| } mmap_entry_t;
 | |
| 
 | |
| 
 | |
| static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
 | |
|         LIST_HEAD_INITIALIZER(s_mmap_entries_head);
 | |
| static uint8_t s_mmap_page_refcnt[SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION] = {0};
 | |
| static uint32_t s_mmap_last_handle = 0;
 | |
| 
 | |
| 
 | |
| static void IRAM_ATTR spi_flash_mmap_init(void)
 | |
| {
 | |
|     if (s_mmap_page_refcnt[SOC_MMU_DROM0_PAGES_START] != 0) {
 | |
|         return; /* mmap data already initialised */
 | |
|     }
 | |
|     DPORT_INTERRUPT_DISABLE();
 | |
|     for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
 | |
|         uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
 | |
| #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
 | |
|         uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
 | |
| 
 | |
|         if (entry_pro != entry_app) {
 | |
|             // clean up entries used by boot loader
 | |
|             entry_pro = SOC_MMU_INVALID_ENTRY_VAL;
 | |
|             SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
 | |
|         }
 | |
| #endif
 | |
|         if ((entry_pro & SOC_MMU_INVALID_ENTRY_VAL) == 0 && (i == SOC_MMU_DROM0_PAGES_START || i == SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
 | |
|             s_mmap_page_refcnt[i] = 1;
 | |
|         } else {
 | |
|             SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
 | |
| #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
 | |
|             DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
|     DPORT_INTERRUPT_RESTORE();
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr)
 | |
| {
 | |
|     if (memory == SPI_FLASH_MMAP_DATA) {
 | |
|         // Vaddr0
 | |
|         *out_begin = SOC_MMU_DROM0_PAGES_START;
 | |
|         *out_size = DROM0_PAGES_NUM;
 | |
|         *region_addr = SOC_MMU_VADDR0_START_ADDR;
 | |
|     } else {
 | |
|         // only part of VAddr1 is usable, so adjust for that
 | |
|         *out_begin = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
 | |
|         *out_size = SOC_MMU_IROM0_PAGES_END - *out_begin;
 | |
|         *region_addr = SOC_MMU_VADDR1_FIRST_USABLE_ADDR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
 | |
|                          const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
 | |
| {
 | |
|     esp_err_t ret;
 | |
|     if (src_addr & 0xffff) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (src_addr + size > g_rom_flashchip.chip_size) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     // region which should be mapped
 | |
|     int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
 | |
|     int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
 | |
|     // prepare a linear pages array to feed into spi_flash_mmap_pages
 | |
|     int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL);
 | |
|     if (pages == NULL) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     for (int i = 0; i < page_count; i++) {
 | |
|         pages[i] = (phys_page+i);
 | |
|     }
 | |
|     ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
 | |
|     free(pages);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
 | |
|                          const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
 | |
| {
 | |
|     esp_err_t ret;
 | |
|     const void* temp_ptr = *out_ptr = NULL;
 | |
|     spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL;
 | |
|     bool need_flush = false;
 | |
|     if (!page_count) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (!esp_ptr_internal(pages)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     for (int i = 0; i < page_count; i++) {
 | |
|         if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
 | |
|             return ESP_ERR_INVALID_ARG;
 | |
|         }
 | |
|     }
 | |
|     mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
 | |
|     if (new_entry == 0) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
| 
 | |
|     spi_flash_disable_interrupts_caches_and_other_cpu();
 | |
| 
 | |
|     spi_flash_mmap_init();
 | |
|     // figure out the memory region where we should look for pages
 | |
|     int region_begin;   // first page to check
 | |
|     int region_size;    // number of pages to check
 | |
|     uint32_t region_addr;  // base address of memory region
 | |
|     get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr);
 | |
|     if (region_size < page_count) {
 | |
|         spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     // The following part searches for a range of MMU entries which can be used.
 | |
|     // Algorithm is essentially naïve strstr algorithm, except that unused MMU
 | |
|     // entries are treated as wildcards.
