mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-25 11:23:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2383 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2383 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <esp_types.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include "esp_log.h"
 | |
| #include "soc/rtc_periph.h"
 | |
| #include "soc/sens_periph.h"
 | |
| #include "soc/syscon_periph.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "soc/periph_defs.h"
 | |
| #include "rtc_io.h"
 | |
| #include "touch_pad.h"
 | |
| #include "adc.h"
 | |
| #include "dac.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/xtensa_api.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/timers.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "sys/lock.h"
 | |
| #include "driver/rtc_cntl.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "adc1_i2s_private.h"
 | |
| #include "sdkconfig.h"
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #include "esp32/rom/ets_sys.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
| #include "esp32s2beta/rom/ets_sys.h"
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // Enable built-in checks in queue.h in debug builds
 | |
| #define INVARIANTS
 | |
| #endif
 | |
| #include "sys/queue.h"
 | |
| 
 | |
| 
 | |
| #define ADC_FSM_RSTB_WAIT_DEFAULT     (8)
 | |
| #define ADC_FSM_START_WAIT_DEFAULT    (5)
 | |
| #define ADC_FSM_STANDBY_WAIT_DEFAULT  (100)
 | |
| #define ADC_FSM_TIME_KEEP             (-1)
 | |
| #define ADC_MAX_MEAS_NUM_DEFAULT      (255)
 | |
| #define ADC_MEAS_NUM_LIM_DEFAULT      (1)
 | |
| #define SAR_ADC_CLK_DIV_DEFUALT       (2)
 | |
| #define ADC_PATT_LEN_MAX              (16)
 | |
| #define TOUCH_PAD_FILTER_FACTOR_DEFAULT   (4)   // IIR filter coefficient.
 | |
| #define TOUCH_PAD_SHIFT_DEFAULT           (4)   // Increase computing accuracy.
 | |
| #define TOUCH_PAD_SHIFT_ROUND_DEFAULT     (8)   // ROUND = 2^(n-1); rounding off for fractional.
 | |
| #define DAC_ERR_STR_CHANNEL_ERROR   "DAC channel error"
 | |
| 
 | |
| static const char *RTC_MODULE_TAG = "RTC_MODULE";
 | |
| 
 | |
| #define RTC_MODULE_CHECK(a, str, ret_val) if (!(a)) {                                \
 | |
|     ESP_LOGE(RTC_MODULE_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
 | |
|     return (ret_val);                                                              \
 | |
| }
 | |
| 
 | |
| #define RTC_RES_CHECK(res, ret_val) if ( (a) != ESP_OK) {                           \
 | |
|         ESP_LOGE(RTC_MODULE_TAG,"%s:%d (%s)", __FILE__, __LINE__, __FUNCTION__); \
 | |
|         return (ret_val);                                                              \
 | |
| }
 | |
| 
 | |
| #define ADC_CHECK_UNIT(unit) RTC_MODULE_CHECK(adc_unit < ADC_UNIT_2, "ADC unit error, only support ADC1 for now", ESP_ERR_INVALID_ARG)
 | |
| 
 | |
| #define ADC1_CHECK_FUNCTION_RET(fun_ret) if(fun_ret!=ESP_OK){\
 | |
|     ESP_LOGE(RTC_MODULE_TAG,"%s:%d\n",__FUNCTION__,__LINE__);\
 | |
|     return ESP_FAIL;\
 | |
| }
 | |
| 
 | |
| #define ADC2_CHECK_FUNCTION_RET(fun_ret) do { if(fun_ret!=ESP_OK){\
 | |
|     ESP_LOGE(RTC_MODULE_TAG,"%s:%d\n",__FUNCTION__,__LINE__);\
 | |
|     return ESP_FAIL;\
 | |
| } }while (0)
 | |
| 
 | |
| portMUX_TYPE rtc_spinlock = portMUX_INITIALIZER_UNLOCKED;
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| static SemaphoreHandle_t rtc_touch_mux = NULL;
 | |
| #endif
 | |
| /*
 | |
| In ADC2, there're two locks used for different cases:
 | |
| 1. lock shared with app and WIFI:
 | |
|    when wifi using the ADC2, we assume it will never stop,
 | |
|    so app checks the lock and returns immediately if failed.
 | |
| 
 | |
| 2. lock shared between tasks:
 | |
|    when several tasks sharing the ADC2, we want to guarantee
 | |
|    all the requests will be handled.
 | |
|    Since conversions are short (about 31us), app returns the lock very soon,
 | |
|    we use a spinlock to stand there waiting to do conversions one by one.
 | |
| 
 | |
| adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
 | |
| */
 | |
| //prevent ADC2 being used by wifi and other tasks at the same time.
 | |
| static _lock_t adc2_wifi_lock;
 | |
| //prevent ADC2 being used by tasks (regardless of WIFI)
 | |
| portMUX_TYPE adc2_spinlock = portMUX_INITIALIZER_UNLOCKED;
 | |
| 
 | |
| //prevent ADC1 being used by I2S dma and other tasks at the same time.
 | |
| static _lock_t adc1_i2s_lock;
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| typedef struct {
 | |
|     TimerHandle_t timer;
 | |
|     uint16_t filtered_val[TOUCH_PAD_MAX];
 | |
|     uint16_t raw_val[TOUCH_PAD_MAX];
 | |
|     uint32_t filter_period;
 | |
|     uint32_t period;
 | |
|     bool enable;
 | |
| } touch_pad_filter_t;
 | |
| static touch_pad_filter_t *s_touch_pad_filter = NULL;
 | |
| // check if touch pad be inited.
 | |
| static uint16_t s_touch_pad_init_bit = 0x0000;
 | |
| static filter_cb_t s_filter_cb = NULL;
 | |
| #endif
 | |
| 
 | |
| typedef enum {
 | |
|     ADC_CTRL_RTC = 0,
 | |
|     ADC_CTRL_ULP = 1,
 | |
|     ADC_CTRL_DIG = 2,
 | |
|     ADC2_CTRL_PWDET = 3,
 | |
| } adc_controller_t ;
 | |
| 
 | |
| static const char TAG[] = "adc";
 | |
| 
 | |
| static inline void dac_output_set_enable(dac_channel_t channel, bool enable);
 | |
| static inline void adc1_hall_enable(bool enable);
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                         RTC IO
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t rtc_gpio_init(gpio_num_t gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     // 0: GPIO connected to digital GPIO module. 1: GPIO connected to analog RTC module.
 | |
|     SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, (rtc_gpio_desc[gpio_num].mux));
 | |
|     //0:RTC FUNCIOTN 1,2,3:Reserved
 | |
|     SET_PERI_REG_BITS(rtc_gpio_desc[gpio_num].reg, RTC_IO_TOUCH_PAD1_FUN_SEL_V, 0x0, rtc_gpio_desc[gpio_num].func);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     rtc_gpio_reg[gpio_num]->mux_sel = 0x1;
 | |
|     rtc_gpio_reg[gpio_num]->fun_sel = 0x0;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_deinit(gpio_num_t gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     //Select Gpio as Digital Gpio
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, (rtc_gpio_desc[gpio_num].mux));
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     rtc_gpio_reg[gpio_num]->mux_sel = 0x0;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t rtc_gpio_output_enable(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
 | |
|     RTC_MODULE_CHECK(rtc_gpio_num != -1, "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_ENABLE_W1TS_S)));
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TS_REG, (1 << ( gpio_num + RTC_GPIO_ENABLE_W1TS_S)));
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t rtc_gpio_output_disable(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
 | |
|     RTC_MODULE_CHECK(rtc_gpio_num != -1, "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TC_REG, (1 << ( rtc_gpio_num + RTC_GPIO_ENABLE_W1TC_S)));
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     SET_PERI_REG_MASK(RTC_GPIO_ENABLE_W1TC_REG, (1 << ( gpio_num + RTC_GPIO_ENABLE_W1TC_S)));
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t rtc_gpio_input_enable(gpio_num_t gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].ie);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     rtc_gpio_reg[gpio_num]->fun_ie = 1;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t rtc_gpio_input_disable(gpio_num_t gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].ie);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     rtc_gpio_reg[gpio_num]->fun_ie = 0;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2BETA
 | |
| esp_err_t rtc_gpio_sleep_output_enable(gpio_num_t gpio_num, bool output)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     rtc_gpio_reg[gpio_num]->slp_sel = 1;
 | |
|     rtc_gpio_reg[gpio_num]->slp_oe = output;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_sleep_input_enable(gpio_num_t gpio_num, bool input)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     rtc_gpio_reg[gpio_num]->slp_sel = 1;
 | |
|     rtc_gpio_reg[gpio_num]->slp_ie = input;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_sleep_mode_disable(gpio_num_t gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     rtc_gpio_reg[gpio_num]->slp_sel = 0;
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| esp_err_t rtc_gpio_set_level(gpio_num_t gpio_num, uint32_t level)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int rtc_gpio_num = rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;;
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     if (level) {
 | |
|         WRITE_PERI_REG(RTC_GPIO_OUT_W1TS_REG, (1 << (rtc_gpio_num + RTC_GPIO_OUT_DATA_W1TS_S)));
 | |
|     } else {
 | |
|         WRITE_PERI_REG(RTC_GPIO_OUT_W1TC_REG, (1 << (rtc_gpio_num + RTC_GPIO_OUT_DATA_W1TC_S)));
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     if (level) {
 | |
|         WRITE_PERI_REG(RTC_GPIO_OUT_W1TS_REG, (1 << (gpio_num + RTC_GPIO_OUT_DATA_W1TS_S)));
 | |
|     } else {
 | |
|         WRITE_PERI_REG(RTC_GPIO_OUT_W1TC_REG, (1 << (gpio_num + RTC_GPIO_OUT_DATA_W1TC_S)));
 | |
|     }
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| uint32_t rtc_gpio_get_level(gpio_num_t gpio_num)
 | |
| {
 | |
|     uint32_t level = 0;
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     level = READ_PERI_REG(RTC_GPIO_IN_REG);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ((level >> (RTC_GPIO_IN_NEXT_S + rtc_gpio_num)) & 0x01);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     level = RTCIO.in_val.in;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ((level >> gpio_num) & 0x1);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_set_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t strength)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "Output pad only", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(strength < GPIO_DRIVE_CAP_MAX, "GPIO drive capability error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     SET_PERI_REG_BITS(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].drv_v, strength, rtc_gpio_desc[gpio_num].drv_s);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     rtc_gpio_reg[gpio_num]->drv = strength;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_get_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t* strength)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "Output pad only", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(strength != NULL, "GPIO drive pointer error", ESP_ERR_INVALID_ARG);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     *strength = GET_PERI_REG_BITS2(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].drv_v, rtc_gpio_desc[gpio_num].drv_s);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     *strength = rtc_gpio_reg[gpio_num]->drv;
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_set_direction(gpio_num_t gpio_num, rtc_gpio_mode_t mode)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     switch (mode) {
 | |
|     case RTC_GPIO_MODE_INPUT_ONLY:
 | |
|         rtc_gpio_output_disable(gpio_num);
 | |
|         rtc_gpio_input_enable(gpio_num);
