mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 04:59:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			812 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			812 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| 
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdbool.h>
 | |
| #include <assert.h>
 | |
| #include <string.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| #include <multi_heap.h>
 | |
| #include "multi_heap_internal.h"
 | |
| 
 | |
| /* Note: Keep platform-specific parts in this header, this source
 | |
|    file should depend on libc only */
 | |
| #include "multi_heap_platform.h"
 | |
| 
 | |
| /* Defines compile-time configuration macros */
 | |
| #include "multi_heap_config.h"
 | |
| 
 | |
| #ifndef MULTI_HEAP_POISONING
 | |
| /* if no heap poisoning, public API aliases directly to these implementations */
 | |
| void *multi_heap_malloc(multi_heap_handle_t heap, size_t size)
 | |
|     __attribute__((alias("multi_heap_malloc_impl")));
 | |
| 
 | |
| void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment)
 | |
|     __attribute__((alias("multi_heap_aligned_alloc_impl")));
 | |
| 
 | |
| void multi_heap_free(multi_heap_handle_t heap, void *p)
 | |
|     __attribute__((alias("multi_heap_free_impl")));
 | |
| 
 | |
| void multi_heap_aligned_free(multi_heap_handle_t heap, void *p)
 | |
|     __attribute__((alias("multi_heap_aligned_free_impl")));
 | |
| 
 | |
| void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size)
 | |
|     __attribute__((alias("multi_heap_realloc_impl")));
 | |
| 
 | |
| size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p)
 | |
|     __attribute__((alias("multi_heap_get_allocated_size_impl")));
 | |
| 
 | |
| multi_heap_handle_t multi_heap_register(void *start, size_t size)
 | |
|     __attribute__((alias("multi_heap_register_impl")));
 | |
| 
 | |
| void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info)
 | |
|     __attribute__((alias("multi_heap_get_info_impl")));
 | |
| 
 | |
| size_t multi_heap_free_size(multi_heap_handle_t heap)
 | |
|     __attribute__((alias("multi_heap_free_size_impl")));
 | |
| 
 | |
| size_t multi_heap_minimum_free_size(multi_heap_handle_t heap)
 | |
|     __attribute__((alias("multi_heap_minimum_free_size_impl")));
 | |
| 
 | |
| void *multi_heap_get_block_address(multi_heap_block_handle_t block)
 | |
|     __attribute__((alias("multi_heap_get_block_address_impl")));
 | |
| 
 | |
| void *multi_heap_get_block_owner(multi_heap_block_handle_t block)
 | |
| {
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define ALIGN(X) ((X) & ~(sizeof(void *)-1))
 | |
| #define ALIGN_UP(X) ALIGN((X)+sizeof(void *)-1)
 | |
| #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
 | |
| 
 | |
| struct heap_block;
 | |
| 
 | |
| /* Block in the heap
 | |
| 
 | |
|    Heap implementation uses two single linked lists, a block list (all blocks) and a free list (free blocks).
 | |
| 
 | |
|    'header' holds a pointer to the next block (used or free) ORed with a free flag (the LSB of the pointer.) is_free() and get_next_block() utility functions allow typed access to these values.
 | |
| 
 | |
|    'next_free' is valid if the block is free and is a pointer to the next block in the free list.
 | |
| */
 | |
| typedef struct heap_block {
 | |
|     intptr_t header;                  /* Encodes next block in heap (used or unused) and also free/used flag */
 | |
|     union {
 | |
|         uint8_t data[1];              /* First byte of data, valid if block is used. Actual size of data is 'block_data_size(block)' */
 | |
|         struct heap_block *next_free; /* Pointer to next free block, valid if block is free */
 | |
|     };
 | |
| } heap_block_t;
 | |
| 
 | |
| /* These masks apply to the 'header' field of heap_block_t */
 | |
| #define BLOCK_FREE_FLAG 0x1  /* If set, this block is free & next_free pointer is valid */
 | |
| #define NEXT_BLOCK_MASK (~3) /* AND header with this mask to get pointer to next block (free or used) */
 | |
| 
 | |
| /* Metadata header for the heap, stored at the beginning of heap space.
 | |
| 
 | |
|    'first_block' is a "fake" first block, minimum length, used to provide a pointer to the first used & free block in
 | |
|    the heap. This block is never allocated or merged into an adjacent block.
 | |
| 
 | |
|    'last_block' is a pointer to a final free block of length 0, which is added at the end of the heap when it is
 | |
|    registered. This block is also never allocated or merged into an adjacent block.