 | |
|     int start;
 | |
|     // the " + 1" is a fix when loop the MMU table pages, because the last MMU page
 | |
|     // is valid as well if it have not been used
 | |
|     int end = region_begin + region_size - page_count + 1;
 | |
|     for (start = region_begin; start < end; ++start) {
 | |
|         int pageno = 0;
 | |
|         int pos;
 | |
|         DPORT_INTERRUPT_DISABLE();
 | |
|         for (pos = start; pos < start + page_count; ++pos, ++pageno) {
 | |
|             int table_val = (int) DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[pos]);
 | |
|             uint8_t refcnt = s_mmap_page_refcnt[pos];
 | |
|             if (refcnt != 0 && table_val != SOC_MMU_PAGE_IN_FLASH(pages[pageno])) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         DPORT_INTERRUPT_RESTORE();
 | |
|         // whole mapping range matched, bail out
 | |
|         if (pos - start == page_count) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     // checked all the region(s) and haven't found anything?
 | |
|     if (start == end) {
 | |
|         ret = ESP_ERR_NO_MEM;
 | |
|     } else {
 | |
|         // set up mapping using pages
 | |
|         uint32_t pageno = 0;
 | |
|         DPORT_INTERRUPT_DISABLE();
 | |
|         for (int i = start; i != start + page_count; ++i, ++pageno) {
 | |
|             // sanity check: we won't reconfigure entries with non-zero reference count
 | |
|             uint32_t entry_pro = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
 | |
| #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
 | |
|             uint32_t entry_app = DPORT_SEQUENCE_REG_READ((uint32_t)&DPORT_APP_FLASH_MMU_TABLE[i]);
 | |
| #endif
 | |
|             assert(s_mmap_page_refcnt[i] == 0 ||
 | |
|                     (entry_pro == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
 | |
| #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
 | |
|                      && entry_app == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
 | |
| #endif
 | |
|                     ));
 | |
|             if (s_mmap_page_refcnt[i] == 0) {
 | |
|                 if (entry_pro != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
 | |
| #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
 | |
|                 || entry_app != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
 | |
| #endif
 | |
|                 ) {
 | |
|                     SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_PAGE_IN_FLASH(pages[pageno]);
 | |
| #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
 | |
|                     DPORT_APP_FLASH_MMU_TABLE[i] = pages[pageno];
 | |
| #endif
 | |
| 
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
|                     Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE);
 | |
| #endif
 | |
|                     need_flush = true;
 | |
|                 }
 | |
|             }
 | |
|             ++s_mmap_page_refcnt[i];
 | |
|         }
 | |
|         DPORT_INTERRUPT_RESTORE();
 | |
|         LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
 | |
|         new_entry->page = start;
 | |
|         new_entry->count = page_count;
 | |
|         new_entry->handle = ++s_mmap_last_handle;
 | |
|         temp_handle = new_entry->handle;
 | |
|         temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
 | |
|         ret = ESP_OK;
 | |
|     }
 | |
| 
 | |
|     /* This is a temporary fix for an issue where some
 | |
|        cache reads may see stale data.
 | |
| 
 | |
|        Working on a long term fix that doesn't require invalidating
 | |
|        entire cache.