 | |
|         break;
 | |
|     case RTC_GPIO_MODE_OUTPUT_ONLY:
 | |
|         rtc_gpio_output_enable(gpio_num);
 | |
|         rtc_gpio_input_disable(gpio_num);
 | |
|         break;
 | |
|     case RTC_GPIO_MODE_INPUT_OUTPUT:
 | |
|         rtc_gpio_output_enable(gpio_num);
 | |
|         rtc_gpio_input_enable(gpio_num);
 | |
|         break;
 | |
|     case RTC_GPIO_MODE_DISABLED:
 | |
|         rtc_gpio_output_disable(gpio_num);
 | |
|         rtc_gpio_input_disable(gpio_num);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_pullup_en(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //this is a digital pad
 | |
|     if (rtc_gpio_desc[gpio_num].pullup == 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| #endif
 | |
|     //this is a rtc pad
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pullup);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     rtc_gpio_reg[gpio_num]->rue = 0x1;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2BETA
 | |
| esp_err_t rtc_gpio_set_output_mode(gpio_num_t gpio_num, rtc_io_out_mode_t mode)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCIO.pin[gpio_num].pad_driver = mode;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_get_output_mode(gpio_num_t gpio_num, rtc_io_out_mode_t *mode)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     *mode = RTCIO.pin[gpio_num].pad_driver;
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| esp_err_t rtc_gpio_pulldown_en(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //this is a digital pad
 | |
|     if (rtc_gpio_desc[gpio_num].pulldown == 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     //this is a rtc pad
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pulldown);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     rtc_gpio_reg[gpio_num]->rde = 0x1;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_pullup_dis(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //this is a digital pad
 | |
|     if ( rtc_gpio_desc[gpio_num].pullup == 0 ) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     //this is a rtc pad
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pullup);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     rtc_gpio_reg[gpio_num]->rue = 0x0;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_pulldown_dis(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //this is a digital pad
 | |
|     if (rtc_gpio_desc[gpio_num].pulldown == 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     //this is a rtc pad
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].pulldown);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     rtc_gpio_reg[gpio_num]->rde = 0x0;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_hold_en(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     // check if an RTC IO
 | |
|     if (rtc_gpio_desc[gpio_num].pullup == 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SET_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].hold);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCCNTL.pad_hold.val |= BIT(gpio_num);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_hold_dis(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     // check if an RTC IO
 | |
|     if (rtc_gpio_desc[gpio_num].pullup == 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     CLEAR_PERI_REG_MASK(rtc_gpio_desc[gpio_num].reg, rtc_gpio_desc[gpio_num].hold);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCCNTL.pad_hold.val &= ~(BIT(gpio_num));
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_isolate(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if (rtc_gpio_desc[gpio_num].reg == 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
| #endif
 | |
|     rtc_gpio_pullup_dis(gpio_num);
 | |
|     rtc_gpio_pulldown_dis(gpio_num);
 | |
|     rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED);
 | |
|     rtc_gpio_hold_en(gpio_num);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| void rtc_gpio_force_hold_dis_all(void)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     for (int gpio = 0; gpio < GPIO_PIN_COUNT; ++gpio) {
 | |
|         const rtc_gpio_desc_t* desc = &rtc_gpio_desc[gpio];
 | |
|         if (desc->hold_force != 0) {
 | |
|             REG_CLR_BIT(RTC_CNTL_HOLD_FORCE_REG, desc->hold_force);
 | |
|         }
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCCNTL.rtc_pwc.rtc_pad_force_hold = 0;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int rtc_num = rtc_gpio_desc[gpio_num].rtc_num;
 | |
|     if (rtc_num < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (( intr_type != GPIO_INTR_LOW_LEVEL ) && ( intr_type != GPIO_INTR_HIGH_LEVEL )) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     uint32_t reg = RTC_GPIO_PIN0_REG + rtc_num * sizeof(uint32_t);
 | |
|     /* each pin has its own register, spinlock not needed */
 | |
|     REG_SET_BIT(reg, RTC_GPIO_PIN0_WAKEUP_ENABLE);
 | |
|     REG_SET_FIELD(reg, RTC_GPIO_PIN0_INT_TYPE, intr_type);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     if (( intr_type != GPIO_INTR_LOW_LEVEL ) && ( intr_type != GPIO_INTR_HIGH_LEVEL )) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     /* each pin has its own register, spinlock not needed */
 | |
|     RTCIO.pin[gpio_num].wakeup_enable = 1;
 | |
|     RTCIO.pin[gpio_num].int_type = intr_type;
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_gpio_wakeup_disable(gpio_num_t gpio_num)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int rtc_num = rtc_gpio_desc[gpio_num].rtc_num;
 | |
|     if (rtc_num < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     uint32_t reg = RTC_GPIO_PIN0_REG + rtc_num * sizeof(uint32_t);
 | |
|     /* each pin has its own register, spinlock not needed */
 | |
|     REG_CLR_BIT(reg, RTC_GPIO_PIN0_WAKEUP_ENABLE);
 | |
|     REG_SET_FIELD(reg, RTC_GPIO_PIN0_INT_TYPE, 0);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     RTC_MODULE_CHECK(rtc_gpio_is_valid_gpio(gpio_num), "RTC_GPIO number error", ESP_ERR_INVALID_ARG);
 | |
|     /* each pin has its own register, spinlock not needed */
 | |
|     RTCIO.pin[gpio_num].wakeup_enable = 0;
 | |
|     RTCIO.pin[gpio_num].int_type = 0;
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2BETA
 | |
| esp_err_t rtc_gpio_force_hold_all()
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCCNTL.rtc_pwc.rtc_pad_force_hold = 1;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| /*---------------------------------------------------------------
 | |
|                     Touch Pad
 | |
| ---------------------------------------------------------------*/
 | |
| //Some register bits of touch sensor 8 and 9 are mismatched, we need to swap the bits.
 | |
| #define BITSWAP(data, n, m)   (((data >> n) &  0x1)  == ((data >> m) & 0x1) ? (data) : ((data) ^ ((0x1 <<n) | (0x1 << m))))
 | |
| #define TOUCH_BITS_SWAP(v)  BITSWAP(v, TOUCH_PAD_NUM8, TOUCH_PAD_NUM9)
 | |
| static esp_err_t _touch_pad_read(touch_pad_t touch_num, uint16_t *touch_value, touch_fsm_mode_t mode);
 | |
| 
 | |
| //Some registers of touch sensor 8 and 9 are mismatched, we need to swap register index
 | |
| inline static touch_pad_t touch_pad_num_wrap(touch_pad_t touch_num)
 | |
| {
 | |
|     if (touch_num == TOUCH_PAD_NUM8) {
 | |
|         return TOUCH_PAD_NUM9;
 | |
|     } else if (touch_num == TOUCH_PAD_NUM9) {
 | |
|         return TOUCH_PAD_NUM8;
 | |
|     }
 | |
|     return touch_num;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_isr_handler_register(void (*fn)(void *), void *arg, int no_use, intr_handle_t *handle_no_use)
 | |
| {
 | |
|     RTC_MODULE_CHECK(fn, "Touch_Pad ISR null", ESP_ERR_INVALID_ARG);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     return rtc_isr_register(fn, arg, RTC_CNTL_TOUCH_INT_ST_M);
 | |
| #else
 | |
|     return ESP_FAIL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_isr_register(intr_handler_t fn, void* arg)
 | |
| {
 | |
|     RTC_MODULE_CHECK(fn, "Touch_Pad ISR null", ESP_ERR_INVALID_ARG);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     return rtc_isr_register(fn, arg, RTC_CNTL_TOUCH_INT_ST_M);
 | |
| #else
 | |
|     return ESP_FAIL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_isr_deregister(intr_handler_t fn, void *arg)
 | |
| {
 | |
|     return rtc_isr_deregister(fn, arg);
 | |
| }
 | |
| 
 | |
| static esp_err_t touch_pad_get_io_num(touch_pad_t touch_num, gpio_num_t *gpio_num)
 | |
| {
 | |
|     switch (touch_num) {
 | |
|     case TOUCH_PAD_NUM0:
 | |
|         *gpio_num = TOUCH_PAD_NUM0_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM1:
 | |
|         *gpio_num = TOUCH_PAD_NUM1_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM2:
 | |
|         *gpio_num = TOUCH_PAD_NUM2_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM3:
 | |
|         *gpio_num = TOUCH_PAD_NUM3_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM4:
 | |
|         *gpio_num = TOUCH_PAD_NUM4_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM5:
 | |
|         *gpio_num = TOUCH_PAD_NUM5_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM6:
 | |
|         *gpio_num = TOUCH_PAD_NUM6_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM7:
 | |
|         *gpio_num = TOUCH_PAD_NUM7_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM8:
 | |
|         *gpio_num = TOUCH_PAD_NUM8_GPIO_NUM;
 | |
|         break;
 | |
|     case TOUCH_PAD_NUM9:
 | |
|         *gpio_num = TOUCH_PAD_NUM9_GPIO_NUM;
 | |
|         break;
 | |
|     default:
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static uint32_t _touch_filter_iir(uint32_t in_now, uint32_t out_last, uint32_t k)
 | |
| {
 | |
|     if (k == 0) {
 | |
|         return in_now;
 | |
|     } else {
 | |
|         uint32_t out_now = (in_now + (k - 1) * out_last) / k;
 | |
|         return out_now;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_filter_read_cb(filter_cb_t read_cb)
 | |
| {
 | |
|     s_filter_cb = read_cb;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void touch_pad_filter_cb(void *arg)
 | |
| {
 | |
|     static uint32_t s_filtered_temp[TOUCH_PAD_MAX] = {0};
 | |
| 
 | |
|     if (s_touch_pad_filter == NULL || rtc_touch_mux == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     uint16_t val = 0;
 | |
|     touch_fsm_mode_t mode;
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     touch_pad_get_fsm_mode(&mode);
 | |
|     for (int i = 0; i < TOUCH_PAD_MAX; i++) {
 | |
|         if ((s_touch_pad_init_bit >> i) & 0x1) {
 | |
|             _touch_pad_read(i, &val, mode);
 | |
|             s_touch_pad_filter->raw_val[i] = val;
 | |
|             s_filtered_temp[i] = s_filtered_temp[i] == 0 ? ((uint32_t)val << TOUCH_PAD_SHIFT_DEFAULT) : s_filtered_temp[i];
 | |
|             s_filtered_temp[i] = _touch_filter_iir((val << TOUCH_PAD_SHIFT_DEFAULT),
 | |
|                     s_filtered_temp[i], TOUCH_PAD_FILTER_FACTOR_DEFAULT);
 | |
|             s_touch_pad_filter->filtered_val[i] = (s_filtered_temp[i] + TOUCH_PAD_SHIFT_ROUND_DEFAULT) >> TOUCH_PAD_SHIFT_DEFAULT;
 | |
|         }
 | |
|     }
 | |
|     xTimerReset(s_touch_pad_filter->timer, portMAX_DELAY);
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     if(s_filter_cb != NULL) {
 | |
|         //return the raw data and filtered data.