 | |
|  */
 | |
| typedef struct multi_heap_info {
 | |
|     void *lock;
 | |
|     size_t free_bytes;
 | |
|     size_t minimum_free_bytes;
 | |
|     heap_block_t *last_block;
 | |
|     heap_block_t first_block; /* initial 'free block', never allocated */
 | |
| } heap_t;
 | |
| 
 | |
| /* Given a pointer to the 'data' field of a block (ie the previous malloc/realloc result), return a pointer to the
 | |
|    containing block.
 | |
| */
 | |
| static inline heap_block_t *get_block(const void *data_ptr)
 | |
| {
 | |
|     return (heap_block_t *)((char *)data_ptr - offsetof(heap_block_t, data));
 | |
| }
 | |
| 
 | |
| /* Return the next sequential block in the heap.
 | |
|  */
 | |
| static inline heap_block_t *get_next_block(const heap_block_t *block)
 | |
| {
 | |
|     intptr_t next = block->header & NEXT_BLOCK_MASK;
 | |
|     if (next == 0) {
 | |
|         return NULL; /* last_block */
 | |
|     }
 | |
|     assert(next > (intptr_t)block);
 | |
|     return (heap_block_t *)next;
 | |
| }
 | |
| 
 | |
| /* Return true if this block is free. */
 | |
| static inline bool is_free(const heap_block_t *block)
 | |
| {
 | |
|     return block->header & BLOCK_FREE_FLAG;
 | |
| }
 | |
| 
 | |
| /* Return true if this block is the first in the heap */
 | |
| static inline bool is_first_block(const heap_t *heap, const heap_block_t *block)
 | |
| {
 | |
|     return (block == &heap->first_block);
 | |
| }
 | |
| 
 | |
| /* Return true if this block is the last_block in the heap
 | |
|    (the only block with no next pointer) */
 | |
| static inline bool is_last_block(const heap_block_t *block)
 | |
| {
 | |
|     return (block->header & NEXT_BLOCK_MASK) == 0;
 | |
| }
 | |
| 
 | |
| /* Data size of the block (excludes this block's header) */
 | |
| static inline size_t block_data_size(const heap_block_t *block)
 | |
| {
 | |
|     intptr_t next = (intptr_t)block->header & NEXT_BLOCK_MASK;
 | |
|     intptr_t this = (intptr_t)block;
 | |
|     if (next == 0) {
 | |
|         return 0; /* this is the last block in the heap */
 | |
|     }
 | |
|     return next - this - sizeof(block->header);
 | |
| }
 | |
| 
 | |
| /* Check a block is valid for this heap. Used to verify parameters. */
 | |
| static void assert_valid_block(const heap_t *heap, const heap_block_t *block)
 | |
| {
 | |
|     MULTI_HEAP_ASSERT(block >= &heap->first_block && block <= heap->last_block,
 | |
|                       block); // block not in heap
 | |
|     if (heap < (const heap_t *)heap->last_block) {
 | |
|         const heap_block_t *next = get_next_block(block);
 | |
|         MULTI_HEAP_ASSERT(next >= &heap->first_block && next <= heap->last_block, block); // Next block not in heap
 | |
|         if (is_free(block)) {
 | |
|             // Check block->next_free is valid
 | |
|             MULTI_HEAP_ASSERT(block->next_free >= &heap->first_block && block->next_free <= heap->last_block, &block->next_free);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Get the first free block before 'block' in the heap. 'block' can be a free block or in use.
 | |
| 
 | |
|    Result is always the closest free block to 'block' in the heap, that is located before 'block'. There may be multiple
 | |
|    allocated blocks between the result and 'block'.
 | |
| 
 | |
|    If 'block' is free, the result's 'next_free' pointer will already point to 'block'.
 | |
| 
 | |
|    Result will never be NULL, but it may be the header block heap->first_block.
 | |
| */
 | |
| static heap_block_t *get_prev_free_block(heap_t *heap, const heap_block_t *block)
 | |
| {
 | |
|     assert(!is_first_block(heap, block)); /* can't look for a block before first_block */
 | |
| 
 | |
|     for (heap_block_t *b = &heap->first_block; b != NULL && b < block; b = b->next_free) {
 | |
|         MULTI_HEAP_ASSERT(is_free(b), b); // Block should be free
 | |
|         if (b->next_free == NULL || b->next_free >= block) {
 | |
|             if (is_free(block)) {
 | |
|                  /* if block is on freelist, 'b' should be the item before it. */
 | |
|                 MULTI_HEAP_ASSERT(b->next_free == block, &b->next_free);
 | |
|             }
 | |
|             return b; /* b is the last free block before 'block' */
 | |
|         }
 | |
|     }
 | |
|     abort(); /* There should always be a previous free block, even if it's heap->first_block */
 | |
| }
 | |
| 
 | |
| /* Merge some block 'a' into the following block 'b'.