 | |
|     */
 | |
|     if (need_flush) {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #if CONFIG_SPIRAM
 | |
|         esp_spiram_writeback_cache();
 | |
| #endif // CONFIG_SPIRAM
 | |
|         Cache_Flush(0);
 | |
| #if !CONFIG_FREERTOS_UNICORE
 | |
|         Cache_Flush(1);
 | |
| #endif // !CONFIG_FREERTOS_UNICORE
 | |
| #endif // CONFIG_IDF_TARGET_ESP32
 | |
|     }
 | |
| 
 | |
|     spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
|     if (temp_ptr == NULL) {
 | |
|         free(new_entry);
 | |
|     }
 | |
|     *out_ptr = temp_ptr;
 | |
|     *out_handle = temp_handle;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
 | |
| {
 | |
|     spi_flash_disable_interrupts_caches_and_other_cpu();
 | |
|     mmap_entry_t* it;
 | |
|     // look for handle in linked list
 | |
|     for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
 | |
|         if (it->handle == handle) {
 | |
|             // for each page, decrement reference counter
 | |
|             // if reference count is zero, disable MMU table entry to
 | |
|             // facilitate debugging of use-after-free conditions
 | |
|             for (int i = it->page; i < it->page + it->count; ++i) {
 | |
|                 assert(s_mmap_page_refcnt[i] > 0);
 | |
|                 if (--s_mmap_page_refcnt[i] == 0) {
 | |
|                     SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
 | |
| #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
 | |
|                     DPORT_APP_FLASH_MMU_TABLE[i] = SOC_MMU_INVALID_ENTRY_VAL;
 | |
| #endif
 | |
|                 }
 | |
|             }
 | |
|             LIST_REMOVE(it, entries);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
|     if (it == NULL) {
 | |
|         assert(0 && "invalid handle, or handle already unmapped");
 | |
|     }
 | |
|     free(it);
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void)
 | |
| {
 | |
|     spi_flash_disable_interrupts_caches_and_other_cpu();
 | |
|     spi_flash_mmap_init();
 | |
|     spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
| }
 | |
| 
 | |
| static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index)
 | |
| {
 | |
|     uint32_t value;
 | |
|     spi_flash_disable_interrupts_caches_and_other_cpu();
 | |
|     value = DPORT_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[index]);
 | |
|     spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| void spi_flash_mmap_dump(void)
 | |
| {
 | |
|     spi_flash_protected_mmap_init();
 | |
| 
 | |
|     mmap_entry_t* it;
 | |
|     for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
 | |
|         printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
 | |
|     }
 | |
|     for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
 | |
|         if (s_mmap_page_refcnt[i] != 0) {
 | |
|             uint32_t paddr = spi_flash_protected_read_mmu_entry(i);
 | |
|             printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
 | |
| {
 | |
|     spi_flash_disable_interrupts_caches_and_other_cpu();
 | |
|     spi_flash_mmap_init();
 | |
|     int count = 0;
 | |
|     int region_begin;   // first page to check
 | |
|     int region_size;    // number of pages to check
 | |
|     uint32_t region_addr;  // base address of memory region
 | |
|     get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr);
 | |
|     DPORT_INTERRUPT_DISABLE();
 | |
|     for (int i = region_begin; i < region_begin + region_size; ++i) {
 | |
|         if (s_mmap_page_refcnt[i] == 0 && DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_INVALID_ENTRY_VAL) {
 | |
|             count++;
 | |
|         }
 | |
|     }
 | |
|     DPORT_INTERRUPT_RESTORE();
 | |
|     spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| size_t spi_flash_cache2phys(const void *cached)
 | |
| {
 | |
|     intptr_t c = (intptr_t)cached;
 | |
|     size_t cache_page;
 | |
|     int offset = 0;
 | |
|     if (c >= SOC_MMU_VADDR1_START_ADDR && c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
 | |
|         /* IRAM address, doesn't map to flash */
 | |
|         return SPI_FLASH_CACHE2PHYS_FAIL;
 | |
|     }
 | |
|     if (c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
 | |
|         /* expect cache is in DROM */
 | |
|         cache_page = (c - SOC_MMU_VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_DROM0_PAGES_START;
 | |
| #if CONFIG_SPIRAM_RODATA
 | |
|         if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) {
 | |
|             offset = rodata_flash2spiram_offset();
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* expect cache is in IROM */
 | |
|         cache_page = (c - SOC_MMU_VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_IROM0_PAGES_START;
 | |
| #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
 | |
|         if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) {
 | |
|             offset = instruction_flash2spiram_offset();
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (cache_page >= PAGES_LIMIT) {
 | |
|         /* cached address was not in IROM or DROM */
 | |
|         return SPI_FLASH_CACHE2PHYS_FAIL;
