mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 06:11:06 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			812 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			812 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include <stdio.h>
 | 
						|
#include <string.h>
 | 
						|
#include <freertos/FreeRTOS.h>
 | 
						|
#include <freertos/task.h>
 | 
						|
#include <freertos/semphr.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include <unity.h>
 | 
						|
#include "esp_flash.h"
 | 
						|
#include "driver/spi_common_internal.h"
 | 
						|
#include "esp_flash_spi_init.h"
 | 
						|
#include <esp_attr.h>
 | 
						|
#include "esp_log.h"
 | 
						|
 | 
						|
#include <test_utils.h>
 | 
						|
 | 
						|
#include "unity.h"
 | 
						|
#include "driver/gpio.h"
 | 
						|
#include "soc/io_mux_reg.h"
 | 
						|
#include "sdkconfig.h"
 | 
						|
 | 
						|
#define FUNC_SPI    1
 | 
						|
 | 
						|
static uint8_t sector_buf[4096];
 | 
						|
 | 
						|
#define TEST_SPI_SPEED      ESP_FLASH_10MHZ
 | 
						|
#define TEST_SPI_READ_MODE  SPI_FLASH_FASTRD
 | 
						|
//#define FORCE_GPIO_MATRIX
 | 
						|
 | 
						|
#define EXTRA_SPI1_CLK_IO   17  //the pin which is usually used by the PSRAM clk
 | 
						|
 | 
						|
#define HSPI_PIN_NUM_MOSI   HSPI_IOMUX_PIN_NUM_MOSI
 | 
						|
#define HSPI_PIN_NUM_MISO   HSPI_IOMUX_PIN_NUM_MISO
 | 
						|
#define HSPI_PIN_NUM_CLK    HSPI_IOMUX_PIN_NUM_CLK
 | 
						|
#define HSPI_PIN_NUM_HD     HSPI_IOMUX_PIN_NUM_HD
 | 
						|
#define HSPI_PIN_NUM_WP     HSPI_IOMUX_PIN_NUM_WP
 | 
						|
 | 
						|
#define VSPI_PIN_NUM_MOSI   VSPI_IOMUX_PIN_NUM_MOSI
 | 
						|
#define VSPI_PIN_NUM_MISO   VSPI_IOMUX_PIN_NUM_MISO
 | 
						|
#define VSPI_PIN_NUM_CLK    VSPI_IOMUX_PIN_NUM_CLK
 | 
						|
#define VSPI_PIN_NUM_HD     VSPI_IOMUX_PIN_NUM_HD
 | 
						|
#define VSPI_PIN_NUM_WP     VSPI_IOMUX_PIN_NUM_WP
 | 
						|
 | 
						|
#define TEST_CONFIG_NUM (sizeof(config_list)/sizeof(flashtest_config_t))
 | 
						|
 | 
						|
typedef void (*flash_test_func_t)(esp_flash_t* chip);
 | 
						|
 | 
						|
/* Use FLASH_TEST_CASE for SPI flash tests that only use the main SPI flash chip
 | 
						|
*/
 | 
						|
#define FLASH_TEST_CASE(STR, FUNC_TO_RUN) \
 | 
						|
    TEST_CASE(STR, "[esp_flash]") {flash_test_func(FUNC_TO_RUN, 1 /* first index reserved for main flash */ );}
 | 
						|
 | 
						|
#define FLASH_TEST_CASE_IGNORE(STR, FUNC_TO_RUN) \
 | 
						|
    TEST_CASE(STR, "[esp_flash][ignore]") {flash_test_func(FUNC_TO_RUN, 1 /* first index reserved for main flash */ );}
 | 
						|
 | 
						|
/* Use FLASH_TEST_CASE_3 for tests which also run on external flash, which sits in the place of PSRAM
 | 
						|
   (these tests are incompatible with PSRAM)
 | 
						|
 | 
						|
   These tests run for all the flash chip configs shown in config_list, below (internal and external).
 | 
						|
 */
 | 
						|
#if defined(CONFIG_SPIRAM_SUPPORT)
 | 
						|
#define FLASH_TEST_CASE_3(STR, FUNCT_TO_RUN)
 | 
						|
#define FLASH_TEST_CASE_3_IGNORE(STR, FUNCT_TO_RUN)
 | 
						|
#else
 | 
						|
#define FLASH_TEST_CASE_3(STR, FUNC_TO_RUN) \
 | 
						|
    TEST_CASE(STR", 3 chips", "[esp_flash][test_env=UT_T1_ESP_FLASH]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
 | 
						|
 | 
						|
#define FLASH_TEST_CASE_3_IGNORE(STR, FUNC_TO_RUN) \
 | 
						|
    TEST_CASE(STR", 3 chips", "[esp_flash][test_env=UT_T1_ESP_FLASH][ignore]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
 | 
						|
#endif
 | 
						|
 | 
						|
//currently all the configs are the same with esp_flash_spi_device_config_t, no more information required
 | 
						|
typedef esp_flash_spi_device_config_t flashtest_config_t;
 | 
						|
 | 
						|
static const char TAG[] = "test_esp_flash";
 | 
						|
 | 
						|
flashtest_config_t config_list[] = {
 | 
						|
    // 0 always reserved for main flash
 | 
						|
    {
 | 
						|
        .host_id = -1, // no need to init
 | 
						|
    },
 | 
						|
    {
 | 
						|
        .io_mode = TEST_SPI_READ_MODE,
 | 
						|
        .speed = TEST_SPI_SPEED,
 | 
						|
        .host_id = SPI_HOST,
 | 
						|
        .cs_id = 1,
 | 
						|
        .cs_io_num = 16, //the pin which is usually used by the PSRAM
 | 
						|
        .input_delay_ns = 0,
 | 
						|
    },
 | 
						|
    /* current runner doesn't have a flash on HSPI
 | 
						|
    {
 | 
						|
        .io_mode = TEST_SPI_READ_MODE,
 | 
						|
        .speed = TEST_SPI_SPEED,
 | 
						|
        .host = HSPI_HOST,
 | 
						|
        .cs_id = 0,
 | 
						|
        .cs_io_num = HSPI_IOMUX_PIN_NUM_CS,
 | 
						|
        .input_delay_ns = 20,
 | 
						|
    },
 | 
						|
    */
 | 
						|
    {
 | 
						|
        .io_mode = TEST_SPI_READ_MODE,
 | 
						|
        .speed = TEST_SPI_SPEED,
 | 
						|
        .host_id = VSPI_HOST,
 | 
						|
        .cs_id = 0,
