Files
esp-idf/tools/test_apps/system/panic/main/test_panic.c
Sudeep Mohanty b562afa08e fix(panic_handler): Updated panic handler to use RTC WDT
This commit updates the following:
- Updates the panic handler to use only the RTC WDT to reset the system.
- Refactors some of the panic handler code.
- Updates Bluetooth files where in they now feed the WDTs instead of
  reconfiguring them.
- Removes some unnecessary configuration of WDTs from various files.
- Added a unit test to verify that the system does not lock up when the
  panic handler is stuck.
- Updates the memprot unit tests to work with the refactored panic
  handler.

Closes https://github.com/espressif/esp-idf/issues/15166
Closes https://github.com/espressif/esp-idf/issues/15018
Closes https://github.com/espressif/esp-idf/issues/10110
2025-02-18 15:40:54 +01:00

448 lines
11 KiB
C

/*
* SPDX-FileCopyrightText: 2022-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stdio.h>
#include <unistd.h>
#include <assert.h>
#include <string.h>
#include <inttypes.h>
#include "esp_partition.h"
#include "esp_flash.h"
#include "esp_system.h"
#include "spi_flash_mmap.h"
#include "esp_core_dump.h"
#include "esp_private/cache_utils.h"
#include "esp_memory_utils.h"
#include "esp_heap_caps.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "hal/mpu_hal.h"
#include "rom/cache.h"
volatile uint32_t g_panic_handler_stuck = 0;
volatile uint32_t g_panic_handler_crash = 0;
/* Test utility function */
extern void esp_restart_noos(void) __attribute__ ((noreturn));
void die(const char* msg)
{
printf("Test error: %s\n\n", msg);
fflush(stdout);
fsync(fileno(stdout));
usleep(1000);
/* Don't use abort here as it would enter the panic handler */
esp_restart_noos();
}
/* implementations of the test functions */
void test_abort(void)
{
abort();
}
void IRAM_ATTR test_abort_cache_disabled(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
abort();
}
void test_int_wdt(void)
{
portDISABLE_INTERRUPTS();
while (true) {
;
}
}
void test_task_wdt_cpu0(void)
{
while (true) {
;
}
}
#if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
#define HWSG_TASK_SIZE 1024
__attribute__((optimize("-O0")))
static void test_hw_stack_guard_cpu(void* arg)
{
uint32_t buf[HWSG_TASK_SIZE + 1]; /* go out of the stack to avoid FREERTOS_WATCHPOINT_END_OF_STACK trap */
}
void test_hw_stack_guard_cpu0(void)
{
xTaskCreatePinnedToCore(test_hw_stack_guard_cpu, "HWSG0", HWSG_TASK_SIZE, NULL, 1, NULL, 0);
while (true) {
vTaskDelay(100);
}
}
#if !CONFIG_FREERTOS_UNICORE
void test_hw_stack_guard_cpu1(void)
{
xTaskCreatePinnedToCore(test_hw_stack_guard_cpu, "HWSG1", HWSG_TASK_SIZE, NULL, 1, NULL, 1);
while (true) {
vTaskDelay(100);
}
}
#endif // CONFIG_FREERTOS_UNICORE
#endif // CONFIG_ESP_SYSTEM_HW_STACK_GUARD
#if CONFIG_ESP_COREDUMP_ENABLE_TO_FLASH && CONFIG_FREERTOS_TASK_CREATE_ALLOW_EXT_MEM
static void stack_in_extram(void* arg) {
(void) arg;
/* Abort instead of using a load/store prohibited to prevent a sanitize error */
abort();
}
void test_panic_extram_stack_heap(void) {
/* Start by initializing a Task which has a stack in external RAM */
StaticTask_t handle;
const uint32_t stack_size = 8192;
void* stack = heap_caps_malloc(stack_size, MALLOC_CAP_SPIRAM);
/* Make sure the stack is in external RAM */
if (!esp_ptr_external_ram(stack)) {
die("Allocated stack is not in external RAM!\n");
}
xTaskCreateStatic(stack_in_extram, "Task_stack_extram", stack_size, NULL, 4, (StackType_t*) stack, &handle);
vTaskDelay(1000);
}
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
static EXT_RAM_BSS_ATTR StackType_t stack[8192];
void test_panic_extram_stack_bss(void)
{
StaticTask_t handle;