 | |
|     }
 | |
|     uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page);
 | |
|     if (phys_page == SOC_MMU_INVALID_ENTRY_VAL) {
 | |
|         /* page is not mapped */
 | |
|         return SPI_FLASH_CACHE2PHYS_FAIL;
 | |
|     }
 | |
|     uint32_t phys_offs = ((phys_page & SOC_MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE;
 | |
|     return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
 | |
| }
 | |
| 
 | |
| const void *IRAM_ATTR spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
 | |
| {
 | |
|     uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
 | |
|     int start, end, page_delta;
 | |
|     intptr_t base;
 | |
| 
 | |
|     if (memory == SPI_FLASH_MMAP_DATA) {
 | |
|         start = SOC_MMU_DROM0_PAGES_START;
 | |
|         end = SOC_MMU_DROM0_PAGES_END;
 | |
|         base = SOC_MMU_VADDR0_START_ADDR;
 | |
|         page_delta = SOC_MMU_DROM0_PAGES_START;
 | |
|     } else {
 | |
|         start = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
 | |
|         end = SOC_MMU_IROM0_PAGES_END;
 | |
|         base = SOC_MMU_VADDR1_START_ADDR;
 | |
|         page_delta = SOC_MMU_IROM0_PAGES_START;
 | |
|     }
 | |
|     spi_flash_disable_interrupts_caches_and_other_cpu();
 | |
|     DPORT_INTERRUPT_DISABLE();
 | |
|     for (int i = start; i < end; i++) {
 | |
|         uint32_t mmu_value = DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]);
 | |
| #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
 | |
|         if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
 | |
|             if (mmu_value & MMU_ACCESS_SPIRAM) {
 | |
|                 mmu_value += instruction_flash2spiram_offset();
 | |
|                 mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
| #if CONFIG_SPIRAM_RODATA
 | |
|         if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
 | |
|             if (mmu_value & MMU_ACCESS_SPIRAM) {
 | |
|                 mmu_value += rodata_flash2spiram_offset();
 | |
|                 mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         if (mmu_value == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
 | |
|             i -= page_delta;
 | |
|             intptr_t cache_page =  base + (SPI_FLASH_MMU_PAGE_SIZE * i);
 | |
|             DPORT_INTERRUPT_RESTORE();
 | |
|             spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
|             return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
 | |
|         }
 | |
|     }
 | |
|     DPORT_INTERRUPT_RESTORE();
 | |
|     spi_flash_enable_interrupts_caches_and_other_cpu();
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
 | |
| {
 | |
|     int start[2], end[2];
 | |
| 
 | |
|     *out_ptr = NULL;
 | |
| 
 | |
|     /* SPI_FLASH_MMAP_DATA */
 | |
|     start[0] = SOC_MMU_DROM0_PAGES_START;
 | |
|     end[0] = SOC_MMU_DROM0_PAGES_END;
 | |
| 
 | |
|     /* SPI_FLASH_MMAP_INST */
 | |
|     start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
 | |
|     end[1] = SOC_MMU_IROM0_PAGES_END;
 | |
| 
 | |
|     DPORT_INTERRUPT_DISABLE();
 | |
|     for (int j = 0; j < 2; j++) {
 | |
|         for (int i = start[j]; i < end[j]; i++) {
 | |
|             if (DPORT_SEQUENCE_REG_READ((uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
|                 if (j == 0) { /* SPI_FLASH_MMAP_DATA */
 | |
|                     *out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
 | |
|                 } else { /* SPI_FLASH_MMAP_INST */
 | |
|                     *out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
 | |
|                 }
 | |
| #endif
 | |
|                 DPORT_INTERRUPT_RESTORE();
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     DPORT_INTERRUPT_RESTORE();
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
 | |
| IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
 | |
| {
 | |
|     bool ret = false;
 | |
|     /* align start_addr & length to full MMU pages */
 | |
|     uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
 | |
|     length += (start_addr - page_start_addr);
 | |
|     length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
 | |
|     for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
 | |
|         uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
 | |
|         if (page >= 256) {
 | |
|             return false; /* invalid address */
 | |
|         }
 | |
| 
 | |
|         const void *vaddr = NULL;
 | |
|         if (is_page_mapped_in_cache(page, &vaddr)) {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #if CONFIG_SPIRAM
 | |
|             esp_spiram_writeback_cache();
 | |
| #endif
 | |
|             Cache_Flush(0);
 | |
| #ifndef CONFIG_FREERTOS_UNICORE
 | |
|             Cache_Flush(1);
 | |
| #endif
 | |
|             return true;
 | |
| #else // CONFIG_IDF_TARGET_ESP32
 | |
|             if (vaddr != NULL) {
 | |
|                 Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
 | |
|                 ret = true;
 | |
|             }
 | |
| #endif // CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| #endif //!CONFIG_SPI_FLASH_ROM_IMPL
 | 