 | |
|         s_filter_cb(s_touch_pad_filter->raw_val, s_touch_pad_filter->filtered_val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_meas_time(uint16_t sleep_cycle, uint16_t meas_cycle)
 | |
| {
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     //touch sensor sleep cycle Time = sleep_cycle / RTC_SLOW_CLK( can be 150k or 32k depending on the options)
 | |
|     SENS.sar_touch_ctrl2.touch_sleep_cycles = sleep_cycle;
 | |
|     //touch sensor measure time= meas_cycle / 8Mhz
 | |
|     SENS.sar_touch_ctrl1.touch_meas_delay = meas_cycle;
 | |
|     //the waiting cycles (in 8MHz) between TOUCH_START and TOUCH_XPD
 | |
|     SENS.sar_touch_ctrl1.touch_xpd_wait = TOUCH_PAD_MEASURE_WAIT_DEFAULT;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_meas_time(uint16_t *sleep_cycle, uint16_t *meas_cycle)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (sleep_cycle) {
 | |
|         *sleep_cycle = SENS.sar_touch_ctrl2.touch_sleep_cycles;
 | |
|     }
 | |
|     if (meas_cycle) {
 | |
|         *meas_cycle = SENS.sar_touch_ctrl1.touch_meas_delay;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_voltage(touch_high_volt_t refh, touch_low_volt_t refl, touch_volt_atten_t atten)
 | |
| {
 | |
|     RTC_MODULE_CHECK(((refh < TOUCH_HVOLT_MAX) && (refh >= (int )TOUCH_HVOLT_KEEP)), "touch refh error",
 | |
|             ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(((refl < TOUCH_LVOLT_MAX) && (refh >= (int )TOUCH_LVOLT_KEEP)), "touch refl error",
 | |
|             ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(((atten < TOUCH_HVOLT_ATTEN_MAX) && (refh >= (int )TOUCH_HVOLT_ATTEN_KEEP)), "touch atten error",
 | |
|             ESP_ERR_INVALID_ARG);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (refh > TOUCH_HVOLT_KEEP) {
 | |
|         RTCIO.touch_cfg.drefh = refh;
 | |
|     }
 | |
|     if (refl > TOUCH_LVOLT_KEEP) {
 | |
|         RTCIO.touch_cfg.drefl = refl;
 | |
|     }
 | |
|     if (atten > TOUCH_HVOLT_ATTEN_KEEP) {
 | |
|         RTCIO.touch_cfg.drange = atten;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_voltage(touch_high_volt_t *refh, touch_low_volt_t *refl, touch_volt_atten_t *atten)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (refh) {
 | |
|         *refh = RTCIO.touch_cfg.drefh;
 | |
|     }
 | |
|     if (refl) {
 | |
|         *refl = RTCIO.touch_cfg.drefl;
 | |
|     }
 | |
|     if (atten) {
 | |
|         *atten = RTCIO.touch_cfg.drange;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_cnt_mode(touch_pad_t touch_num, touch_cnt_slope_t slope, touch_tie_opt_t opt)
 | |
| {
 | |
|     RTC_MODULE_CHECK((slope < TOUCH_PAD_SLOPE_MAX), "touch slope error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK((opt < TOUCH_PAD_TIE_OPT_MAX), "touch opt error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     touch_pad_t touch_pad_wrap = touch_pad_num_wrap(touch_num);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCIO.touch_pad[touch_pad_wrap].tie_opt = opt;
 | |
|     RTCIO.touch_pad[touch_num].dac = slope;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_cnt_mode(touch_pad_t touch_num, touch_cnt_slope_t *slope, touch_tie_opt_t *opt)
 | |
| {
 | |
|     RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     touch_pad_t touch_pad_wrap = touch_pad_num_wrap(touch_num);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if(opt) {
 | |
|         *opt = RTCIO.touch_pad[touch_pad_wrap].tie_opt;
 | |
|     }
 | |
|     if(slope) {
 | |
|         *slope = RTCIO.touch_pad[touch_num].dac;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_io_init(touch_pad_t touch_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG);
 | |
|     gpio_num_t gpio_num = GPIO_NUM_0;
 | |
|     touch_pad_get_io_num(touch_num, &gpio_num);
 | |
|     rtc_gpio_init(gpio_num);
 | |
|     rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED);
 | |
|     rtc_gpio_pulldown_dis(gpio_num);
 | |
|     rtc_gpio_pullup_dis(gpio_num);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_fsm_mode(touch_fsm_mode_t mode)
 | |
| {
 | |
|     RTC_MODULE_CHECK((mode < TOUCH_FSM_MODE_MAX), "touch fsm mode error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SENS.sar_touch_ctrl2.touch_start_en = 0;
 | |
|     SENS.sar_touch_ctrl2.touch_start_force = mode;
 | |
|     RTCCNTL.state0.touch_slp_timer_en = (mode == TOUCH_FSM_MODE_TIMER ? 1 : 0);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_fsm_mode(touch_fsm_mode_t *mode)
 | |
| {
 | |
|     if (mode) {
 | |
|         *mode = SENS.sar_touch_ctrl2.touch_start_force;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_sw_start(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SENS.sar_touch_ctrl2.touch_start_en = 0;
 | |
|     SENS.sar_touch_ctrl2.touch_start_en = 1;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_thresh(touch_pad_t touch_num, uint16_t threshold)
 | |
| {
 | |
|     RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG);
 | |
|     touch_pad_t tp_wrap = touch_pad_num_wrap(touch_num);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (tp_wrap & 0x1) {
 | |
|         SENS.touch_thresh[tp_wrap / 2].l_thresh = threshold;
 | |
|     } else {
 | |
|         SENS.touch_thresh[tp_wrap / 2].h_thresh = threshold;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_thresh(touch_pad_t touch_num, uint16_t *threshold)
 | |
| {
 | |
|     RTC_MODULE_CHECK((touch_num < TOUCH_PAD_MAX), "touch IO error", ESP_ERR_INVALID_ARG);
 | |
|     touch_pad_t tp_wrap = touch_pad_num_wrap(touch_num);
 | |
|     if (threshold) {
 | |
|         *threshold = (tp_wrap & 0x1 )? \
 | |
|                 SENS.touch_thresh[tp_wrap / 2].l_thresh : \
 | |
|                 SENS.touch_thresh[tp_wrap / 2].h_thresh;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_trigger_mode(touch_trigger_mode_t mode)
 | |
| {
 | |
|     RTC_MODULE_CHECK((mode < TOUCH_TRIGGER_MAX), "touch trigger mode error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SENS.sar_touch_ctrl1.touch_out_sel = mode;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_trigger_mode(touch_trigger_mode_t *mode)
 | |
| {
 | |
|     if (mode) {
 | |
|         *mode = SENS.sar_touch_ctrl1.touch_out_sel;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_trigger_source(touch_trigger_src_t src)
 | |
| {
 | |
|     RTC_MODULE_CHECK((src < TOUCH_TRIGGER_SOURCE_MAX), "touch trigger source error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SENS.sar_touch_ctrl1.touch_out_1en = src;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_trigger_source(touch_trigger_src_t *src)
 | |
| {
 | |
|     if (src) {
 | |
|         *src = SENS.sar_touch_ctrl1.touch_out_1en;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_group_mask(uint16_t set1_mask, uint16_t set2_mask, uint16_t en_mask)
 | |
| {
 | |
|     RTC_MODULE_CHECK((set1_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set1 bitmask error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK((set2_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set2 bitmask error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK((en_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch work_en bitmask error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SENS.sar_touch_enable.touch_pad_outen1 |= TOUCH_BITS_SWAP(set1_mask);
 | |
|     SENS.sar_touch_enable.touch_pad_outen2 |= TOUCH_BITS_SWAP(set2_mask);
 | |
|     SENS.sar_touch_enable.touch_pad_worken |= TOUCH_BITS_SWAP(en_mask);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_group_mask(uint16_t *set1_mask, uint16_t *set2_mask, uint16_t *en_mask)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (set1_mask) {
 | |
|         *set1_mask = TOUCH_BITS_SWAP(SENS.sar_touch_enable.touch_pad_outen1);
 | |
|     }
 | |
|     if (set2_mask) {
 | |
|         *set2_mask = TOUCH_BITS_SWAP(SENS.sar_touch_enable.touch_pad_outen2);
 | |
|     }
 | |
|     if (en_mask) {
 | |
|         *en_mask = TOUCH_BITS_SWAP(SENS.sar_touch_enable.touch_pad_worken);
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_clear_group_mask(uint16_t set1_mask, uint16_t set2_mask, uint16_t en_mask)
 | |
| {
 | |
|     RTC_MODULE_CHECK((set1_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set1 bitmask error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK((set2_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch set2 bitmask error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK((en_mask <= TOUCH_PAD_BIT_MASK_MAX), "touch work_en bitmask error", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SENS.sar_touch_enable.touch_pad_outen1 &= TOUCH_BITS_SWAP(~set1_mask);
 | |
|     SENS.sar_touch_enable.touch_pad_outen2 &= TOUCH_BITS_SWAP(~set2_mask);
 | |
|     SENS.sar_touch_enable.touch_pad_worken &= TOUCH_BITS_SWAP(~en_mask);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| uint32_t IRAM_ATTR touch_pad_get_status(void)
 | |
| {
 | |
|     uint32_t status = SENS.sar_touch_ctrl2.touch_meas_en;
 | |
|     return TOUCH_BITS_SWAP(status);
 | |
| }
 | |
| 
 | |
| esp_err_t IRAM_ATTR touch_pad_clear_status(void)
 | |
| {
 | |
|     SENS.sar_touch_ctrl2.touch_meas_en_clr = 1;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_intr_enable(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCCNTL.int_ena.rtc_touch = 1;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_intr_disable(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     RTCCNTL.int_ena.rtc_touch = 0;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_config(touch_pad_t touch_num, uint16_t threshold)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL);
 | |
|     RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG);
 | |
|     touch_fsm_mode_t mode;
 | |
|     touch_pad_set_thresh(touch_num, threshold);
 | |
|     touch_pad_io_init(touch_num);
 | |
|     touch_pad_set_cnt_mode(touch_num, TOUCH_PAD_SLOPE_7, TOUCH_PAD_TIE_OPT_LOW);
 | |
|     touch_pad_get_fsm_mode(&mode);
 | |
|     if (TOUCH_FSM_MODE_SW == mode) {
 | |
|         touch_pad_clear_group_mask((1 << touch_num), (1 << touch_num), (1 << touch_num));
 | |
|         s_touch_pad_init_bit |= (1 << touch_num);
 | |
|     } else if (TOUCH_FSM_MODE_TIMER == mode){
 | |
|         uint16_t sleep_time = 0;
 | |
|         uint16_t meas_cycle = 0;
 | |
|         uint32_t wait_time_ms = 0;
 | |
|         uint32_t wait_tick = 0;
 | |
|         uint32_t rtc_clk = rtc_clk_slow_freq_get_hz();
 | |
|         touch_pad_set_group_mask((1 << touch_num), (1 << touch_num), (1 << touch_num));
 | |
|         touch_pad_get_meas_time(&sleep_time, &meas_cycle);
 | |
|         //If the FSM mode is 'TOUCH_FSM_MODE_TIMER', The data will be ready after one measurement cycle
 | |
|         //after this function is executed, otherwise, the "touch_value" by "touch_pad_read" is 0.