 | |
| 
 | |
|    If both blocks are free, resulting block is marked free.
 | |
|    If only one block is free, resulting block is marked in use. No data is moved.
 | |
| 
 | |
|    This operation may fail if block 'a' is the first block or 'b' is the last block,
 | |
|    the caller should check block_data_size() to know if anything happened here or not.
 | |
| */
 | |
| static heap_block_t *merge_adjacent(heap_t *heap, heap_block_t *a, heap_block_t *b)
 | |
| {
 | |
|     assert(a < b);
 | |
| 
 | |
|     /* Can't merge header blocks, just return the non-header block as-is */
 | |
|     if (is_last_block(b)) {
 | |
|         return a;
 | |
|     }
 | |
|     if (is_first_block(heap, a)) {
 | |
|         return b;
 | |
|     }
 | |
| 
 | |
|     MULTI_HEAP_ASSERT(get_next_block(a) == b, a); // Blocks should be in order
 | |
| 
 | |
|     bool free = is_free(a) && is_free(b); /* merging two free blocks creates a free block */
 | |
|     if (!free && (is_free(a) || is_free(b))) {
 | |
|         /* only one of these blocks is free, so resulting block will be a used block.
 | |
|            means we need to take the free block out of the free list
 | |
|          */
 | |
|         heap_block_t *free_block = is_free(a) ? a : b;
 | |
|         heap_block_t *prev_free = get_prev_free_block(heap, free_block);
 | |
|         MULTI_HEAP_ASSERT(free_block->next_free > prev_free, &free_block->next_free); // Next free block should be after prev one
 | |
|         prev_free->next_free = free_block->next_free;
 | |
| 
 | |
|         heap->free_bytes -= block_data_size(free_block);
 | |
|     }
 | |
| 
 | |
|     a->header = b->header & NEXT_BLOCK_MASK;
 | |
|     MULTI_HEAP_ASSERT(a->header != 0, a);
 | |
|     if (free) {
 | |
|         a->header |= BLOCK_FREE_FLAG;
 | |
|         if (b->next_free != NULL) {
 | |
|             MULTI_HEAP_ASSERT(b->next_free > a, &b->next_free);
 | |
|             MULTI_HEAP_ASSERT(b->next_free > b, &b->next_free);
 | |
|         }
 | |
|         a->next_free = b->next_free;
 | |
| 
 | |
|         /* b's header can be put into the pool of free bytes */
 | |
|         heap->free_bytes += sizeof(a->header);
 | |
|     }
 | |
| 
 | |
| #ifdef MULTI_HEAP_POISONING_SLOW
 | |
|     /* b's former block header needs to be replaced with a fill pattern */
 | |
|     multi_heap_internal_poison_fill_region(b, sizeof(heap_block_t), free);
 | |
| #endif
 | |
| 
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /* Split a block so it can hold at least 'size' bytes of data, making any spare
 | |
|    space into a new free block.
 | |
| 
 | |
|    'block' should be marked in-use when this function is called (implementation detail, this function
 | |
|    doesn't set the next_free pointer).
 | |
| 
 | |
|    'prev_free_block' is the free block before 'block', if already known. Can be NULL if not yet known.
 | |
|    (This is a performance optimisation to avoid walking the freelist twice when possible.)