 | 
						|
        .cs_io_num = VSPI_IOMUX_PIN_NUM_CS,
 | 
						|
        .input_delay_ns = 0,
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
static void setup_bus(spi_host_device_t host_id)
 | 
						|
{
 | 
						|
    if (host_id == SPI_HOST) {
 | 
						|
        ESP_LOGI(TAG, "setup flash on SPI1 CS1...\n");
 | 
						|
        //no need to initialize the bus, however the CLK may need one more output if it's on the usual place of PSRAM
 | 
						|
#ifdef EXTRA_SPI1_CLK_IO
 | 
						|
        gpio_matrix_out(EXTRA_SPI1_CLK_IO, SPICLK_OUT_IDX, 0, 0);
 | 
						|
#endif
 | 
						|
        //currently the SPI bus for main flash chip is initialized through GPIO matrix
 | 
						|
    } else if (host_id == HSPI_HOST) {
 | 
						|
        ESP_LOGI(TAG, "setup flash on SPI2 (HSPI) CS0...\n");
 | 
						|
        spi_bus_config_t hspi_bus_cfg = {
 | 
						|
            .mosi_io_num = HSPI_PIN_NUM_MOSI,
 | 
						|
            .miso_io_num = HSPI_PIN_NUM_MISO,
 | 
						|
            .sclk_io_num = HSPI_PIN_NUM_CLK,
 | 
						|
            .quadhd_io_num = HSPI_PIN_NUM_HD,
 | 
						|
            .quadwp_io_num = HSPI_PIN_NUM_WP,
 | 
						|
            .max_transfer_sz = 64,
 | 
						|
        };
 | 
						|
#ifdef FORCE_GPIO_MATRIX
 | 
						|
        hspi_bus_cfg.quadhd_io_num = 23;
 | 
						|
#endif
 | 
						|
        esp_err_t ret = spi_bus_initialize(host_id, &hspi_bus_cfg, 0);
 | 
						|
        TEST_ESP_OK(ret);
 | 
						|
    } else if (host_id == VSPI_HOST) {
 | 
						|
        ESP_LOGI(TAG, "setup flash on SPI3 (VSPI) CS0...\n");
 | 
						|
        spi_bus_config_t vspi_bus_cfg = {
 | 
						|
            .mosi_io_num = VSPI_PIN_NUM_MOSI,
 | 
						|
            .miso_io_num = VSPI_PIN_NUM_MISO,
 | 
						|
            .sclk_io_num = VSPI_PIN_NUM_CLK,
 | 
						|
            .quadhd_io_num = VSPI_PIN_NUM_HD,
 | 
						|
            .quadwp_io_num = VSPI_PIN_NUM_WP,
 | 
						|
            .max_transfer_sz = 64,
 | 
						|
        };
 | 
						|
#ifdef FORCE_GPIO_MATRIX
 | 
						|
        vspi_bus_cfg.quadhd_io_num = 23;
 | 
						|
#endif
 | 
						|
        esp_err_t ret = spi_bus_initialize(host_id, &vspi_bus_cfg, 0);
 | 
						|
        TEST_ESP_OK(ret);
 | 
						|
    } else {
 | 
						|
        ESP_LOGE(TAG, "invalid bus");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void release_bus(int host_id)
 | 
						|
{
 | 
						|
    if (host_id == HSPI_HOST || host_id == VSPI_HOST) {
 | 
						|
        spi_bus_free(host_id);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void setup_new_chip(const flashtest_config_t* test_cfg, esp_flash_t** out_chip)
 | 
						|
{
 | 
						|
    //the bus should be initialized before the flash is attached to the bus
 | 
						|
    if (test_cfg->host_id == -1) {
 | 
						|
        *out_chip = NULL;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    setup_bus(test_cfg->host_id);
 | 
						|
 | 
						|
    esp_flash_spi_device_config_t dev_cfg = {
 | 
						|
        .host_id = test_cfg->host_id,
 | 
						|
        .io_mode = test_cfg->io_mode,
 | 
						|
        .speed = test_cfg->speed,
 | 
						|
        .cs_id = test_cfg->cs_id,
 | 
						|
        .cs_io_num = test_cfg->cs_io_num,
 | 
						|
        .input_delay_ns = test_cfg->input_delay_ns,
 | 
						|
    };
 | 
						|
    esp_flash_t* init_chip;
 | 
						|
    esp_err_t err = spi_bus_add_flash_device(&init_chip, &dev_cfg);
 | 
						|
    TEST_ESP_OK(err);
 | 
						|
    err = esp_flash_init(init_chip);
 | 
						|
    TEST_ESP_OK(err);
 | 
						|
    *out_chip = init_chip;
 | 
						|
}
 | 
						|
 | 
						|
void teardown_test_chip(esp_flash_t* chip, spi_host_device_t host)
 | 
						|
{
 | 
						|
    //happen to work when chip==NULL
 | 
						|
    spi_bus_remove_flash_device(chip);
 | 
						|
    release_bus(host);
 | 
						|
}
 | 
						|
 | 
						|
static void flash_test_func(flash_test_func_t func, int test_num)
 | 
						|
{
 | 
						|
    for (int i = 0; i < test_num; i++) {
 | 
						|
        ESP_LOGI(TAG, "Testing config %d/%d", i, test_num);
 | 
						|
        flashtest_config_t* config = &config_list[i];
 | 
						|
        esp_flash_t* chip;
 | 
						|
        setup_new_chip(config, &chip);
 | 
						|
        (*func)(chip);
 | 
						|
        teardown_test_chip(chip, config->host_id);
 | 
						|
    }
 | 
						|
    ESP_LOGI(TAG, "Completed %d configs", test_num);
 | 
						|
}
 | 
						|
 | 
						|
/* ---------- Test code start ------------*/
 | 
						|
 | 
						|
static void test_metadata(esp_flash_t *chip)
 | 
						|
{
 | 
						|
    ESP_LOGI(TAG, "Testing chip %p...", chip);
 | 
						|
    uint32_t id, size;
 | 
						|
    TEST_ESP_OK(esp_flash_read_id(chip, &id));
 | 
						|
    TEST_ESP_OK(esp_flash_get_size(chip, &size));
 | 
						|
    printf("Flash ID %08x detected size %d bytes\n", id, size);