 | |
|         wait_time_ms = sleep_time/(rtc_clk/1000) + meas_cycle/(RTC_FAST_CLK_FREQ_APPROX/1000);
 | |
|         wait_tick = wait_time_ms/portTICK_RATE_MS;
 | |
|         vTaskDelay(wait_tick ? wait_tick : 1);
 | |
|         s_touch_pad_init_bit |= (1 << touch_num);
 | |
|     } else {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_init(void)
 | |
| {
 | |
|     if (rtc_touch_mux == NULL) {
 | |
|         rtc_touch_mux = xSemaphoreCreateMutex();
 | |
|     }
 | |
|     if (rtc_touch_mux == NULL) {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
|     touch_pad_intr_disable();
 | |
|     touch_pad_clear_group_mask(TOUCH_PAD_BIT_MASK_MAX, TOUCH_PAD_BIT_MASK_MAX, TOUCH_PAD_BIT_MASK_MAX);
 | |
|     touch_pad_set_trigger_mode(TOUCH_TRIGGER_MODE_DEFAULT);
 | |
|     touch_pad_set_trigger_source(TOUCH_TRIGGER_SOURCE_DEFAULT);
 | |
|     touch_pad_clear_status();
 | |
|     touch_pad_set_meas_time(TOUCH_PAD_SLEEP_CYCLE_DEFAULT, TOUCH_PAD_MEASURE_CYCLE_DEFAULT);
 | |
|     touch_pad_set_fsm_mode(TOUCH_FSM_MODE_DEFAULT);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_deinit(void)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL);
 | |
|     if (s_touch_pad_filter != NULL) {
 | |
|         touch_pad_filter_stop();
 | |
|         touch_pad_filter_delete();
 | |
|     }
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     s_touch_pad_init_bit = 0x0000;
 | |
|     touch_pad_set_fsm_mode(TOUCH_FSM_MODE_SW);
 | |
|     touch_pad_clear_status();
 | |
|     touch_pad_intr_disable();
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     vSemaphoreDelete(rtc_touch_mux);
 | |
|     rtc_touch_mux = NULL;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t _touch_pad_read(touch_pad_t touch_num, uint16_t *touch_value, touch_fsm_mode_t mode)
 | |
| {
 | |
|     esp_err_t res = ESP_OK;
 | |
|     touch_pad_t tp_wrap = touch_pad_num_wrap(touch_num);
 | |
|     if (TOUCH_FSM_MODE_SW == mode) {
 | |
|         touch_pad_set_group_mask((1 << touch_num), (1 << touch_num), (1 << touch_num));
 | |
|         touch_pad_sw_start();
 | |
|         while (SENS.sar_touch_ctrl2.touch_meas_done == 0) {};
 | |
|         *touch_value = (tp_wrap & 0x1) ? \
 | |
|                             SENS.touch_meas[tp_wrap / 2].l_val: \
 | |
|                             SENS.touch_meas[tp_wrap / 2].h_val;
 | |
| 
 | |
|         touch_pad_clear_group_mask((1 << touch_num), (1 << touch_num), (1 << touch_num));
 | |
|     } else if (TOUCH_FSM_MODE_TIMER == mode) {
 | |
|         while (SENS.sar_touch_ctrl2.touch_meas_done == 0) {};
 | |
|         *touch_value = (tp_wrap & 0x1) ? \
 | |
|                             SENS.touch_meas[tp_wrap / 2].l_val: \
 | |
|                             SENS.touch_meas[tp_wrap / 2].h_val;
 | |
|     } else {
 | |
|         res = ESP_FAIL;
 | |
|     }
 | |
|     if (*touch_value == 0) {
 | |
|         res = ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_read(touch_pad_t touch_num, uint16_t *touch_value)
 | |
| {
 | |
|     RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(touch_value != NULL, "touch_value", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL);
 | |
| 
 | |
|     esp_err_t res = ESP_OK;
 | |
|     touch_fsm_mode_t mode;
 | |
|     touch_pad_get_fsm_mode(&mode);
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     res = _touch_pad_read(touch_num, touch_value, mode);
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| IRAM_ATTR esp_err_t touch_pad_read_raw_data(touch_pad_t touch_num, uint16_t *touch_value)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL);
 | |
|     RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(touch_value != NULL, "touch_value", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_FAIL);
 | |
|     *touch_value = s_touch_pad_filter->raw_val[touch_num];
 | |
|     if (*touch_value == 0) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| IRAM_ATTR esp_err_t touch_pad_read_filtered(touch_pad_t touch_num, uint16_t *touch_value)
 | |
| {
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_FAIL);
 | |
|     RTC_MODULE_CHECK(touch_num < TOUCH_PAD_MAX, "Touch_Pad Num Err", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(touch_value != NULL, "touch_value", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_FAIL);
 | |
|     *touch_value = (s_touch_pad_filter->filtered_val[touch_num]);
 | |
|     if (*touch_value == 0) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_set_filter_period(uint32_t new_period_ms)
 | |
| {
 | |
|     RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE);
 | |
|     RTC_MODULE_CHECK(new_period_ms > 0, "Touch pad filter period error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE);
 | |
| 
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     if (s_touch_pad_filter != NULL) {
 | |
|         xTimerChangePeriod(s_touch_pad_filter->timer, new_period_ms / portTICK_PERIOD_MS, portMAX_DELAY);
 | |
|         s_touch_pad_filter->period = new_period_ms;
 | |
|     } else {
 | |
|         ESP_LOGE(RTC_MODULE_TAG, "Touch pad filter deleted");
 | |
|         ret = ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_filter_period(uint32_t* p_period_ms)
 | |
| {
 | |
|     RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE);
 | |
|     RTC_MODULE_CHECK(p_period_ms != NULL, "Touch pad period pointer error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE);
 | |
| 
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     if (s_touch_pad_filter != NULL) {
 | |
|         *p_period_ms = s_touch_pad_filter->period;
 | |
|     } else {
 | |
|         ESP_LOGE(RTC_MODULE_TAG, "Touch pad filter deleted");
 | |
|         ret = ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_filter_start(uint32_t filter_period_ms)
 | |
| {
 | |
|     RTC_MODULE_CHECK(filter_period_ms >= portTICK_PERIOD_MS, "Touch pad filter period error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE);
 | |
| 
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     if (s_touch_pad_filter == NULL) {
 | |
|         s_touch_pad_filter = (touch_pad_filter_t *) calloc(1, sizeof(touch_pad_filter_t));
 | |
|         if (s_touch_pad_filter == NULL) {
 | |
|             goto err_no_mem;
 | |
|         }
 | |
|     }
 | |
|     if (s_touch_pad_filter->timer == NULL) {
 | |
|         s_touch_pad_filter->timer = xTimerCreate("filter_tmr", filter_period_ms / portTICK_PERIOD_MS, pdFALSE,
 | |
|         NULL, touch_pad_filter_cb);
 | |
|         if (s_touch_pad_filter->timer == NULL) {
 | |
|             free(s_touch_pad_filter);
 | |
|             s_touch_pad_filter = NULL;
 | |
|             goto err_no_mem;
 | |
|         }
 | |
|         s_touch_pad_filter->period = filter_period_ms;
 | |
|     }
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     touch_pad_filter_cb(NULL);
 | |
|     return ESP_OK;
 | |
| 
 | |
| err_no_mem:
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     return ESP_ERR_NO_MEM;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_filter_stop(void)
 | |
| {
 | |
|     RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE);
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE);
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     if (s_touch_pad_filter != NULL) {
 | |
|         xTimerStop(s_touch_pad_filter->timer, portMAX_DELAY);
 | |
|     } else {
 | |
|         ESP_LOGE(RTC_MODULE_TAG, "Touch pad filter deleted");
 | |
|         ret = ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_filter_delete(void)
 | |
| {
 | |
|     RTC_MODULE_CHECK(s_touch_pad_filter != NULL, "Touch pad filter not initialized", ESP_ERR_INVALID_STATE);
 | |
|     RTC_MODULE_CHECK(rtc_touch_mux != NULL, "Touch pad not initialized", ESP_ERR_INVALID_STATE);
 | |
|     xSemaphoreTake(rtc_touch_mux, portMAX_DELAY);
 | |
|     if (s_touch_pad_filter != NULL) {
 | |
|         if (s_touch_pad_filter->timer != NULL) {
 | |
|             xTimerStop(s_touch_pad_filter->timer, portMAX_DELAY);
 | |
|             xTimerDelete(s_touch_pad_filter->timer, portMAX_DELAY);
 | |
|             s_touch_pad_filter->timer = NULL;
 | |
|         }
 | |
|         free(s_touch_pad_filter);
 | |
|         s_touch_pad_filter = NULL;
 | |
|     }
 | |
|     xSemaphoreGive(rtc_touch_mux);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t touch_pad_get_wakeup_status(touch_pad_t *pad_num)
 | |
| {
 | |
|     uint32_t touch_mask = SENS.sar_touch_ctrl2.touch_meas_en;
 | |
|     if(touch_mask == 0) {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
|     *pad_num = touch_pad_num_wrap((touch_pad_t)(__builtin_ffs(touch_mask) - 1));
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC Common
 | |
| ---------------------------------------------------------------*/
 | |
| #if CONFIG_IDF_TARGET_ESP32S2BETA
 | |
| #define SENS_FORCE_XPD_AMP_FSM 0 // Use FSM to control power down
 | |
| #define SENS_FORCE_XPD_AMP_PD  2 // Force power down
 | |
| #define SENS_FORCE_XPD_AMP_PU  3 // Force power up
 | |
| 
 | |
| #define SENS_SAR1_ATTEN_VAL_MASK   0x3
 | |
| #define SENS_SAR2_ATTEN_VAL_MASK   0x3
 | |
| 
 | |
| #define SENS_FORCE_XPD_SAR_SW_M (BIT(1))
 | |
| #define SENS_FORCE_XPD_SAR_FSM 0 // Use FSM to control power down
 | |
| #define SENS_FORCE_XPD_SAR_PD  2 // Force power down
 | |
| #define SENS_FORCE_XPD_SAR_PU  3 // Force power up
 | |
| #endif
 | |
| 
 | |
| static esp_err_t adc_set_fsm_time(int rst_wait, int start_wait, int standby_wait, int sample_cycle)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     // Internal FSM reset wait time
 | |
|     if (rst_wait >= 0) {
 | |
|         SYSCON.saradc_fsm.rstb_wait = rst_wait;
 | |
|     }
 | |
|     // Internal FSM start wait time
 | |
|     if (start_wait >= 0) {
 | |
|         SYSCON.saradc_fsm.start_wait = start_wait;
 | |
|     }
 | |
|     // Internal FSM standby wait time
 | |
|     if (standby_wait >= 0) {
 | |
|         SYSCON.saradc_fsm.standby_wait = standby_wait;
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     // Internal FSM reset wait time
 | |
|     if (rst_wait >= 0) {
 | |
|         SYSCON.saradc_fsm_wait.rstb_wait = rst_wait;
 | |
|     }
 | |
|     // Internal FSM start wait time
 | |
|     if (start_wait >= 0) {
 | |
|         SYSCON.saradc_fsm_wait.xpd_wait = start_wait;
 | |
|     }
 | |
|     // Internal FSM standby wait time
 | |
|     if (standby_wait >= 0) {
 | |
|         SYSCON.saradc_fsm_wait.standby_wait = standby_wait;
 | |
|     }
 | |
| #endif
 | |
|     // Internal FSM standby sample cycle
 | |
|     if (sample_cycle >= 0) {
 | |
|         SYSCON.saradc_fsm.sample_cycle = sample_cycle;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_set_data_format(adc_i2s_encode_t mode)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     //data format:
 | |
|     //0: ADC_ENCODE_12BIT  [15:12]-channel [11:0]-12 bits ADC data
 | |
|     //1: ADC_ENCODE_11BIT  [15]-1 [14:11]-channel [10:0]-11 bits ADC data, the resolution should not be larger than 11 bits in this case.