 | |
| */
 | |
| static void split_if_necessary(heap_t *heap, heap_block_t *block, size_t size, heap_block_t *prev_free_block)
 | |
| {
 | |
|     const size_t block_size = block_data_size(block);
 | |
|     MULTI_HEAP_ASSERT(!is_free(block), block); // split block shouldn't be free
 | |
|     MULTI_HEAP_ASSERT(size <= block_size, block); // size should be valid
 | |
|     size = ALIGN_UP(size);
 | |
| 
 | |
|     /* can't split the head or tail block */
 | |
|     assert(!is_first_block(heap, block));
 | |
|     assert(!is_last_block(block));
 | |
| 
 | |
|     heap_block_t *new_block = (heap_block_t *)(block->data + size);
 | |
|     heap_block_t *next_block = get_next_block(block);
 | |
| 
 | |
|     if (is_free(next_block) && !is_last_block(next_block)) {
 | |
|         /* The next block is free, just extend it upwards. */
 | |
|         new_block->header = next_block->header;
 | |
|         new_block->next_free = next_block->next_free;
 | |
|         if (prev_free_block == NULL) {
 | |
|             prev_free_block = get_prev_free_block(heap, block);
 | |
|         }
 | |
|         /* prev_free_block should point to the next block (which we found to be free). */
 | |
|         MULTI_HEAP_ASSERT(prev_free_block->next_free == next_block,
 | |
|                           &prev_free_block->next_free); // free blocks should be in order
 | |
|         /* Note: We have not introduced a new block header, hence the simple math. */
 | |
|         heap->free_bytes += block_size - size;
 | |
| #ifdef MULTI_HEAP_POISONING_SLOW
 | |
|         /* next_block header needs to be replaced with a fill pattern */
 | |
|         multi_heap_internal_poison_fill_region(next_block, sizeof(heap_block_t), true /* free */);
 | |
| #endif
 | |
|     } else {
 | |
|         /* Insert a free block between the current and the next one. */
 | |
|         if (block_data_size(block) < size + sizeof(heap_block_t)) {
 | |
|             /* Can't split 'block' if we're not going to get a usable free block afterwards */
 | |
|             return;
 | |
|         }
 | |
|         if (prev_free_block == NULL) {
 | |
|             prev_free_block = get_prev_free_block(heap, block);
 | |
|         }
 | |
|         new_block->header = block->header | BLOCK_FREE_FLAG;
 | |
|         new_block->next_free = prev_free_block->next_free;
 | |
|         /* prev_free_block should point to a free block after new_block */
 | |
|         MULTI_HEAP_ASSERT(prev_free_block->next_free > new_block,
 | |
|                           &prev_free_block->next_free); // free blocks should be in order
 | |
|         heap->free_bytes += block_data_size(new_block);
 | |
|     }
 | |
|     block->header = (intptr_t)new_block;
 | |
|     prev_free_block->next_free = new_block;
 | |
| }
 | |
| 
 | |
| void *multi_heap_get_block_address_impl(multi_heap_block_handle_t block)
 | |
| {
 | |
|     return ((char *)block + offsetof(heap_block_t, data));
 | |
| }
 | |
| 
 | |
| size_t multi_heap_get_allocated_size_impl(multi_heap_handle_t heap, void *p)
 | |
| {
 | |
|     heap_block_t *pb = get_block(p);
 | |
| 
 | |
|     assert_valid_block(heap, pb);
 | |
|     MULTI_HEAP_ASSERT(!is_free(pb), pb); // block shouldn't be free
 | |
|     return block_data_size(pb);
 | |
| }
 | |
| 
 | |
| multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size)
 | |
| {
 | |
|     uintptr_t start = ALIGN_UP((uintptr_t)start_ptr);
 | |
|     uintptr_t end = ALIGN((uintptr_t)start_ptr + size);
 | |
|     heap_t *heap = (heap_t *)start;
 | |
|     size = end - start;
 | |
| 
 | |
|     if (end < start || size < sizeof(heap_t) + 2*sizeof(heap_block_t)) {
 | |
|         return NULL; /* 'size' is too small to fit a heap here */
 | |
|     }
 | |
|     heap->lock = NULL;
 | |
|     heap->last_block = (heap_block_t *)(end - sizeof(heap_block_t));
 | |
| 
 | |
|     /* first 'real' (allocatable) free block goes after the heap structure */
 | |
|     heap_block_t *first_free_block = (heap_block_t *)(start + sizeof(heap_t));
 | |
|     first_free_block->header = (intptr_t)heap->last_block | BLOCK_FREE_FLAG;
 | |
|     first_free_block->next_free = heap->last_block;
 | |
| 
 | |
|     /* last block is 'free' but has a NULL next pointer */
 | |
|     heap->last_block->header = BLOCK_FREE_FLAG;
 | |
|     heap->last_block->next_free = NULL;
 | |
| 
 | |
|     /* first block also 'free' but has legitimate length,
 | |