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("SPI flash metadata functions", test_metadata);
 | 
						|
FLASH_TEST_CASE_3("SPI flash metadata functions", test_metadata);
 | 
						|
 | 
						|
static uint32_t erase_test_region(esp_flash_t *chip, int num_sectors)
 | 
						|
{
 | 
						|
    const esp_partition_t *part = get_test_data_partition();
 | 
						|
    uint32_t offs = part->address;
 | 
						|
 | 
						|
    /* chip should be initialised */
 | 
						|
    TEST_ASSERT(esp_flash_default_chip != NULL
 | 
						|
                && esp_flash_chip_driver_initialized(esp_flash_default_chip));
 | 
						|
 | 
						|
    TEST_ASSERT(num_sectors * 4096 <= part->size);
 | 
						|
 | 
						|
    bzero(sector_buf, sizeof(sector_buf));
 | 
						|
 | 
						|
    printf("Erase @ 0x%x...\n", offs);
 | 
						|
    TEST_ASSERT_EQUAL_HEX32(ESP_OK, esp_flash_erase_region(chip, offs, num_sectors * 4096) );
 | 
						|
 | 
						|
    printf("Verify erased...\n");
 | 
						|
    for (int i = 0; i < num_sectors; i++) {
 | 
						|
        TEST_ASSERT_EQUAL_HEX32(ESP_OK, esp_flash_read(chip, sector_buf, offs + i * 4096, sizeof(sector_buf)));
 | 
						|
 | 
						|
        printf("Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x\n", sector_buf[0], sector_buf[1], sector_buf[2], sector_buf[3]);
 | 
						|
        for (int i = 0; i < sizeof(sector_buf); i++) {
 | 
						|
            TEST_ASSERT_EQUAL_HEX8(0xFF, sector_buf[i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return offs;
 | 
						|
}
 | 
						|
 | 
						|
void test_simple_read_write(esp_flash_t *chip)
 | 
						|
{
 | 
						|
    ESP_LOGI(TAG, "Testing chip %p...", chip);
 | 
						|
    uint32_t offs = erase_test_region(chip, 1);
 | 
						|
 | 
						|
    const int test_seed = 778;
 | 
						|
    srand(test_seed);
 | 
						|
    for (int i = 0 ; i < sizeof(sector_buf); i++) {
 | 
						|
        sector_buf[i] = rand();
 | 
						|
    }
 | 
						|
 | 
						|
    printf("Write %p...\n", (void *)offs);
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, sector_buf, offs, sizeof(sector_buf)) );
 | 
						|
 | 
						|
    bzero(sector_buf, sizeof(sector_buf));
 | 
						|
 | 
						|
    printf("Read back...\n");
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, sector_buf, offs, sizeof(sector_buf)) );
 | 
						|
 | 
						|
    printf("Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x\n", sector_buf[0], sector_buf[1], sector_buf[2], sector_buf[3]);
 | 
						|
 | 
						|
    srand(test_seed);
 | 
						|
    for (int i = 0; i < sizeof(sector_buf); i++) {
 | 
						|
        TEST_ASSERT_EQUAL_HEX8(rand() & 0xFF, sector_buf[i]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("SPI flash simple read/write", test_simple_read_write);
 | 
						|
FLASH_TEST_CASE_3("SPI flash simple read/write", test_simple_read_write);
 | 
						|
 | 
						|
void test_unaligned_read_write(esp_flash_t *chip)
 | 
						|
{
 | 
						|
    ESP_LOGI(TAG, "Testing chip %p...", chip);
 | 
						|
    uint32_t offs = erase_test_region(chip, 2);
 | 
						|
 | 
						|
    const char *msg = "i am a message";
 | 
						|
    TEST_ASSERT(strlen(msg) + 1 % 4 != 0);
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, msg, offs + 1, strlen(msg) + 1) );
 | 
						|
 | 
						|
    char buf[strlen(msg) + 1];
 | 
						|
 | 
						|
    memset(buf, 0xEE, sizeof(buf));
 | 
						|
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, buf, offs + 1, strlen(msg) + 1) );
 | 
						|
    TEST_ASSERT_EQUAL_STRING_LEN(msg, buf, strlen(msg));
 | 
						|
    TEST_ASSERT(memcmp(buf, msg, strlen(msg) + 1) == 0);
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("SPI flash unaligned read/write", test_unaligned_read_write);
 | 
						|
FLASH_TEST_CASE_3("SPI flash unaligned read/write", test_unaligned_read_write);
 | 
						|
 | 
						|
void test_single_read_write(esp_flash_t* chip)
 | 
						|
{
 | 
						|
    ESP_LOGI(TAG, "Testing chip %p...", chip);
 | 
						|
    uint32_t offs = erase_test_region(chip, 2);
 | 
						|
 | 
						|
    for (unsigned v = 0; v < 512; v++) {
 | 
						|
        TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_write(chip, &v, offs + v, 1) );
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned v = 0; v < 512; v++) {
 | 
						|
        uint8_t readback;
 | 
						|
        TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_read(chip, &readback, offs + v, 1) );
 | 
						|
        TEST_ASSERT_EQUAL_HEX8(v, readback);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("SPI flash single byte reads/writes", test_single_read_write);
 | 
						|
FLASH_TEST_CASE_3("SPI flash single byte reads/writes", test_single_read_write);
 | 
						|
 | 
						|
 | 
						|
/* this test is notable because it generates a lot of unaligned reads/writes,
 | 
						|
   and also reads/writes across both a sector boundary & many page boundaries.