xTaskCreateStatic(stack_in_extram, "Task_stack_extram", sizeof(stack), NULL, 4, stack, &handle);
vTaskDelay(1000);
}
#endif
#endif // ESP_COREDUMP_ENABLE_TO_FLASH && FREERTOS_TASK_CREATE_ALLOW_EXT_MEM
void __attribute__((no_sanitize_undefined)) test_panic_handler_stuck(void *arg)
{
g_panic_handler_stuck = 1;
/* Cause a panic */
#ifdef __XTENSA__
asm("ill"); // should be an invalid operation on xtensa targets
#elif __riscv
asm("unimp"); // should be an invalid operation on RISC-V targets
#endif
vTaskDelete(NULL);
}
void __attribute__((no_sanitize_undefined)) test_panic_handler_crash(void *arg)
{
g_panic_handler_crash = 1;
/* Cause a panic */
#ifdef __XTENSA__
asm("ill");
#elif __riscv
asm("unimp");
#endif
vTaskDelete(NULL);
}
#if !CONFIG_FREERTOS_UNICORE
static void infinite_loop(void* arg) {
(void) arg;
while(1) {
;
}
}
void test_task_wdt_cpu1(void)
{
xTaskCreatePinnedToCore(infinite_loop, "Infinite loop", 1024, NULL, 1, NULL, 1);
while (true) {
vTaskDelay(1);
}
}
void test_panic_handler_stuck1(void)
{
/* Cause the panic on core 1 */
xTaskCreatePinnedToCore(test_panic_handler_stuck, "panic_handler_stuck", 2048, NULL, 1, NULL, 1);
while(1) {
vTaskDelay(10);
}
}
void test_panic_handler_crash1(void)
{
/* Cause the panic on core 1 */
xTaskCreatePinnedToCore(test_panic_handler_crash, "panic_handler_crash", 2048, NULL, 1, NULL, 1);
while(1) {
vTaskDelay(10);
}
}
#endif
void test_panic_handler_stuck0(void)
{
/* Cause the panic on core 0 */
xTaskCreatePinnedToCore(test_panic_handler_stuck, "panic_handler_stuck", 2048, NULL, 1, NULL, 0);
while(1) {
vTaskDelay(10);
}
}
void test_panic_handler_crash0(void)
{
/* Cause the panic on core 0 */
xTaskCreatePinnedToCore(test_panic_handler_crash, "panic_handler_crash", 2048, NULL, 1, NULL, 0);
while(1) {
vTaskDelay(10);
}
}
void __attribute__((no_sanitize_undefined)) test_storeprohibited(void)
{
*(int*) 0x4 = 0;
test_task_wdt_cpu0(); /* Trap for unhandled asynchronous bus errors */
}
void __attribute__((no_sanitize_undefined)) test_loadprohibited(void)
{
static int __attribute__((used)) var;
var = *(int*) 0x4;
test_task_wdt_cpu0(); /* Trap for unhandled asynchronous bus errors */
}
void IRAM_ATTR test_cache_error(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
die("this should not be printed");
}
void IRAM_ATTR test_int_wdt_cache_disabled(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
portDISABLE_INTERRUPTS();
while (true) {
;
}
}
void test_assert(void)
{
assert(0);
}
void IRAM_ATTR test_assert_cache_disabled(void)
{
spi_flash_disable_interrupts_caches_and_other_cpu();
assert(0);
}
const char TEST_STR[] = "my_tag";
void test_assert_cache_write_back_error_can_print_backtrace(void)
{
printf("1) %p\n", TEST_STR);
*(uint32_t*)TEST_STR = 3; // We changed the rodata string.
// All chips except ESP32S3 stop execution here and raise a LoadStore error on the line above.
// We are testing that the backtrace is printed instead of TG1WDT.
printf("2) %p\n", TEST_STR); // never get to this place.
}
/**
* This function overwrites the stack beginning from the valid area continuously towards and beyond
* the end of the stack (stack base) of the current task.
* This is to test stack protection measures like a watchpoint at the end of the stack.
*
* @note: This test DOES NOT write beyond the stack limit. It only writes up to exactly the limit itself.
* The FreeRTOS stack protection mechanisms all trigger shortly before the end of the stack.
*/
void test_stack_overflow(void)
{
register uint32_t* sp asm("sp");
TaskStatus_t pxTaskStatus;
vTaskGetInfo(NULL, &pxTaskStatus, pdFALSE, pdFALSE);
uint32_t *end = (uint32_t*) pxTaskStatus.pxStackBase;
// offset - 20 bytes from SP in order to not corrupt the current frame.