|        malloc will never allocate into this block. */
 | |
|     heap->first_block.header = (intptr_t)first_free_block | BLOCK_FREE_FLAG;
 | |
|     heap->first_block.next_free = first_free_block;
 | |
| 
 | |
|     /* free bytes is:
 | |
|        - total bytes in heap
 | |
|        - minus heap_t header at top (includes heap->first_block)
 | |
|        - minus header of first_free_block
 | |
|        - minus whole block at heap->last_block
 | |
|     */
 | |
|     heap->free_bytes = size - sizeof(heap_t) - sizeof(first_free_block->header) - sizeof(heap_block_t);
 | |
|     heap->minimum_free_bytes = heap->free_bytes;
 | |
| 
 | |
|     return heap;
 | |
| }
 | |
| 
 | |
| void multi_heap_set_lock(multi_heap_handle_t heap, void *lock)
 | |
| {
 | |
|     heap->lock = lock;
 | |
| }
 | |
| 
 | |
| void inline multi_heap_internal_lock(multi_heap_handle_t heap)
 | |
| {
 | |
|     MULTI_HEAP_LOCK(heap->lock);
 | |
| }
 | |
| 
 | |
| void inline multi_heap_internal_unlock(multi_heap_handle_t heap)
 | |
| {
 | |
|     MULTI_HEAP_UNLOCK(heap->lock);
 | |
| }
 | |
| 
 | |
| multi_heap_block_handle_t multi_heap_get_first_block(multi_heap_handle_t heap)
 | |
| {
 | |
|     return &heap->first_block;
 | |
| }
 | |
| 
 | |
| multi_heap_block_handle_t multi_heap_get_next_block(multi_heap_handle_t heap, multi_heap_block_handle_t block)
 | |
| {
 | |
|     heap_block_t *next = get_next_block(block);
 | |
|     /* check for valid free last block to avoid assert in assert_valid_block */
 | |
|     if (next == heap->last_block && is_last_block(next) && is_free(next)) {
 | |
|         return NULL;
 | |
|     }
 | |
|     assert_valid_block(heap, next);
 | |
|     return next;
 | |
| }
 | |
| 
 | |
| bool multi_heap_is_free(multi_heap_block_handle_t block)
 | |
| {
 | |
|     return is_free(block);
 | |
| }
 | |
| 
 | |
| void *multi_heap_malloc_impl(multi_heap_handle_t heap, size_t size)
 | |
| {
 | |
|     heap_block_t *best_block = NULL;
 | |
|     heap_block_t *prev_free = NULL;
 | |
|     heap_block_t *prev = NULL;
 | |
|     size_t best_size = SIZE_MAX;
 | |
|     size = ALIGN_UP(size);
 | |
| 
 | |
|     if (size == 0 || heap == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
| 
 | |
|     /* Note: this check must be done while holding the lock as both
 | |
|        malloc & realloc may temporarily shrink the free_bytes value
 | |
|        before they split a large block. This can result in false negatives,
 | |
|        especially if the heap is unfragmented.
 | |
|     */
 | |
|     if (heap->free_bytes < size) {
 | |
|         MULTI_HEAP_UNLOCK(heap->lock);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Find best free block to perform the allocation in */
 | |
|     prev = &heap->first_block;
 | |
|     for (heap_block_t *b = heap->first_block.next_free; b != NULL; b = b->next_free) {
 | |
|         MULTI_HEAP_ASSERT(b > prev, &prev->next_free); // free blocks should be ascending in address
 | |
|         MULTI_HEAP_ASSERT(is_free(b), b); // block should be free
 | |
|         size_t bs = block_data_size(b);
 | |
|         if (bs >= size && bs < best_size) {
 | |
|             best_block = b;
 | |
|             best_size = bs;
 | |
|             prev_free = prev;
 | |
|             if (bs == size) {
 | |
|                 break; /* we've found a perfect sized block */
 | |
|             }
 | |
|         }
 | |
|         prev = b;
 | |
|     }
 | |
| 
 | |
|     if (best_block == NULL) {
 | |
|         multi_heap_internal_unlock(heap);
 | |
|         return NULL; /* No room in heap */
 | |
|     }
 | |
| 
 | |
|     prev_free->next_free = best_block->next_free;
 | |
|     best_block->header &= ~BLOCK_FREE_FLAG;
 | |
| 
 | |
|     heap->free_bytes -= block_data_size(best_block);
 | |
| 
 | |
|     split_if_necessary(heap, best_block, size, prev_free);
 | |
| 
 | |
|     if (heap->free_bytes < heap->minimum_free_bytes) {
 | |
|         heap->minimum_free_bytes = heap->free_bytes;
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_unlock(heap);
 | |
| 
 | |
|     return best_block->data;
 | |
| }
 | |
| 
 | |
| void *multi_heap_aligned_alloc_impl(multi_heap_handle_t heap, size_t size, size_t alignment)
 | |
| {
 | |
|     if (heap == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (!size) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (!alignment) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     //Alignment must be a power of two...