 | 
						|
*/
 | 
						|
void test_three_byte_read_write(esp_flash_t *chip)
 | 
						|
{
 | 
						|
    ESP_LOGI(TAG, "Testing chip %p...", chip);
 | 
						|
    uint32_t offs = erase_test_region(chip, 2);
 | 
						|
    ets_printf("offs:%X\n", offs);
 | 
						|
 | 
						|
    for (uint32_t v = 0; v < 2000; v++) {
 | 
						|
        TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, &v, offs + 3 * v, 3) );
 | 
						|
    }
 | 
						|
 | 
						|
    for (uint32_t v = 0; v < 2000; v++) {
 | 
						|
        uint32_t readback;
 | 
						|
        TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, offs + 3 * v, 3) );
 | 
						|
        TEST_ASSERT_EQUAL_HEX32(v & 0xFFFFFF, readback & 0xFFFFFF);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("SPI flash three byte reads/writes", test_three_byte_read_write);
 | 
						|
FLASH_TEST_CASE_3("SPI flash three byte reads/writes", test_three_byte_read_write);
 | 
						|
 | 
						|
void test_erase_large_region(esp_flash_t *chip)
 | 
						|
{
 | 
						|
    ESP_LOGI(TAG, "Testing chip %p...", chip);
 | 
						|
 | 
						|
    const esp_partition_t *part = get_test_data_partition();
 | 
						|
 | 
						|
    /* Write some noise at the start and the end of the region */
 | 
						|
    const char *ohai = "OHAI";
 | 
						|
    uint32_t readback;
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, ohai, part->address, 5));
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, ohai, part->address + part->size - 5, 5));
 | 
						|
 | 
						|
    /* sanity check what we just wrote. since the partition may haven't been erased, we only check the part which is written to 0. */
 | 
						|
    uint32_t written_data = *((const uint32_t *)ohai);
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address + part->size - 5, 4));
 | 
						|
    TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address, 4));
 | 
						|
    TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
 | 
						|
 | 
						|
    /* Erase whole region */
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_erase_region(chip, part->address, part->size));
 | 
						|
 | 
						|
    /* ensure both areas we wrote are now all-FFs */
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address, 4));
 | 
						|
    TEST_ASSERT_EQUAL_HEX32(0xFFFFFFFF, readback);
 | 
						|
 | 
						|
    TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address + part->size - 5, 4));
 | 
						|
    TEST_ASSERT_EQUAL_HEX32(0xFFFFFFFF, readback);
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("SPI flash erase large region", test_erase_large_region);
 | 
						|
FLASH_TEST_CASE_3("SPI flash erase large region", test_erase_large_region);
 | 
						|
 | 
						|
static void test_write_protection(esp_flash_t* chip)
 | 
						|
{
 | 
						|
    bool wp = true;
 | 
						|
    esp_err_t ret = ESP_OK;
 | 
						|
    ret = esp_flash_get_chip_write_protect(chip, &wp);
 | 
						|
    TEST_ESP_OK(ret);
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i ++) {
 | 
						|
        bool wp_write = !wp;
 | 
						|
        ret = esp_flash_set_chip_write_protect(chip, wp_write);
 | 
						|
        TEST_ESP_OK(ret);
 | 
						|
 | 
						|
        bool wp_read;
 | 
						|
        ret = esp_flash_get_chip_write_protect(chip, &wp_read);
 | 
						|
        TEST_ESP_OK(ret);
 | 
						|
        TEST_ASSERT(wp_read == wp_write);
 | 
						|
        wp = wp_read;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("Test esp_flash can enable/disable write protetion", test_write_protection);
 | 
						|
FLASH_TEST_CASE_3("Test esp_flash can enable/disable write protetion", test_write_protection);
 | 
						|
 | 
						|
static const uint8_t large_const_buffer[16400] = {
 | 
						|
    203, // first byte
 | 
						|
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
 | 
						|
    21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
 | 
						|
    [50 ... 99] = 2,
 | 
						|
    [1600 ... 2000] = 3,
 | 
						|
    [8000 ... 9000] = 77,
 | 
						|
    [15000 ... 16398] = 8,
 | 
						|
    43 // last byte
 | 
						|
};
 | 
						|
 | 
						|
static void test_write_large_buffer(esp_flash_t *chip, const uint8_t *source, size_t length);
 | 
						|
static void write_large_buffer(esp_flash_t *chip, const esp_partition_t *part, const uint8_t *source, size_t length);
 | 
						|
static void read_and_check(esp_flash_t *chip, const esp_partition_t *part, const uint8_t *source, size_t length);
 | 
						|
 | 
						|
// Internal functions for testing, from esp_flash_api.c
 | 
						|