 | |
|     SYSCON.saradc_ctrl.data_sar_sel = mode;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_set_measure_limit(uint8_t meas_num, bool lim_en)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     // Set max measure number
 | |
|     SYSCON.saradc_ctrl2.max_meas_num = meas_num;
 | |
|     // Enable max measure number limit
 | |
|     SYSCON.saradc_ctrl2.meas_num_limit = lim_en;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_set_work_mode(adc_unit_t adc_unit)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         // saradc mode sel : 0--single saradc;  1--double saradc;  2--alternative saradc
 | |
|         SYSCON.saradc_ctrl.work_mode = 0;
 | |
|         //ENABLE ADC  0: ADC1  1: ADC2, only work for single SAR mode
 | |
|         SYSCON.saradc_ctrl.sar_sel = 0;
 | |
|     } else if (adc_unit == ADC_UNIT_2) {
 | |
|         // saradc mode sel : 0--single saradc;  1--double saradc;  2--alternative saradc
 | |
|         SYSCON.saradc_ctrl.work_mode = 0;
 | |
|         //ENABLE ADC1  0: SAR1  1: SAR2  only work for single SAR mode
 | |
|         SYSCON.saradc_ctrl.sar_sel = 1;
 | |
|     } else if (adc_unit == ADC_UNIT_BOTH) {
 | |
|         // saradc mode sel : 0--single saradc;  1--double saradc;  2--alternative saradc
 | |
|         SYSCON.saradc_ctrl.work_mode = 1;
 | |
|     } else if (adc_unit == ADC_UNIT_ALTER) {
 | |
|         // saradc mode sel : 0--single saradc;  1--double saradc;  2--alternative saradc
 | |
|         SYSCON.saradc_ctrl.work_mode = 2;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_set_atten(adc_unit_t adc_unit, adc_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ADC_CHECK_UNIT(adc_unit);
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         RTC_MODULE_CHECK((adc1_channel_t)channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
 | |
|     }
 | |
|     RTC_MODULE_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         //SAR1_atten
 | |
|         SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, SENS_SAR1_ATTEN_VAL_MASK, atten, (channel * 2));
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         //SAR2_atten
 | |
|         SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, SENS_SAR2_ATTEN_VAL_MASK, atten, (channel * 2));
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| void adc_power_always_on(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     SENS.sar_meas_wait2.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| }
 | |
| 
 | |
| void adc_power_on(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //The power FSM controlled mode saves more power, while the ADC noise may get increased.
 | |
| #ifndef CONFIG_ADC_FORCE_XPD_FSM
 | |
|     //Set the power always on to increase precision.
 | |
|     SENS.sar_meas_wait2.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
| #else
 | |
|     //Use the FSM to turn off the power while not used to save power.
 | |
|     if (SENS.sar_meas_wait2.force_xpd_sar & SENS_FORCE_XPD_SAR_SW_M) {
 | |
|         SENS.sar_meas_wait2.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
|     } else {
 | |
|         SENS.sar_meas_wait2.force_xpd_sar = SENS_FORCE_XPD_SAR_FSM;
 | |
|     }
 | |
| #endif
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     //The power FSM controlled mode saves more power, while the ADC noise may get increased.
 | |
| #ifndef CONFIG_ADC_FORCE_XPD_FSM
 | |
|     //Set the power always on to increase precision.
 | |
|     SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
| #else    
 | |
|     //Use the FSM to turn off the power while not used to save power.
 | |
|     if (SENS.sar_power_xpd_sar.force_xpd_sar & SENS_FORCE_XPD_SAR_SW_M) {
 | |
|         SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
|     } else {
 | |
|         SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_FSM;
 | |
|     }
 | |
| #endif
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| }
 | |
| 
 | |
| void adc_power_off(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //Bit1  0:Fsm  1: SW mode
 | |
|     //Bit0  0:SW mode power down  1: SW mode power on
 | |
|     SENS.sar_meas_wait2.force_xpd_sar = SENS_FORCE_XPD_SAR_PD;
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PD;
 | |
| #endif
 | |
| 
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_clk_div(uint8_t clk_div)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     // ADC clock devided from APB clk, 80 / 2 = 40Mhz,
 | |
|     SYSCON.saradc_ctrl.sar_clk_div = clk_div;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src)
 | |
| {
 | |
|     RTC_MODULE_CHECK(src < ADC_I2S_DATA_SRC_MAX, "ADC i2s data source error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     // 1: I2S input data is from SAR ADC (for DMA)  0: I2S input data is from GPIO matrix
 | |
|     SYSCON.saradc_ctrl.data_to_i2s = src;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
 | |
| {
 | |
|     ADC_CHECK_UNIT(adc_unit);
 | |
|     gpio_num_t gpio_num = 0;
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         RTC_MODULE_CHECK((adc1_channel_t) channel < ADC1_CHANNEL_MAX, "ADC1 channel error", ESP_ERR_INVALID_ARG);
 | |
|         ADC1_CHECK_FUNCTION_RET(adc1_pad_get_io_num((adc1_channel_t) channel, &gpio_num));
 | |
|         ADC1_CHECK_FUNCTION_RET(rtc_gpio_init(gpio_num));
 | |
|         ADC1_CHECK_FUNCTION_RET(rtc_gpio_output_disable(gpio_num));
 | |
|         ADC1_CHECK_FUNCTION_RET(rtc_gpio_input_disable(gpio_num));
 | |
|         ADC1_CHECK_FUNCTION_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         // Enable ADC data invert
 | |
|         SENS.sar_read_ctrl.sar1_data_inv = inv_en;
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         // Enable ADC data invert
 | |
|         SENS.sar_read_ctrl2.sar2_data_inv = inv_en;
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         // Enable ADC data invert
 | |
|         SENS.sar_reader1_ctrl.sar1_data_inv = inv_en;
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         // Enable ADC data invert
 | |
|         SENS.sar_reader2_ctrl.sar2_data_inv = inv_en;
 | |
|     }
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
 | |
| {
 | |
|     ADC_CHECK_UNIT(adc_unit);
 | |
|     RTC_MODULE_CHECK(bits < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         SENS.sar_start_force.sar1_bit_width = bits;
 | |
|         SENS.sar_read_ctrl.sar1_sample_bit = bits;
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         SENS.sar_start_force.sar2_bit_width = bits;
 | |
|         SENS.sar_read_ctrl2.sar2_sample_bit = bits;
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         SENS.sar_meas1_ctrl1.sar1_bit_width = bits;
 | |
|         SENS.sar_reader1_ctrl.sar1_sample_bit = bits;
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         SENS.sar_meas2_ctrl1.sar2_bit_width = bits;
 | |
|         SENS.sar_reader2_ctrl.sar2_sample_bit = bits;
 | |
|     }
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| // this function should be called in the critical section
 | |
| static void adc_set_controller(adc_unit_t unit, adc_controller_t ctrl )
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if ( unit == ADC_UNIT_1 ) {
 | |
|         switch( ctrl ) {
 | |
|             case ADC_CTRL_RTC:
 | |
|                 SENS.sar_read_ctrl.sar1_dig_force = false;      //RTC controller controls the ADC, not digital controller
 | |
|                 SENS.sar_meas_start1.meas1_start_force = true;  //RTC controller controls the ADC,not ulp coprocessor
 | |
|                 SENS.sar_meas_start1.sar1_en_pad_force = true;  //RTC controller controls the data port, not ulp coprocessor
 | |
|                 SENS.sar_touch_ctrl1.xpd_hall_force = true;     // RTC controller controls the hall sensor power,not ulp coprocessor
 | |
|                 SENS.sar_touch_ctrl1.hall_phase_force = true;   // RTC controller controls the hall sensor phase,not ulp coprocessor
 | |
|                 break;
 | |
|             case ADC_CTRL_ULP:
 | |
|                 SENS.sar_read_ctrl.sar1_dig_force = false;
 | |
|                 SENS.sar_meas_start1.meas1_start_force = false;
 | |
|                 SENS.sar_meas_start1.sar1_en_pad_force = false;
 | |
|                 SENS.sar_touch_ctrl1.xpd_hall_force = false;
 | |
|                 SENS.sar_touch_ctrl1.hall_phase_force = false;
 | |
|                 break;
 | |
|             case ADC_CTRL_DIG:
 | |
|                 SENS.sar_read_ctrl.sar1_dig_force = true;
 | |
|                 SENS.sar_meas_start1.meas1_start_force = true;
 | |
|                 SENS.sar_meas_start1.sar1_en_pad_force = true;
 | |
|                 SENS.sar_touch_ctrl1.xpd_hall_force = true;
 | |
|                 SENS.sar_touch_ctrl1.hall_phase_force = true;
 | |
|                 break;
 | |
|             default:
 | |
|                 ESP_LOGE(TAG, "adc1 selects invalid controller");
 | |
|                 break;
 | |
|         }
 | |
|     } else if ( unit == ADC_UNIT_2) {
 | |
|         switch( ctrl ) {
 | |
|             case ADC_CTRL_RTC:
 | |
|                 SENS.sar_meas_start2.meas2_start_force = true;  //RTC controller controls the ADC,not ulp coprocessor
 | |
|                 SENS.sar_meas_start2.sar2_en_pad_force = true;  //RTC controller controls the data port, not ulp coprocessor
 | |
|                 SENS.sar_read_ctrl2.sar2_dig_force = false;     //RTC controller controls the ADC, not digital controller
 | |
|                 SENS.sar_read_ctrl2.sar2_pwdet_force = false;   //RTC controller controls the ADC, not PWDET
 | |
|                 SYSCON.saradc_ctrl.sar2_mux = true;             //RTC controller controls the ADC, not PWDET
 | |
|                 break;
 | |
|             case ADC_CTRL_ULP:
 | |
|                 SENS.sar_meas_start2.meas2_start_force = false;
 | |
|                 SENS.sar_meas_start2.sar2_en_pad_force = false;
 | |
|                 SENS.sar_read_ctrl2.sar2_dig_force = false;
 | |
|                 SENS.sar_read_ctrl2.sar2_pwdet_force = false;
 | |
|                 SYSCON.saradc_ctrl.sar2_mux = true;
 | |
|                 break;
 | |
|             case ADC_CTRL_DIG:
 | |
|                 SENS.sar_meas_start2.meas2_start_force = true;
 | |
|                 SENS.sar_meas_start2.sar2_en_pad_force = true;
 | |
|                 SENS.sar_read_ctrl2.sar2_dig_force = true;
 | |
|                 SENS.sar_read_ctrl2.sar2_pwdet_force = false;
 | |
|                 SYSCON.saradc_ctrl.sar2_mux = true;
 | |
|                 break;
 | |
|             case ADC2_CTRL_PWDET:
 | |
|                 //currently only used by Wi-Fi
 | |
|                 SENS.sar_meas_start2.meas2_start_force = true;
 | |
|                 SENS.sar_meas_start2.sar2_en_pad_force = true;
 | |
|                 SENS.sar_read_ctrl2.sar2_dig_force = false;
 | |
|                 SENS.sar_read_ctrl2.sar2_pwdet_force = true;
 | |
|                 SYSCON.saradc_ctrl.sar2_mux = false;
 | |
|                 break;
 | |
|             default:
 | |
|                 ESP_LOGE(TAG, "adc2 selects invalid controller");
 | |