// Need to write from higher to lower addresses since the stack grows downwards and the watchpoint/canary is near
// the end of the stack (lowest address).
for (uint32_t* ptr = sp - 5; ptr != end; --ptr) {
*ptr = 0;
}
// trigger a context switch to initiate checking the FreeRTOS stack canary
vTaskDelay(pdMS_TO_TICKS(0));
}
void test_illegal_instruction(void)
{
#if __XTENSA__
__asm__ __volatile__("ill");
#elif __riscv
__asm__ __volatile__("unimp");
#endif
}
void test_instr_fetch_prohibited(void)
{
typedef void (*fptr_t)(void);
volatile fptr_t fptr = (fptr_t) 0x4;
fptr();
}
void test_ub(void)
{
uint8_t stuff[1] = {rand()};
printf("%d\n", stuff[rand()]);
}
#if CONFIG_ESP_COREDUMP_ENABLE_TO_FLASH && CONFIG_ESP_COREDUMP_DATA_FORMAT_ELF
void test_setup_coredump_summary(void)
{
if (esp_core_dump_image_erase() != ESP_OK)
die("Coredump image can not be erased!");
assert(0);
}
void test_coredump_summary(void)
{
esp_core_dump_summary_t *summary = malloc(sizeof(esp_core_dump_summary_t));
if (summary) {
esp_err_t err = esp_core_dump_get_summary(summary);
if (err == ESP_OK) {
printf("App ELF file SHA256: %s\n", (char *)summary->app_elf_sha256);
printf("Crashed task: %s\n", summary->exc_task);
#if __XTENSA__
printf("Exception cause: %ld\n", summary->ex_info.exc_cause);
#else
printf("Exception cause: %ld\n", summary->ex_info.mcause);
#endif
char panic_reason[200];
err = esp_core_dump_get_panic_reason(panic_reason, sizeof(panic_reason));
if (err == ESP_OK) {
printf("Panic reason: %s\n", panic_reason);
}
}
free(summary);
}
}
#endif
void test_tcb_corrupted(void)
{
uint32_t volatile *tcb_ptr = (uint32_t *)xTaskGetIdleTaskHandleForCore(0);
for (size_t i = 0; i < sizeof(StaticTask_t) / sizeof(uint32_t); i++) {
tcb_ptr[i] = 0xDEADBEE0;
}
vTaskDelay(2);
}
/* NOTE: The following test verifies the behaviour for the
* Xtensa-specific MPU instructions (Refer WDTLB, DSYNC, WDTIB, ISYNC)
* used for memory protection.
*
* However, this test is not valid for S2 and S3, because they have PMS
* enabled on top of this, giving unpredictable results.
*/
#if CONFIG_IDF_TARGET_ESP32
void test_illegal_access(void)
{
intptr_t addr = 0x80000000; // MPU region 4
volatile int __attribute__((unused)) val = INT16_MAX;
// Marked as an illegal access region at startup in ESP32, ESP32S2.
// Make accessible temporarily.
mpu_hal_set_region_access(4, MPU_REGION_RW);
val = *((int*) addr);
printf("[1] val: %d at %p\n", val, (void *)addr);
// Make access to region illegal again.
mpu_hal_set_region_access(4, MPU_REGION_ILLEGAL);
val = *((int*) addr);
// Does not reach here as device resets due to illegal access
printf("[2] val: %d at %p\n", val, (void *)addr);
}
#endif
#if CONFIG_ESP_COREDUMP_CAPTURE_DRAM
int g_data_var = 42;
int g_bss_var;
char *g_heap_ptr;
COREDUMP_IRAM_DATA_ATTR uint32_t g_cd_iram = 0x4242;
COREDUMP_DRAM_ATTR uint32_t g_cd_dram = 0x4343;
#if SOC_RTC_MEM_SUPPORTED
COREDUMP_RTC_FAST_ATTR uint32_t g_rtc_fast_var;
COREDUMP_RTC_DATA_ATTR uint32_t g_rtc_data_var = 0x55A9;
#endif
void test_capture_dram(void)
{
g_data_var++;
g_bss_var = 55;
g_heap_ptr = strdup("Coredump Test");
assert(g_heap_ptr);
g_cd_iram++;
g_cd_dram++;
#if SOC_RTC_MEM_SUPPORTED
g_rtc_fast_var = 0xAABBCCDD;
g_rtc_data_var++;
#endif
assert(0);
}
#endif
#if CONFIG_ESP_SYSTEM_USE_FRAME_POINTER
static NOINLINE_ATTR void step3(void) {
printf("Step 3\n");
/* For some reason, the compiler doesn't generate the proper sequence for `panic_abort` function:
* the `ra` register is not saved on the stack upon entry */
abort();
}
static NOINLINE_ATTR void step2(void) {
step3();
printf("Step 2\n");
}
static NOINLINE_ATTR void step1(void) {
step2();
printf("Step 1\n");
}
/**
* @brief Create a stack trace of several functions that will be shown at runtime,
* The functions must not be inlined!
*/
void test_panic_print_backtrace(void)
{
step1();
}
#endif