esp_err_t esp_flash_set_io_mode(esp_flash_t* chip, bool qe);
 | 
						|
esp_err_t esp_flash_get_io_mode(esp_flash_t* chip, bool* qe);
 | 
						|
esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* flash_id);
 | 
						|
 | 
						|
static bool is_winbond_chip(esp_flash_t* chip)
 | 
						|
{
 | 
						|
    uint32_t flash_id;
 | 
						|
    esp_err_t ret = esp_flash_read_chip_id(chip, &flash_id);
 | 
						|
    TEST_ESP_OK(ret);
 | 
						|
    if ((flash_id >> 16) == 0xEF) {
 | 
						|
        return true;
 | 
						|
    } else {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void test_toggle_qe(esp_flash_t* chip)
 | 
						|
{
 | 
						|
    bool qe;
 | 
						|
    if (chip == NULL) {
 | 
						|
        chip = esp_flash_default_chip;
 | 
						|
    }
 | 
						|
    esp_flash_io_mode_t io_mode_before = chip->read_mode;
 | 
						|
    esp_err_t ret = esp_flash_get_io_mode(chip, &qe);
 | 
						|
    TEST_ESP_OK(ret);
 | 
						|
 | 
						|
    bool allow_failure = is_winbond_chip(chip);
 | 
						|
 | 
						|
 | 
						|
    for (int i = 0; i < 4; i ++) {
 | 
						|
        ESP_LOGI(TAG, "write qe: %d->%d", qe, !qe);
 | 
						|
        qe = !qe;
 | 
						|
        chip->read_mode = qe? SPI_FLASH_QOUT: SPI_FLASH_SLOWRD;
 | 
						|
        ret = esp_flash_set_io_mode(chip, qe);
 | 
						|
        if (allow_failure && !qe && ret == ESP_ERR_FLASH_NO_RESPONSE) {
 | 
						|
            //allows clear qe failure for Winbond chips
 | 
						|
            ret = ESP_OK;
 | 
						|
        }
 | 
						|
        TEST_ESP_OK(ret);
 | 
						|
 | 
						|
        bool qe_read;
 | 
						|
        ret = esp_flash_get_io_mode(chip, &qe_read);
 | 
						|
        TEST_ESP_OK(ret);
 | 
						|
        ESP_LOGD(TAG, "qe read: %d", qe_read);
 | 
						|
        if (!qe && qe_read) {
 | 
						|
            if (allow_failure) {
 | 
						|
                ESP_LOGW(TAG, "cannot clear QE bit for known permanent QE (Winbond) chips.");
 | 
						|
            } else {
 | 
						|
                ESP_LOGE(TAG, "cannot clear QE bit, please make sure force clearing QE option is enabled in `spi_flash_common_set_io_mode`, and this chip is not a permanent QE one.");
 | 
						|
            }
 | 
						|
            chip->read_mode = io_mode_before;
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        TEST_ASSERT_EQUAL(qe, qe_read);
 | 
						|
    }
 | 
						|
    //restore the io_mode after test
 | 
						|
    chip->read_mode = io_mode_before;
 | 
						|
}
 | 
						|
 | 
						|
// These tests show whether the QE is permanent or not for the chip tested.
 | 
						|
// To test the behaviour of a new SPI flash chip, enable force_check flag in generic driver
 | 
						|
// `spi_flash_common_set_io_mode` and then run this test.
 | 
						|
FLASH_TEST_CASE_IGNORE("Test esp_flash_write can toggle QE bit", test_toggle_qe);
 | 
						|
FLASH_TEST_CASE_3_IGNORE("Test esp_flash_write can toggle QE bit", test_toggle_qe);
 | 
						|
 | 
						|
 | 
						|
void test_permutations(flashtest_config_t* config)
 | 
						|
{
 | 
						|
    //replace config pointer with pointer to internal temporary config
 | 
						|
    flashtest_config_t temp_cfg;
 | 
						|
    memcpy(&temp_cfg, config, sizeof(flashtest_config_t));
 | 
						|
    flashtest_config_t* cfg = &temp_cfg;
 | 
						|
    esp_flash_t* chip;
 | 
						|
 | 
						|
    const int length = sizeof(large_const_buffer);
 | 
						|
    uint8_t *source_buf = malloc(length);
 | 
						|
    TEST_ASSERT_NOT_NULL(source_buf);
 | 
						|
    srand(778);
 | 
						|
    for (int i = 0; i < length; i++) {
 | 
						|
        source_buf[i] = rand();
 | 
						|
    }
 | 
						|
 | 
						|
    const esp_partition_t *part = get_test_data_partition();
 | 
						|
    TEST_ASSERT(part->size > length + 2 + SPI_FLASH_SEC_SIZE);
 | 
						|
 | 
						|
    //write data to be read, and use the lowest speed to write and read to make sure success
 | 
						|
    cfg->io_mode = SPI_FLASH_READ_MODE_MIN;
 | 
						|
    cfg->speed = ESP_FLASH_SPEED_MIN;
 | 
						|
    setup_new_chip(cfg, &chip);
 | 
						|
    write_large_buffer(chip, part, source_buf, length);
 | 
						|
    read_and_check(chip, part, source_buf, length);
 | 
						|
    teardown_test_chip(chip, cfg->host_id);
 | 
						|
 | 
						|
 | 
						|
    if (config->host_id != -1) {
 | 
						|
        esp_flash_speed_t speed = ESP_FLASH_SPEED_MIN;
 | 
						|
        while (speed != ESP_FLASH_SPEED_MAX) {
 | 
						|
            //test io_mode in the inner loop to test QE set/clear function, since
 | 
						|
            //the io mode will switch frequently.