|                 break;            
 | |
|         }
 | |
|     } else {
 | |
|       ESP_LOGE(TAG, "invalid adc unit");
 | |
|       assert(0);
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     if ( unit == ADC_UNIT_1 ) {
 | |
|         switch( ctrl ) {
 | |
|             case ADC_CTRL_RTC:
 | |
|                 SENS.sar_meas1_mux.sar1_dig_force = false;      //RTC controller controls the ADC, not digital controller
 | |
|                 SENS.sar_meas1_ctrl2.meas1_start_force = true;  //RTC controller controls the ADC,not ulp coprocessor
 | |
|                 SENS.sar_meas1_ctrl2.sar1_en_pad_force = true;  //RTC controller controls the data port, not ulp coprocessor
 | |
|                 SENS.sar_hall_ctrl.xpd_hall_force = true;     // RTC controller controls the hall sensor power,not ulp coprocessor
 | |
|                 SENS.sar_hall_ctrl.hall_phase_force = true;   // RTC controller controls the hall sensor phase,not ulp coprocessor
 | |
|                 break;
 | |
|             case ADC_CTRL_ULP:
 | |
|                 SENS.sar_meas1_mux.sar1_dig_force = false;
 | |
|                 SENS.sar_meas1_ctrl2.meas1_start_force = false;
 | |
|                 SENS.sar_meas1_ctrl2.sar1_en_pad_force = false;
 | |
|                 SENS.sar_hall_ctrl.xpd_hall_force = false;
 | |
|                 SENS.sar_hall_ctrl.hall_phase_force = false;
 | |
|                 break;
 | |
|             case ADC_CTRL_DIG:
 | |
|                 SENS.sar_meas1_mux.sar1_dig_force = true;
 | |
|                 SENS.sar_meas1_ctrl2.meas1_start_force = true;
 | |
|                 SENS.sar_meas1_ctrl2.sar1_en_pad_force = true;
 | |
|                 SENS.sar_hall_ctrl.xpd_hall_force = true;
 | |
|                 SENS.sar_hall_ctrl.hall_phase_force = true;
 | |
|                 break;
 | |
|             default:
 | |
|                 ESP_LOGE(TAG, "adc1 selects invalid controller");
 | |
|                 break;            
 | |
|         }
 | |
|     } else if ( unit == ADC_UNIT_2) {
 | |
|         switch( ctrl ) {
 | |
|             case ADC_CTRL_RTC:
 | |
|                 SENS.sar_meas2_ctrl2.meas2_start_force = true;  //RTC controller controls the ADC,not ulp coprocessor 
 | |
|                 SENS.sar_meas2_ctrl2.sar2_en_pad_force = true;  //RTC controller controls the data port, not ulp coprocessor
 | |
|                 break;
 | |
|             case ADC_CTRL_ULP:
 | |
|                 SENS.sar_meas2_ctrl2.meas2_start_force = false;
 | |
|                 SENS.sar_meas2_ctrl2.sar2_en_pad_force = false;
 | |
|                 break;
 | |
|             case ADC_CTRL_DIG:
 | |
|                 SENS.sar_meas2_ctrl2.meas2_start_force = true;
 | |
|                 SENS.sar_meas2_ctrl2.sar2_en_pad_force = true;
 | |
|                 break;
 | |
|             case ADC2_CTRL_PWDET:
 | |
|                 //currently only used by Wi-Fi
 | |
|                 SENS.sar_meas2_ctrl2.meas2_start_force = true;
 | |
|                 SENS.sar_meas2_ctrl2.sar2_en_pad_force = true;
 | |
|                 break;
 | |
|             default:
 | |
|                 ESP_LOGE(TAG, "adc2 selects invalid controller");
 | |
|                 break;            
 | |
|         }
 | |
|     } else {
 | |
|       ESP_LOGE(TAG, "invalid adc unit");
 | |
|       assert(0);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // this function should be called in the critical section
 | |
| static int adc_convert( adc_unit_t unit, int channel)
 | |
| {
 | |
|     uint16_t adc_value = 0;
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if ( unit == ADC_UNIT_1 ) {
 | |
|         SENS.sar_meas_start1.sar1_en_pad = (1 << channel); //only one channel is selected.
 | |
|         while (SENS.sar_slave_addr1.meas_status != 0);
 | |
|         SENS.sar_meas_start1.meas1_start_sar = 0;
 | |
|         SENS.sar_meas_start1.meas1_start_sar = 1;
 | |
|         while (SENS.sar_meas_start1.meas1_done_sar == 0);
 | |
|         adc_value = SENS.sar_meas_start1.meas1_data_sar;
 | |
|     } else if ( unit == ADC_UNIT_2 ) {
 | |
|         SENS.sar_meas_start2.sar2_en_pad = (1 << channel); //only one channel is selected.
 | |
| 
 | |
|         SENS.sar_meas_start2.meas2_start_sar = 0; //start force 0
 | |
|         SENS.sar_meas_start2.meas2_start_sar = 1; //start force 1
 | |
|         while (SENS.sar_meas_start2.meas2_done_sar == 0) {}; //read done
 | |
|         adc_value = SENS.sar_meas_start2.meas2_data_sar;
 | |
|     } else {
 | |
|         ESP_LOGE(TAG, "invalid adc unit");
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|      if ( unit == ADC_UNIT_1 ) {
 | |
|         SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
 | |
|         while (SENS.sar_slave_addr1.meas_status != 0);
 | |
|         SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
 | |
|         SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
 | |
|         while (SENS.sar_meas1_ctrl2.meas1_done_sar == 0);
 | |
|         adc_value = SENS.sar_meas1_ctrl2.meas1_data_sar;
 | |
|     } else if ( unit == ADC_UNIT_2 ) {
 | |
|         SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.    
 | |
|         
 | |
|         SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
 | |
|         SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
 | |
|         while (SENS.sar_meas2_ctrl2.meas2_done_sar == 0) {}; //read done
 | |
|         adc_value = SENS.sar_meas2_ctrl2.meas2_data_sar;    
 | |
|     } else {
 | |
|         ESP_LOGE(TAG, "invalid adc unit");
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| #endif
 | |
|     return adc_value;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------------------
 | |
|  *                      ADC I2S
 | |
|  *------------------------------------------------------------------------------------*/
 | |
| static esp_err_t adc_set_i2s_data_len(adc_unit_t adc_unit, int patt_len)
 | |
| {
 | |
|     ADC_CHECK_UNIT(adc_unit);
 | |
|     RTC_MODULE_CHECK((patt_len < ADC_PATT_LEN_MAX) && (patt_len > 0), "ADC pattern length error", ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if(adc_unit & ADC_UNIT_1) {
 | |
|         SYSCON.saradc_ctrl.sar1_patt_len = patt_len - 1;
 | |
|     }
 | |
|     if(adc_unit & ADC_UNIT_2) {
 | |
|         SYSCON.saradc_ctrl.sar2_patt_len = patt_len - 1;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_set_i2s_data_pattern(adc_unit_t adc_unit, int seq_num, adc_channel_t channel, adc_bits_width_t bits, adc_atten_t atten)
 | |
| {
 | |
|     ADC_CHECK_UNIT(adc_unit);
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         RTC_MODULE_CHECK((adc1_channel_t) channel < ADC1_CHANNEL_MAX, "ADC1 channel error", ESP_ERR_INVALID_ARG);
 | |
|     }
 | |
|     RTC_MODULE_CHECK(bits < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     //Configure pattern table, each 8 bit defines one channel
 | |
|     //[7:4]-channel [3:2]-bit width [1:0]- attenuation
 | |
|     //BIT WIDTH: 3: 12BIT  2: 11BIT  1: 10BIT  0: 9BIT
 | |
|     //ATTEN: 3: ATTEN = 11dB 2: 6dB 1: 2.5dB 0: 0dB
 | |
|     uint8_t val = (channel << 4) | (bits << 2) | (atten << 0);
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         SYSCON.saradc_sar1_patt_tab[seq_num / 4] &= (~(0xff << ((3 - (seq_num % 4)) * 8)));
 | |
|         SYSCON.saradc_sar1_patt_tab[seq_num / 4] |= (val << ((3 - (seq_num % 4)) * 8));
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         SYSCON.saradc_sar2_patt_tab[seq_num / 4] &= (~(0xff << ((3 - (seq_num % 4)) * 8)));
 | |
|         SYSCON.saradc_sar2_patt_tab[seq_num / 4] |= (val << ((3 - (seq_num % 4)) * 8));
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)
 | |
| {
 | |
|     ADC_CHECK_UNIT(adc_unit);
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         RTC_MODULE_CHECK((adc1_channel_t) channel < ADC1_CHANNEL_MAX, "ADC1 channel error", ESP_ERR_INVALID_ARG);
 | |
|     }
 | |
| 
 | |
|     uint8_t table_len = 1;
 | |
|     //POWER ON SAR
 | |
|     adc_power_always_on();
 | |
|     adc_gpio_init(adc_unit, channel);
 | |
|     adc_set_i2s_data_len(adc_unit, table_len);
 | |
|     adc_set_i2s_data_pattern(adc_unit, 0, channel, ADC_WIDTH_BIT_12, ADC_ATTEN_DB_11);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         adc_set_controller( ADC_UNIT_1, ADC_CTRL_DIG );
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         adc_set_controller( ADC_UNIT_2, ADC_CTRL_DIG );
 | |
|     }
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     adc_set_i2s_data_source(ADC_I2S_DATA_SRC_ADC);
 | |
|     adc_set_clk_div(SAR_ADC_CLK_DIV_DEFUALT);
 | |
|     // Set internal FSM wait time.
 | |
|     adc_set_fsm_time(ADC_FSM_RSTB_WAIT_DEFAULT, ADC_FSM_START_WAIT_DEFAULT, ADC_FSM_STANDBY_WAIT_DEFAULT,
 | |
|             ADC_FSM_TIME_KEEP);
 | |
|     adc_set_work_mode(adc_unit);
 | |
|     adc_set_data_format(ADC_ENCODE_12BIT);
 | |
|     adc_set_measure_limit(ADC_MAX_MEAS_NUM_DEFAULT, ADC_MEAS_NUM_LIM_DEFAULT);
 | |
|     //Invert The Level, Invert SAR ADC1 data
 | |
|     adc_set_data_inv(adc_unit, true);
 | |
|     return ESP_OK;
 | |
|  }
 | |
| 
 | |
| /*-------------------------------------------------------------------------------------
 | |
|  *                      ADC1
 | |
|  *------------------------------------------------------------------------------------*/
 | |
| esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC1 Channel Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     switch (channel) {
 | |
|     case ADC1_CHANNEL_0:
 | |
|         *gpio_num = ADC1_CHANNEL_0_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC1_CHANNEL_1:
 | |
|         *gpio_num = ADC1_CHANNEL_1_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC1_CHANNEL_2:
 | |
|         *gpio_num = ADC1_CHANNEL_2_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC1_CHANNEL_3:
 | |
|         *gpio_num = ADC1_CHANNEL_3_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC1_CHANNEL_4:
 | |
|         *gpio_num = ADC1_CHANNEL_4_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC1_CHANNEL_5:
 | |
|         *gpio_num = ADC1_CHANNEL_5_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC1_CHANNEL_6:
 | |
|         *gpio_num = ADC1_CHANNEL_6_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC1_CHANNEL_7:
 | |
|         *gpio_num = ADC1_CHANNEL_7_GPIO_NUM;
 | |
|         break;
 | |
|     default:
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
 | |
|     adc_gpio_init(ADC_UNIT_1, channel);
 | |
|     adc_set_atten(ADC_UNIT_1, channel, atten);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_width(adc_bits_width_t width_bit)
 | |
| {
 | |
|     RTC_MODULE_CHECK(width_bit < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG);
 | |
|     adc_set_data_width(ADC_UNIT_1, width_bit);
 | |
|     adc_set_data_inv(ADC_UNIT_1, true);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline void adc1_fsm_disable(void)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //channel is set in the  convert function
 | |
|     SENS.sar_meas_wait2.force_xpd_amp = SENS_FORCE_XPD_AMP_PD;
 | |
|     //disable FSM, it's only used by the LNA.