 | |
|     if ((alignment & (alignment - 1)) != 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     uint32_t overhead = (sizeof(uint32_t) + (alignment - 1));
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
|     void *head = multi_heap_malloc_impl(heap, size + overhead);
 | |
|     if (head == NULL) {
 | |
|         multi_heap_internal_unlock(heap);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     //Lets align our new obtained block address:
 | |
|     //and save information to recover original block pointer
 | |
|     //to allow us to deallocate the memory when needed
 | |
|     void *ptr = (void *)ALIGN_UP_BY((uintptr_t)head + sizeof(uint32_t), alignment);
 | |
|     *((uint32_t *)ptr - 1) = (uint32_t)((uintptr_t)ptr - (uintptr_t)head);
 | |
| 
 | |
|     multi_heap_internal_unlock(heap);
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void multi_heap_aligned_free_impl(multi_heap_handle_t heap, void *p)
 | |
| {
 | |
|     if (p == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
|     uint32_t offset = *((uint32_t *)p - 1);
 | |
|     void *block_head = (void *)((uint8_t *)p - offset);
 | |
| 
 | |
| #ifdef MULTI_HEAP_POISONING_SLOW
 | |
|         multi_heap_internal_poison_fill_region(block_head, multi_heap_get_allocated_size_impl(heap, block_head), true /* free */);
 | |
| #endif
 | |
| 
 | |
|     multi_heap_free_impl(heap, block_head);
 | |
|     multi_heap_internal_unlock(heap);
 | |
| }
 | |
| 
 | |
| void multi_heap_free_impl(multi_heap_handle_t heap, void *p)
 | |
| {
 | |
|     heap_block_t *pb = get_block(p);
 | |
| 
 | |
|     if (heap == NULL || p == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
| 
 | |
|     assert_valid_block(heap, pb);
 | |
|     MULTI_HEAP_ASSERT(!is_free(pb), pb); // block should not be free
 | |
|     MULTI_HEAP_ASSERT(!is_last_block(pb), pb); // block should not be last block
 | |
|     MULTI_HEAP_ASSERT(!is_first_block(heap, pb), pb); // block should not be first block
 | |
| 
 | |
|     heap_block_t *next = get_next_block(pb);
 | |
| 
 | |
|     /* Update freelist pointers */
 | |
|     heap_block_t *prev_free = get_prev_free_block(heap, pb);
 | |
|     // freelist validity check
 | |
|     MULTI_HEAP_ASSERT(prev_free->next_free == NULL || prev_free->next_free > pb, &prev_free->next_free);
 | |
|     pb->next_free = prev_free->next_free;
 | |
|     prev_free->next_free = pb;
 | |
| 
 | |
|     /* Mark this block as free */
 | |
|     pb->header |= BLOCK_FREE_FLAG;
 | |
| 
 | |
|     heap->free_bytes += block_data_size(pb);
 | |
| 
 | |
|     /* Try and merge previous free block into this one */
 | |
|     if (get_next_block(prev_free) == pb) {
 | |
|         pb = merge_adjacent(heap, prev_free, pb);
 | |
|     }
 | |
| 
 | |
|     /* If next block is free, try to merge the two */
 | |
|     if (is_free(next)) {
 | |
|         pb = merge_adjacent(heap, pb, next);
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_unlock(heap);
 | |
| }
 | |
| 
 | |
| 
 | |
| void *multi_heap_realloc_impl(multi_heap_handle_t heap, void *p, size_t size)
 | |
| {
 | |
|     heap_block_t *pb = get_block(p);
 | |
|     void *result;
 | |
|     size = ALIGN_UP(size);
 | |
| 
 | |
|     assert(heap != NULL);
 | |
| 
 | |
|     if (p == NULL) {
 | |
|         return multi_heap_malloc_impl(heap, size);
 | |
|     }
 | |
| 
 | |
|     assert_valid_block(heap, pb);
 | |
|     // non-null realloc arg should be allocated
 | |
|     MULTI_HEAP_ASSERT(!is_free(pb), pb);
 | |
| 
 | |
|     if (size == 0) {
 | |
|         /* note: calling multi_free_impl() here as we've already been
 | |
|            through any poison-unwrapping */
 | |
|         multi_heap_free_impl(heap, p);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (heap == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
|     result = NULL;
 | |
| 
 | |
|     if (size <= block_data_size(pb)) {
 | |
|         // Shrinking....