 | 
						|
            esp_flash_io_mode_t io_mode = SPI_FLASH_READ_MODE_MIN;
 | 
						|
            while (io_mode != SPI_FLASH_READ_MODE_MAX) {
 | 
						|
                ESP_LOGI(TAG, "test flash io mode: %d, speed: %d", io_mode, speed);
 | 
						|
                cfg->io_mode = io_mode;
 | 
						|
                cfg->speed = speed;
 | 
						|
                setup_new_chip(cfg, &chip);
 | 
						|
                read_and_check(chip, part, source_buf, length);
 | 
						|
                teardown_test_chip(chip, cfg->host_id);
 | 
						|
                io_mode++;
 | 
						|
            }
 | 
						|
            speed++;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        //test main flash
 | 
						|
        write_large_buffer(NULL, part, source_buf, length);
 | 
						|
        read_and_check(NULL, part, source_buf, length);
 | 
						|
    }
 | 
						|
 | 
						|
    free(source_buf);
 | 
						|
}
 | 
						|
 | 
						|
TEST_CASE("SPI flash test reading with all speed/mode permutations", "[esp_flash]")
 | 
						|
{
 | 
						|
    test_permutations(&config_list[0]);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_ESP32_SPIRAM_SUPPORT
 | 
						|
TEST_CASE("SPI flash test reading with all speed/mode permutations, 3 chips", "[esp_flash][test_env=UT_T1_ESP_FLASH]")
 | 
						|
{
 | 
						|
    for (int i = 0; i < TEST_CONFIG_NUM; i++) {
 | 
						|
        test_permutations(&config_list[i]);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void test_write_large_const_buffer(esp_flash_t* chip)
 | 
						|
{
 | 
						|
    test_write_large_buffer(chip, large_const_buffer, sizeof(large_const_buffer));
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("Test esp_flash_write large const buffer", test_write_large_const_buffer);
 | 
						|
FLASH_TEST_CASE_3("Test esp_flash_write large const buffer", test_write_large_const_buffer);
 | 
						|
 | 
						|
static void test_write_large_ram_buffer(esp_flash_t* chip)
 | 
						|
{
 | 
						|
    // buffer in RAM
 | 
						|
    uint8_t *source_buf = malloc(sizeof(large_const_buffer));
 | 
						|
    TEST_ASSERT_NOT_NULL(source_buf);
 | 
						|
    memcpy(source_buf, large_const_buffer, sizeof(large_const_buffer));
 | 
						|
    test_write_large_buffer(chip, source_buf, sizeof(large_const_buffer));
 | 
						|
    free(source_buf);
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("Test esp_flash_write large RAM buffer", test_write_large_ram_buffer);
 | 
						|
FLASH_TEST_CASE_3("Test esp_flash_write large RAM buffer", test_write_large_ram_buffer);
 | 
						|
 | 
						|
static void write_large_buffer(esp_flash_t *chip, const esp_partition_t *part, const uint8_t *source, size_t length)
 | 
						|
{
 | 
						|
    printf("Writing chip %p, %d bytes from source %p\n", chip, length, source);
 | 
						|
 | 
						|
    ESP_ERROR_CHECK( esp_flash_erase_region(chip, part->address, (length + SPI_FLASH_SEC_SIZE) & ~(SPI_FLASH_SEC_SIZE - 1)) );
 | 
						|
 | 
						|
    // note writing to unaligned address
 | 
						|
    ESP_ERROR_CHECK( esp_flash_write(chip, source, part->address + 1, length) );
 | 
						|
}
 | 
						|
 | 
						|
static void read_and_check(esp_flash_t *chip, const esp_partition_t *part, const uint8_t *source, size_t length)
 | 
						|
{
 | 
						|
    printf("Checking chip %p, %d bytes\n", chip, length);
 | 
						|
    uint8_t *buf = malloc(length);
 | 
						|
    TEST_ASSERT_NOT_NULL(buf);
 | 
						|
    ESP_ERROR_CHECK( esp_flash_read(chip, buf, part->address + 1, length) );
 | 
						|
    TEST_ASSERT_EQUAL_HEX8_ARRAY(source, buf, length);
 | 
						|
    free(buf);
 | 
						|
 | 
						|
    // check nothing was written at beginning or end
 | 
						|
    uint8_t ends[8];
 | 
						|
 | 
						|
    ESP_ERROR_CHECK( esp_flash_read(chip, ends, part->address, sizeof(ends)) );
 | 
						|
    TEST_ASSERT_EQUAL_HEX8(0xFF, ends[0]);
 | 
						|
    TEST_ASSERT_EQUAL_HEX8(source[0], ends[1]);
 | 
						|
 | 
						|
    ESP_ERROR_CHECK( esp_flash_read(chip, ends, part->address + length, sizeof(ends)) );
 | 
						|
 | 
						|
    TEST_ASSERT_EQUAL_HEX8(source[length - 1], ends[0]);
 | 
						|
    TEST_ASSERT_EQUAL_HEX8(0xFF, ends[1]);
 | 
						|
    TEST_ASSERT_EQUAL_HEX8(0xFF, ends[2]);
 | 
						|
    TEST_ASSERT_EQUAL_HEX8(0xFF, ends[3]);
 | 
						|
}
 | 
						|
 | 
						|