 | |
|     SENS.sar_meas_ctrl.amp_rst_fb_fsm = 0;
 | |
|     SENS.sar_meas_ctrl.amp_short_ref_fsm = 0;
 | |
|     SENS.sar_meas_ctrl.amp_short_ref_gnd_fsm = 0;
 | |
|     SENS.sar_meas_wait1.sar_amp_wait1 = 1;
 | |
|     SENS.sar_meas_wait1.sar_amp_wait2 = 1;
 | |
|     SENS.sar_meas_wait2.sar_amp_wait3 = 1;    
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     //channel is set in the  convert function
 | |
|     SENS.sar_meas1_ctrl1.force_xpd_amp = SENS_FORCE_XPD_AMP_PD;
 | |
|     //disable FSM, it's only used by the LNA.
 | |
|     SENS.sar_amp_ctrl3.amp_rst_fb_fsm = 0;
 | |
|     SENS.sar_amp_ctrl3.amp_short_ref_fsm = 0;
 | |
|     SENS.sar_amp_ctrl3.amp_short_ref_gnd_fsm = 0;
 | |
|     SENS.sar_amp_ctrl1.sar_amp_wait1 = 1;
 | |
|     SENS.sar_amp_ctrl1.sar_amp_wait2 = 1;
 | |
|     SENS.sar_amp_ctrl2.sar_amp_wait3 = 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_i2s_mode_acquire(void)
 | |
| {
 | |
|     //lazy initialization
 | |
|     //for i2s, block until acquire the lock
 | |
|     _lock_acquire( &adc1_i2s_lock );
 | |
|     ESP_LOGD( RTC_MODULE_TAG, "i2s mode takes adc1 lock." );
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     SENS.sar_meas_wait2.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
|     //switch SARADC into DIG channel
 | |
|     SENS.sar_read_ctrl.sar1_dig_force = 1;
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
 | |
|     //switch SARADC into DIG channel
 | |
|     SENS.sar_meas1_mux.sar1_dig_force = 1;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_adc_mode_acquire(void)
 | |
| {
 | |
|     //lazy initialization
 | |
|     //for adc1, block until acquire the lock
 | |
|     _lock_acquire( &adc1_i2s_lock );
 | |
|     ESP_LOGD( RTC_MODULE_TAG, "adc mode takes adc1 lock." );
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     // for now the WiFi would use ADC2 and set xpd_sar force on.
 | |
|     // so we can not reset xpd_sar to fsm mode directly.
 | |
|     // We should handle this after the synchronization mechanism is established.
 | |
| 
 | |
|     //switch SARADC into RTC channel
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     SENS.sar_read_ctrl.sar1_dig_force = 0;
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     SENS.sar_meas1_mux.sar1_dig_force = 0;
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_lock_release(void)
 | |
| {
 | |
|     RTC_MODULE_CHECK((uint32_t*)adc1_i2s_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE );
 | |
|     // for now the WiFi would use ADC2 and set xpd_sar force on.
 | |
|     // so we can not reset xpd_sar to fsm mode directly.
 | |
|     // We should handle this after the synchronization mechanism is established.
 | |
| 
 | |
|     _lock_release( &adc1_i2s_lock );
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| int adc1_get_raw(adc1_channel_t channel)
 | |
| {
 | |
|     uint16_t adc_value;
 | |
|     RTC_MODULE_CHECK(channel < ADC1_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
 | |
|     adc1_adc_mode_acquire();
 | |
|     adc_power_on();
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     //disable other peripherals
 | |
|     adc1_hall_enable(false);
 | |
|     adc1_fsm_disable(); //currently the LNA is not open, close it by default
 | |
|     //set controller
 | |
|     adc_set_controller( ADC_UNIT_1, ADC_CTRL_RTC );
 | |
|     //start conversion
 | |
|     adc_value = adc_convert( ADC_UNIT_1, channel );
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     adc1_lock_release();
 | |
|     return adc_value;
 | |
| }
 | |
| 
 | |
| void adc1_ulp_enable(void)
 | |
| {
 | |
|     adc_power_on();
 | |
| 
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     adc_set_controller( ADC_UNIT_1, ADC_CTRL_ULP );
 | |
|     // since most users do not need LNA and HALL with uLP, we disable them here
 | |
|     // open them in the uLP if needed.
 | |
|     adc1_fsm_disable();
 | |
|     adc1_hall_enable(false);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC2
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK(channel < ADC2_CHANNEL_MAX, "ADC2 Channel Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     switch (channel) {
 | |
|     case ADC2_CHANNEL_0:
 | |
|         *gpio_num = ADC2_CHANNEL_0_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_1:
 | |
|         *gpio_num = ADC2_CHANNEL_1_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_2:
 | |
|         *gpio_num = ADC2_CHANNEL_2_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_3:
 | |
|         *gpio_num = ADC2_CHANNEL_3_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_4:
 | |
|         *gpio_num = ADC2_CHANNEL_4_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_5:
 | |
|         *gpio_num = ADC2_CHANNEL_5_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_6:
 | |
|         *gpio_num = ADC2_CHANNEL_6_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_7:
 | |
|         *gpio_num = ADC2_CHANNEL_7_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_8:
 | |
|         *gpio_num = ADC2_CHANNEL_8_GPIO_NUM;
 | |
|         break;
 | |
|     case ADC2_CHANNEL_9:
 | |
|         *gpio_num = ADC2_CHANNEL_9_GPIO_NUM;
 | |
|         break;
 | |
|     default:
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_wifi_acquire(void)
 | |
| {
 | |
|     //lazy initialization
 | |
|     //for wifi, block until acquire the lock
 | |
|     _lock_acquire( &adc2_wifi_lock );
 | |
|     ESP_LOGD( RTC_MODULE_TAG, "Wi-Fi takes adc2 lock." );
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_wifi_release(void)
 | |
| {
 | |
|     RTC_MODULE_CHECK((uint32_t*)adc2_wifi_lock != NULL, "wifi release called before acquire", ESP_ERR_INVALID_STATE );
 | |
| 
 | |
|     _lock_release( &adc2_wifi_lock );
 | |
|     ESP_LOGD( RTC_MODULE_TAG, "Wi-Fi returns adc2 lock." );
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t adc2_pad_init(adc2_channel_t channel)
 | |
| {
 | |
|     gpio_num_t gpio_num = 0;
 | |
|     ADC2_CHECK_FUNCTION_RET(adc2_pad_get_io_num(channel, &gpio_num));
 | |
|     ADC2_CHECK_FUNCTION_RET(rtc_gpio_init(gpio_num));
 | |
|     ADC2_CHECK_FUNCTION_RET(rtc_gpio_output_disable(gpio_num));
 | |
|     ADC2_CHECK_FUNCTION_RET(rtc_gpio_input_disable(gpio_num));
 | |
|     ADC2_CHECK_FUNCTION_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     RTC_MODULE_CHECK(channel < ADC2_CHANNEL_MAX, "ADC2 Channel Err", ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     adc2_pad_init(channel);
 | |
|     portENTER_CRITICAL( &adc2_spinlock );
 | |
| 
 | |
|     //lazy initialization
 | |
|     //avoid collision with other tasks
 | |
|     if ( _lock_try_acquire( &adc2_wifi_lock ) == -1 ) {
 | |
|         //try the lock, return if failed (wifi using).
 | |
|         portEXIT_CRITICAL( &adc2_spinlock );
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     SENS.sar_atten2 = ( SENS.sar_atten2 & ~(3<<(channel*2)) ) | ((atten&3) << (channel*2));
 | |
|     _lock_release( &adc2_wifi_lock );
 | |
| 
 | |
|     portEXIT_CRITICAL( &adc2_spinlock );
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline void adc2_config_width(adc_bits_width_t width_bit)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     //sar_start_force shared with ADC1
 | |
|     SENS.sar_start_force.sar2_bit_width = width_bit;
 | |
|     //cct set to the same value with PHY
 | |
|     SENS.sar_start_force.sar2_pwdet_cct = 4;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     //Invert the adc value,the Output value is invert
 | |
|     SENS.sar_read_ctrl2.sar2_data_inv = 1;
 | |
|     //Set The adc sample width,invert adc value,must digital sar2_bit_width[1:0]=3
 | |
|     SENS.sar_read_ctrl2.sar2_sample_bit = width_bit;
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     //sar_start_force shared with ADC1
 | |
|     SENS.sar_meas2_ctrl1.sar2_bit_width = width_bit;
 | |
|     //cct set to the same value with PHY
 | |
|     SENS.sar_meas2_mux.sar2_pwdet_cct = 4;
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     //Invert the adc value,the Output value is invert
 | |
|     SENS.sar_reader2_ctrl.sar2_data_inv = 1;
 | |
|     //Set The adc sample width,invert adc value,must digital sar2_bit_width[1:0]=3
 | |
|     SENS.sar_reader2_ctrl.sar2_sample_bit = width_bit;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void adc2_dac_disable( adc2_channel_t channel)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1
 | |
|         dac_output_set_enable( DAC_CHANNEL_1, false );
 | |
|     } else if ( channel == ADC2_CHANNEL_9 ) {
 | |
|         dac_output_set_enable( DAC_CHANNEL_2, false );
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2BETA
 | |
|     if ( channel == ADC2_CHANNEL_6 ) { // the same as DAC channel 1
 | |
|         dac_output_set_enable( DAC_CHANNEL_1, false );
 | |
|     } else if ( channel == ADC2_CHANNEL_7 ) {
 | |
|         dac_output_set_enable( DAC_CHANNEL_2, false );
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //registers in critical section with adc1:
 | |
| //SENS_SAR_START_FORCE_REG,
 | |
| esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int* raw_out)
 | |
| {
 | |
|     uint16_t adc_value = 0;
 | |
|     RTC_MODULE_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     //in critical section with whole rtc module
 | |
|     adc_power_on();
 | |
| 
 | |
|     //avoid collision with other tasks
 | |
|     portENTER_CRITICAL(&adc2_spinlock);
 | |
|     //lazy initialization
 | |
|     //try the lock, return if failed (wifi using).
 | |
|     if ( _lock_try_acquire( &adc2_wifi_lock ) == -1 ) {
 | |
|         portEXIT_CRITICAL( &adc2_spinlock );
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| 
 | |
|     //disable other peripherals
 | |
| #ifdef CONFIG_ADC_DISABLE_DAC
 | |
|     adc2_dac_disable( channel );
 | |
| #endif
 | |
|     // set controller
 | |
|     // in critical section with whole rtc module
 | |
|     // because the PWDET use the same registers, place it here.