 | |
|         split_if_necessary(heap, pb, size, NULL);
 | |
|         result = pb->data;
 | |
|     }
 | |
|     else if (heap->free_bytes < size - block_data_size(pb)) {
 | |
|         // Growing, but there's not enough total free space in the heap
 | |
|         multi_heap_internal_unlock(heap);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // New size is larger than existing block
 | |
|     if (result == NULL) {
 | |
|         // See if we can grow into one or both adjacent blocks
 | |
|         heap_block_t *orig_pb = pb;
 | |
|         size_t orig_size = block_data_size(orig_pb);
 | |
|         heap_block_t *next = get_next_block(pb);
 | |
|         heap_block_t *prev = get_prev_free_block(heap, pb);
 | |
| 
 | |
|         // Can only grow into the previous free block if it's adjacent
 | |
|         size_t prev_grow_size = (get_next_block(prev) == pb) ? block_data_size(prev) : 0;
 | |
| 
 | |
|         // Can grow into next block? (we may also need to grow into 'prev' to get to our desired size)
 | |
|         if (is_free(next) && (block_data_size(pb) + block_data_size(next) + prev_grow_size >= size)) {
 | |
|             pb = merge_adjacent(heap, pb, next);
 | |
|         }
 | |
| 
 | |
|         // Can grow into previous block?
 | |
|         // (try this even if we're already big enough from growing into 'next', as it reduces fragmentation)
 | |
|         if (prev_grow_size > 0 && (block_data_size(pb) + prev_grow_size >= size)) {
 | |
|             pb = merge_adjacent(heap, prev, pb);
 | |
|             // this doesn't guarantee we'll be left with a big enough block, as it's
 | |
|             // possible for the merge to fail if prev == heap->first_block
 | |
|         }
 | |
| 
 | |
|         if (block_data_size(pb) >= size) {
 | |
|             memmove(pb->data, orig_pb->data, orig_size);
 | |
|             split_if_necessary(heap, pb, size, NULL);
 | |
|             result = pb->data;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (result == NULL) {
 | |
|         // Need to allocate elsewhere and copy data over
 | |
|         //
 | |
|         // (Calling _impl versions here as we've already been through any
 | |
|         // unwrapping for heap poisoning features.)
 | |
|         result = multi_heap_malloc_impl(heap, size);
 | |
|         if (result != NULL) {
 | |
|             memcpy(result, pb->data, block_data_size(pb));
 | |
|             multi_heap_free_impl(heap, pb->data);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (heap->free_bytes < heap->minimum_free_bytes) {
 | |
|         heap->minimum_free_bytes = heap->free_bytes;
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_unlock(heap);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #define FAIL_PRINT(MSG, ...) do {                                       \
 | |
|         if (print_errors) {                                             \
 | |
|             MULTI_HEAP_STDERR_PRINTF(MSG, __VA_ARGS__);                 \
 | |
|         }                                                               \
 | |
|         valid = false;                                                  \
 | |
|     }                                                                   \
 | |
|     while(0)
 | |
| 
 | |
| bool multi_heap_check(multi_heap_handle_t heap, bool print_errors)
 | |
| {
 | |
|     bool valid = true;
 | |
|     size_t total_free_bytes = 0;
 | |
|     assert(heap != NULL);
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
| 
 | |
|     heap_block_t *prev = NULL;
 | |
|     heap_block_t *prev_free = NULL;
 | |
|     heap_block_t *expected_free = NULL;
 | |
| 
 | |
|     /* note: not using get_next_block() in loop, so that assertions aren't checked here */
 | |
|     for(heap_block_t *b = &heap->first_block; b != NULL; b = (heap_block_t *)(b->header & NEXT_BLOCK_MASK)) {
 | |
|         if (b == prev) {
 | |
|             FAIL_PRINT("CORRUPT HEAP: Block %p points to itself\n", b);
 | |
|             goto done;
 | |
|         }
 | |
|         if (b < prev) {
 | |
|             FAIL_PRINT("CORRUPT HEAP: Block %p is before prev block %p\n", b, prev);
 | |
|             goto done;
 | |
|         }
 | |
|         if (b > heap->last_block || b < &heap->first_block) {
 | |
|             FAIL_PRINT("CORRUPT HEAP: Block %p is outside heap (last valid block %p)\n", b, prev);
 | |
|             goto done;
 | |
|         }
 | |
|         if (is_free(b)) {
 | |
|             if (prev != NULL && is_free(prev) && !is_first_block(heap, prev) && !is_last_block(b)) {
 | |