static void test_write_large_buffer(esp_flash_t *chip, const uint8_t *source, size_t length)
 | 
						|
{
 | 
						|
    ESP_LOGI(TAG, "Testing chip %p...", chip);
 | 
						|
    const esp_partition_t *part = get_test_data_partition();
 | 
						|
    TEST_ASSERT(part->size > length + 2 + SPI_FLASH_SEC_SIZE);
 | 
						|
 | 
						|
    write_large_buffer(chip, part, source, length);
 | 
						|
    read_and_check(chip, part, source, length);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    uint32_t us_start;
 | 
						|
    size_t len;
 | 
						|
    const char* name;
 | 
						|
} time_meas_ctx_t;
 | 
						|
 | 
						|
static void time_measure_start(time_meas_ctx_t* ctx)
 | 
						|
{
 | 
						|
    ctx->us_start = esp_timer_get_time();
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t time_measure_end(time_meas_ctx_t* ctx)
 | 
						|
{
 | 
						|
    uint32_t time_us = esp_timer_get_time() - ctx->us_start;
 | 
						|
 | 
						|
    ESP_LOGI(TAG, "%s: typical: %.2lf kB/s", ctx->name, ctx->len / (time_us/1000.));
 | 
						|
    return ctx->len * 1000 / (time_us / 1000);
 | 
						|
}
 | 
						|
 | 
						|
#define TEST_TIMES      20
 | 
						|
#define TEST_SECTORS    4
 | 
						|
 | 
						|
static uint32_t measure_erase(const esp_partition_t* part)
 | 
						|
{
 | 
						|
    const int total_len = SPI_FLASH_SEC_SIZE * TEST_SECTORS;
 | 
						|
    time_meas_ctx_t time_ctx = {.name = "erase", .len = total_len};
 | 
						|
 | 
						|
    time_measure_start(&time_ctx);
 | 
						|
    esp_err_t err = esp_flash_erase_region(part->flash_chip, part->address, total_len);
 | 
						|
    TEST_ESP_OK(err);
 | 
						|
    return time_measure_end(&time_ctx);
 | 
						|
}
 | 
						|
 | 
						|
// should called after measure_erase
 | 
						|
static uint32_t measure_write(const char* name, const esp_partition_t* part, const uint8_t* data_to_write, int seg_len)
 | 
						|
{
 | 
						|
    const int total_len = SPI_FLASH_SEC_SIZE;
 | 
						|
    time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
 | 
						|
 | 
						|
    time_measure_start(&time_ctx);
 | 
						|
    for (int i = 0; i < TEST_TIMES; i ++) {
 | 
						|
        // Erase one time, but write 100 times the same data
 | 
						|
        size_t len = total_len;
 | 
						|
        int offset = 0;
 | 
						|
 | 
						|
        while (len) {
 | 
						|
            int len_write = MIN(seg_len, len);
 | 
						|
            esp_err_t err = esp_flash_write(part->flash_chip, data_to_write + offset, part->address + offset, len_write);
 | 
						|
            TEST_ESP_OK(err);
 | 
						|
 | 
						|
            offset += len_write;
 | 
						|
            len -= len_write;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return time_measure_end(&time_ctx);
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t measure_read(const char* name, const esp_partition_t* part, uint8_t* data_read, int seg_len)
 | 
						|
{
 | 
						|
    const int total_len = SPI_FLASH_SEC_SIZE;
 | 
						|
    time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
 | 
						|
 | 
						|
    time_measure_start(&time_ctx);
 | 
						|
    for (int i = 0; i < TEST_TIMES; i ++) {
 | 
						|
        size_t len = total_len;
 | 
						|
        int offset = 0;
 | 
						|
 | 
						|
        while (len) {
 | 
						|
            int len_read = MIN(seg_len, len);
 | 
						|
            esp_err_t err = esp_flash_read(part->flash_chip, data_read + offset, part->address + offset, len_read);
 | 
						|
            TEST_ESP_OK(err);
 | 
						|
 | 
						|
            offset += len_read;
 | 
						|
            len -= len_read;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return time_measure_end(&time_ctx);
 | 
						|
}
 | 
						|
 | 
						|
#define MEAS_WRITE(n)   (measure_write("write in "#n"-byte chunks", &test_part, data_to_write, n))
 | 
						|
#define MEAS_READ(n)    (measure_read("read in "#n"-byte chunks", &test_part, data_read, n))
 | 
						|
 | 
						|
static void test_flash_read_write_performance(esp_flash_t* chip)
 | 
						|
{
 | 
						|
    const esp_partition_t *part = get_test_data_partition();
 | 
						|
    // Copy to new partition variable and replace the chip member
 | 
						|
    // Actually there's no "partition" in the external flash on runners. We just don't bother creating a new partition variable.