 | |
|     adc2_config_width( width_bit );
 | |
|     adc_set_controller( ADC_UNIT_2, ADC_CTRL_RTC );
 | |
|     //start converting
 | |
|     adc_value = adc_convert( ADC_UNIT_2, channel );
 | |
|     _lock_release( &adc2_wifi_lock );
 | |
|     portEXIT_CRITICAL(&adc2_spinlock);
 | |
| 
 | |
|     *raw_out = (int)adc_value;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int channel;
 | |
|     if(gpio == GPIO_NUM_25){
 | |
|         channel = 8;    //Channel 8 bit
 | |
|     }else if (gpio == GPIO_NUM_26){
 | |
|         channel = 9;    //Channel 9 bit
 | |
|     }else if (gpio == GPIO_NUM_27){
 | |
|         channel = 7;    //Channel 7 bit
 | |
|     }else{
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     //Configure RTC gpio
 | |
|     rtc_gpio_init(gpio);
 | |
|     rtc_gpio_output_disable(gpio);
 | |
|     rtc_gpio_input_disable(gpio);
 | |
|     rtc_gpio_pullup_dis(gpio);
 | |
|     rtc_gpio_pulldown_dis(gpio);
 | |
|     //force fsm
 | |
|     adc_power_always_on();               //Select power source of ADC
 | |
| 
 | |
|     RTCCNTL.bias_conf.dbg_atten = 0;     //Check DBG effect outside sleep mode
 | |
|     //set dtest (MUX_SEL : 0 -> RTC; 1-> vdd_sar2)
 | |
|     RTCCNTL.test_mux.dtest_rtc = 1;      //Config test mux to route v_ref to ADC2 Channels
 | |
|     //set ent
 | |
|     RTCCNTL.test_mux.ent_rtc = 1;
 | |
|     //set sar2_en_test
 | |
|     SENS.sar_start_force.sar2_en_test = 1;
 | |
|     //set sar2 en force
 | |
|     SENS.sar_meas_start2.sar2_en_pad_force = 1;      //Pad bitmap controlled by SW
 | |
|     //set en_pad for channels 7,8,9 (bits 0x380)
 | |
|     SENS.sar_meas_start2.sar2_en_pad = 1<<channel;
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     DAC
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t dac_pad_get_io_num(dac_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG);
 | |
|     RTC_MODULE_CHECK(gpio_num, "Param null", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     switch (channel) {
 | |
|     case DAC_CHANNEL_1:
 | |
|         *gpio_num = DAC_CHANNEL_1_GPIO_NUM;
 | |
|         break;
 | |
|     case DAC_CHANNEL_2:
 | |
|         *gpio_num = DAC_CHANNEL_2_GPIO_NUM;
 | |
|         break;
 | |
|     default:
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t dac_rtc_pad_init(dac_channel_t channel)
 | |
| {
 | |
|     RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG);
 | |
|     gpio_num_t gpio_num = 0;
 | |
|     dac_pad_get_io_num(channel, &gpio_num);
 | |
|     rtc_gpio_init(gpio_num);
 | |
|     rtc_gpio_output_disable(gpio_num);
 | |
|     rtc_gpio_input_disable(gpio_num);
 | |
|     rtc_gpio_pullup_dis(gpio_num);
 | |
|     rtc_gpio_pulldown_dis(gpio_num);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline void dac_output_set_enable(dac_channel_t channel, bool enable)
 | |
| {
 | |
|     RTCIO.pad_dac[channel-DAC_CHANNEL_1].dac_xpd_force = enable;
 | |
|     RTCIO.pad_dac[channel-DAC_CHANNEL_1].xpd_dac = enable;
 | |
| }
 | |
| 
 | |
| esp_err_t dac_output_enable(dac_channel_t channel)
 | |
| {
 | |
|     RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG);
 | |
|     dac_rtc_pad_init(channel);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     dac_output_set_enable(channel, true);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t dac_output_disable(dac_channel_t channel)
 | |
| {
 | |
|     RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     dac_output_set_enable(channel, false);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t dac_output_voltage(dac_channel_t channel, uint8_t dac_value)
 | |
| {
 | |
|     RTC_MODULE_CHECK((channel >= DAC_CHANNEL_1) && (channel < DAC_CHANNEL_MAX), DAC_ERR_STR_CHANNEL_ERROR, ESP_ERR_INVALID_ARG);
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     //Disable Tone
 | |
|     CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_SW_TONE_EN);
 | |
| 
 | |
|     //Disable Channel Tone
 | |
|     if (channel == DAC_CHANNEL_1) {
 | |
|         CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN1_M);
 | |
|     } else if (channel == DAC_CHANNEL_2) {
 | |
|         CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M);
 | |
|     }
 | |
| 
 | |
|     //Set the Dac value
 | |
|     if (channel == DAC_CHANNEL_1) {
 | |
|         SET_PERI_REG_BITS(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_DAC, dac_value, RTC_IO_PDAC1_DAC_S);   //dac_output
 | |
|     } else if (channel == DAC_CHANNEL_2) {
 | |
|         SET_PERI_REG_BITS(RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_DAC, dac_value, RTC_IO_PDAC2_DAC_S);   //dac_output
 | |
|     }
 | |
| 
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t dac_i2s_enable(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_DAC_DIG_FORCE_M | SENS_DAC_CLK_INV_M);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t dac_i2s_disable(void)
 | |
| {
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     CLEAR_PERI_REG_MASK(SENS_SAR_DAC_CTRL1_REG, SENS_DAC_DIG_FORCE_M | SENS_DAC_CLK_INV_M);
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                         HALL SENSOR
 | |
| ---------------------------------------------------------------*/
 | |
| 
 | |
| static inline void adc1_hall_enable(bool enable)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     RTCIO.hall_sens.xpd_hall = enable;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int hall_sensor_get_value(void)    //hall sensor without LNA
 | |
| {
 | |
|     int hall_value = 0;
 | |
| 
 | |
|     adc_power_on();
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int Sens_Vp0;
 | |
|     int Sens_Vn0;
 | |
|     int Sens_Vp1;
 | |
|     int Sens_Vn1;
 | |
|     portENTER_CRITICAL(&rtc_spinlock);
 | |
|     //disable other peripherals
 | |
|     adc1_fsm_disable();//currently the LNA is not open, close it by default
 | |
|     adc1_hall_enable(true);
 | |
|     // set controller
 | |
|     adc_set_controller( ADC_UNIT_1, ADC_CTRL_RTC );
 | |
|     // convert for 4 times with different phase and outputs
 | |
|     RTCIO.hall_sens.hall_phase = 0;      // hall phase
 | |
|     Sens_Vp0 = adc_convert( ADC_UNIT_1, ADC1_CHANNEL_0 );
 | |
|     Sens_Vn0 = adc_convert( ADC_UNIT_1, ADC1_CHANNEL_3 );
 | |
|     RTCIO.hall_sens.hall_phase = 1;
 | |
|     Sens_Vp1 = adc_convert( ADC_UNIT_1, ADC1_CHANNEL_0 );
 | |
|     Sens_Vn1 = adc_convert( ADC_UNIT_1, ADC1_CHANNEL_3 );
 | |
|     portEXIT_CRITICAL(&rtc_spinlock);
 | |
|     hall_value = (Sens_Vp1 - Sens_Vp0) - (Sens_Vn1 - Sens_Vn0);
 | |
| #endif
 | |
|     return hall_value;
 | |
| }
 | |
| 
 | |
| int hall_sensor_read(void)
 | |
| {
 | |
|     adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_0);
 | |
|     adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_3);
 | |
|     adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_0);
 | |
|     adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_0);
 | |
|     return hall_sensor_get_value();
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                         INTERRUPT HANDLER
 | |
| ---------------------------------------------------------------*/
 | |
| 
 | |
| 
 | |
| typedef struct rtc_isr_handler_ {
 | |
|     uint32_t mask;
 | |
|     intr_handler_t handler;
 | |
|     void* handler_arg;
 | |
|     SLIST_ENTRY(rtc_isr_handler_) next;
 | |
| } rtc_isr_handler_t;
 | |
| 
 | |
| static SLIST_HEAD(rtc_isr_handler_list_, rtc_isr_handler_) s_rtc_isr_handler_list =
 | |
|         SLIST_HEAD_INITIALIZER(s_rtc_isr_handler_list);
 | |
| portMUX_TYPE s_rtc_isr_handler_list_lock = portMUX_INITIALIZER_UNLOCKED;
 | |
| static intr_handle_t s_rtc_isr_handle;
 | |
| 
 | |
| static void rtc_isr(void* arg)
 | |
| {
 | |
|     uint32_t status = REG_READ(RTC_CNTL_INT_ST_REG);
 | |
|     rtc_isr_handler_t* it;
 | |
|     portENTER_CRITICAL_ISR(&s_rtc_isr_handler_list_lock);
 | |
|     SLIST_FOREACH(it, &s_rtc_isr_handler_list, next) {
 | |
|         if (it->mask & status) {
 | |
|             portEXIT_CRITICAL_ISR(&s_rtc_isr_handler_list_lock);
 | |
|             (*it->handler)(it->handler_arg);
 | |
|             portENTER_CRITICAL_ISR(&s_rtc_isr_handler_list_lock);
 | |
|         }
 | |
|     }
 | |
|     portEXIT_CRITICAL_ISR(&s_rtc_isr_handler_list_lock);
 | |
|     REG_WRITE(RTC_CNTL_INT_CLR_REG, status);
 | |
| }
 | |
| 
 | |
| static esp_err_t rtc_isr_ensure_installed(void)
 | |
| {
 | |
|     esp_err_t err = ESP_OK;
 | |
|     portENTER_CRITICAL(&s_rtc_isr_handler_list_lock);
 | |
|     if (s_rtc_isr_handle) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     REG_WRITE(RTC_CNTL_INT_ENA_REG, 0);
 | |
|     REG_WRITE(RTC_CNTL_INT_CLR_REG, UINT32_MAX);
 | |
|     err = esp_intr_alloc(ETS_RTC_CORE_INTR_SOURCE, 0, &rtc_isr, NULL, &s_rtc_isr_handle);
 | |
|     if (err != ESP_OK) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t rtc_isr_register(intr_handler_t handler, void* handler_arg, uint32_t rtc_intr_mask)
 | |
| {
 | |
|     esp_err_t err = rtc_isr_ensure_installed();
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     rtc_isr_handler_t* item = malloc(sizeof(*item));
 | |
|     if (item == NULL) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     item->handler = handler;
 | |
|     item->handler_arg = handler_arg;
 | |
|     item->mask = rtc_intr_mask;
 | |
|     portENTER_CRITICAL(&s_rtc_isr_handler_list_lock);
 | |
|     SLIST_INSERT_HEAD(&s_rtc_isr_handler_list, item, next);
 | |
|     portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rtc_isr_deregister(intr_handler_t handler, void* handler_arg)
 | |
| {
 | |
|     rtc_isr_handler_t* it;
 | |
|     rtc_isr_handler_t* prev = NULL;
 | |
|     bool found = false;
 | |
|     portENTER_CRITICAL(&s_rtc_isr_handler_list_lock);
 | |
|     SLIST_FOREACH(it, &s_rtc_isr_handler_list, next) {
 | |
|         if (it->handler == handler && it->handler_arg == handler_arg) {
 | |
|             if (it == SLIST_FIRST(&s_rtc_isr_handler_list)) {
 | |
|                 SLIST_REMOVE_HEAD(&s_rtc_isr_handler_list, next);
 | |
|             } else {
 | |
|                 SLIST_REMOVE_AFTER(prev, next);
 | |
|             }
 | |
|             found = true;
 | |
|             free(it);
 | |
|             break;
 | |
|         }
 | |
|         prev = it;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock);
 | |
|     return found ? ESP_OK : ESP_ERR_INVALID_STATE;
 | |
| }
 | 