|                 FAIL_PRINT("CORRUPT HEAP: Two adjacent free blocks found, %p and %p\n", prev, b);
 | |
|             }
 | |
|             if (expected_free != NULL && expected_free != b) {
 | |
|                 FAIL_PRINT("CORRUPT HEAP: Prev free block %p pointed to next free %p but this free block is %p\n",
 | |
|                        prev_free, expected_free, b);
 | |
|             }
 | |
|             prev_free = b;
 | |
|             expected_free = b->next_free;
 | |
|             if (!is_first_block(heap, b)) {
 | |
|                 total_free_bytes += block_data_size(b);
 | |
|             }
 | |
|         }
 | |
|         prev = b;
 | |
| 
 | |
| #ifdef MULTI_HEAP_POISONING
 | |
|         if (!is_last_block(b)) {
 | |
|             /* For slow heap poisoning, any block should contain correct poisoning patterns and/or fills */
 | |
|             bool poison_ok;
 | |
|             if (is_free(b) && b != heap->last_block) {
 | |
|                 uint32_t block_len = (intptr_t)get_next_block(b) - (intptr_t)b - sizeof(heap_block_t);
 | |
|                 poison_ok = multi_heap_internal_check_block_poisoning(&b[1], block_len, true, print_errors);
 | |
|             }
 | |
|             else {
 | |
|                 poison_ok = multi_heap_internal_check_block_poisoning(b->data, block_data_size(b), false, print_errors);
 | |
|             }
 | |
|             valid = poison_ok && valid;
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|     } /* for(heap_block_t b = ... */
 | |
| 
 | |
|     if (prev != heap->last_block) {
 | |
|         FAIL_PRINT("CORRUPT HEAP: Last block %p not %p\n", prev, heap->last_block);
 | |
|     }
 | |
|     if (!is_free(heap->last_block)) {
 | |
|         FAIL_PRINT("CORRUPT HEAP: Expected prev block %p to be free\n", heap->last_block);
 | |
|     }
 | |
| 
 | |
|     if (heap->free_bytes != total_free_bytes) {
 | |
|         FAIL_PRINT("CORRUPT HEAP: Expected %u free bytes counted %u\n", (unsigned)heap->free_bytes, (unsigned)total_free_bytes);
 | |
|     }
 | |
| 
 | |
|  done:
 | |
|     multi_heap_internal_unlock(heap);
 | |
| 
 | |
|     return valid;
 | |
| }
 | |
| 
 | |
| void multi_heap_dump(multi_heap_handle_t heap)
 | |
| {
 | |
|     assert(heap != NULL);
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
|     MULTI_HEAP_STDERR_PRINTF("Heap start %p end %p\nFirst free block %p\n", &heap->first_block, heap->last_block, heap->first_block.next_free);
 | |
|     for(heap_block_t *b = &heap->first_block; b != NULL; b = get_next_block(b)) {
 | |
|         MULTI_HEAP_STDERR_PRINTF("Block %p data size 0x%08x bytes next block %p", b, block_data_size(b), get_next_block(b));
 | |
|         if (is_free(b)) {
 | |
|             MULTI_HEAP_STDERR_PRINTF(" FREE. Next free %p\n", b->next_free);
 | |
|         } else {
 | |
|             MULTI_HEAP_STDERR_PRINTF("%s", "\n"); /* C macros & optional __VA_ARGS__ */
 | |
|         }
 | |
|     }
 | |
|     multi_heap_internal_unlock(heap);
 | |
| }
 | |
| 
 | |
| size_t multi_heap_free_size_impl(multi_heap_handle_t heap)
 | |
| {
 | |
|     if (heap == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
|     return heap->free_bytes;
 | |
| }
 | |
| 
 | |
| size_t multi_heap_minimum_free_size_impl(multi_heap_handle_t heap)
 | |
| {
 | |
|     if (heap == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
|     return heap->minimum_free_bytes;
 | |
| }
 | |
| 
 | |
| void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info)
 | |
| {
 | |
|     memset(info, 0, sizeof(multi_heap_info_t));
 | |
| 
 | |
|     if (heap == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     multi_heap_internal_lock(heap);
 | |
|     for(heap_block_t *b = get_next_block(&heap->first_block); !is_last_block(b); b = get_next_block(b)) {
 | |
|         info->total_blocks++;
 | |
|         if (is_free(b)) {
 | |
|             size_t s = block_data_size(b);
 | |
|             info->total_free_bytes += s;
 | |
|             if (s > info->largest_free_block) {
 | |
|                 info->largest_free_block = s;
 | |
|             }
 | |
|             info->free_blocks++;
 | |
|         } else {
 | |
|             info->total_allocated_bytes += block_data_size(b);
 | |
|             info->allocated_blocks++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     info->minimum_free_bytes = heap->minimum_free_bytes;
 | |
|     // heap has wrong total size (address printed here is not indicative of the real error)
 | |
|     MULTI_HEAP_ASSERT(info->total_free_bytes == heap->free_bytes, heap);
 | |
| 
 | |
|     multi_heap_internal_unlock(heap);
 | |
| 
 | |
| }
 | 