 | 
						|
    esp_partition_t test_part;
 | 
						|
    memcpy(&test_part, part, sizeof(esp_partition_t));
 | 
						|
    test_part.flash_chip = chip;
 | 
						|
 | 
						|
    const int total_len = SPI_FLASH_SEC_SIZE;
 | 
						|
    uint8_t *data_to_write = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | 
						|
    uint8_t *data_read = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | 
						|
 | 
						|
    srand(777);
 | 
						|
    for (int i = 0; i < total_len; i++) {
 | 
						|
        data_to_write[i] = rand();
 | 
						|
    }
 | 
						|
 | 
						|
    uint32_t erase_1 = measure_erase(&test_part);
 | 
						|
    uint32_t speed_WR_4B = MEAS_WRITE(4);
 | 
						|
    uint32_t speed_RD_4B = MEAS_READ(4);
 | 
						|
    uint32_t erase_2 = measure_erase(&test_part);
 | 
						|
    uint32_t speed_WR_2KB = MEAS_WRITE(2048);
 | 
						|
    uint32_t speed_RD_2KB = MEAS_READ(2048);
 | 
						|
 | 
						|
    TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_write, data_read, total_len);
 | 
						|
 | 
						|
// Not actually checking in this version
 | 
						|
#define CHECK_DATA(bus, suffix) ((void)speed_##suffix)
 | 
						|
#define CHECK_ERASE(bus, var)   ((void)var)
 | 
						|
 | 
						|
// Erase time may vary a lot, can increase threshold if this fails with a reasonable speed
 | 
						|
#define CHECK_PERFORMANCE(bus) do {\
 | 
						|
            CHECK_DATA(bus, WR_4B); \
 | 
						|
            CHECK_DATA(bus, RD_4B); \
 | 
						|
            CHECK_DATA(bus, WR_2KB); \
 | 
						|
            CHECK_DATA(bus, RD_2KB); \
 | 
						|
            CHECK_ERASE(bus, erase_1); \
 | 
						|
            CHECK_ERASE(bus, erase_2); \
 | 
						|
        } while (0)
 | 
						|
 | 
						|
    CHECK_PERFORMANCE(0);
 | 
						|
    free(data_to_write);
 | 
						|
    free(data_read);
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("Test esp_flash read/write performance", test_flash_read_write_performance);
 | 
						|
FLASH_TEST_CASE_3("Test esp_flash read/write performance", test_flash_read_write_performance);
 | 
						|
 | 
						|
 | 
						|
#ifdef CONFIG_SPIRAM_USE_MALLOC
 | 
						|
 | 
						|
/* Utility: Read into a small internal RAM buffer using esp_flash_read() and compare what
 | 
						|
   we read with 'buffer' */
 | 
						|
static void s_test_compare_flash_contents_small_reads(esp_flash_t *chip, const uint8_t *buffer, size_t offs, size_t len)
 | 
						|
{
 | 
						|
    const size_t INTERNAL_BUF_SZ = 1024; // Should fit in internal RAM
 | 
						|
    uint8_t *ibuf = heap_caps_malloc(INTERNAL_BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
 | 
						|
    TEST_ASSERT_NOT_NULL(ibuf);
 | 
						|
 | 
						|
    for (int i = 0; i < len; i += INTERNAL_BUF_SZ) {
 | 
						|
        size_t to_read = MIN(INTERNAL_BUF_SZ, len - i);
 | 
						|
        ESP_ERROR_CHECK( esp_flash_read(chip, ibuf, offs + i, to_read) );
 | 
						|
        TEST_ASSERT_EQUAL_HEX8_ARRAY(buffer + i, ibuf, to_read);
 | 
						|
    }
 | 
						|
 | 
						|
    free(ibuf);
 | 
						|
}
 | 
						|
 | 
						|
static void test_flash_read_large_psram_buffer(esp_flash_t *chip)
 | 
						|
{
 | 
						|
    const size_t BUF_SZ = 256 * 1024;    // Too large for internal RAM
 | 
						|
    const size_t TEST_OFFS = 0x1000; // Can be any offset, really
 | 
						|
 | 
						|
    uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
 | 
						|
    TEST_ASSERT_NOT_NULL(buf);
 | 
						|
 | 
						|
    ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
 | 
						|
 | 
						|
    // Read back the same into smaller internal memory buffer and check it all matches
 | 
						|
    s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
 | 
						|
 | 
						|
    free(buf);
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("esp_flash_read large PSRAM buffer", test_flash_read_large_psram_buffer);
 | 
						|
 | 
						|
 | 
						|
/* similar to above test, but perform it under memory pressure */
 | 
						|
static void test_flash_read_large_psram_buffer_low_internal_mem(esp_flash_t *chip)
 | 
						|
{
 | 
						|
    const size_t BUF_SZ = 256 * 1024;    // Too large for internal RAM
 | 
						|
    const size_t REMAINING_INTERNAL = 1024; // Exhaust internal memory until maximum free block is less than this
 | 
						|
    const size_t TEST_OFFS = 0x8000;
 | 
						|
 | 
						|
    /* Exhaust the available free internal memory */
 | 
						|
    test_utils_exhaust_memory_rec erec = test_utils_exhaust_memory(MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT, REMAINING_INTERNAL);
 | 
						|
 | 
						|
    uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
 | 
						|
    TEST_ASSERT_NOT_NULL(buf);
 | 
						|
 | 
						|
    /* Calling esp_flash_read() here will need to allocate a small internal buffer,
 | 
						|
       so check it works. */
 | 
						|
    ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
 | 
						|
 | 
						|
    test_utils_free_exhausted_memory(erec);
 | 
						|
 | 
						|
    // Read back the same into smaller internal memory buffer and check it all matches
 | 
						|
    s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
 | 
						|
 | 
						|
    free(buf);
 | 
						|
}
 | 
						|
 | 
						|
FLASH_TEST_CASE("esp_flash_read large PSRAM buffer low memory", test_flash_read_large_psram_buffer_low_internal_mem);
 | 
						|
 | 
						|
 | 
						|
#endif
 |