mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	 e21ab0332b
			
		
	
	e21ab0332b
	
	
	
		
			
			Vanilla FreeRTOS expects applications to use one of the heap implementations provided by FreeRTOS (i.e., heap_x.c), where functions such as pvPortMalloc() and vPortFree() are defined in the heap implementation. However, ESP-IDF already provides its own heap implementation (i.e., esp_heap_caps.h). Thus, the pvPortMallc()/vPortFree() functions were previously overriden by macro to call esp_heap functions directly. This commit refactors the FreeRTOS port's heap as such: - Added a heap_idf.c that implements all of the heap related functions required by FreeRTOS source - All dynamic memory allocated by FreeRTOS is from internal memory. Thus, the FreeRTOS heap is the internal memory subset of the ESP-IDF heap. - Removed some old macros to reduce diff from upstream source code.
		
			
				
	
	
		
			844 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			844 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include "sdkconfig.h"
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| #include "FreeRTOS.h"
 | |
| #include "task.h"   //For vApplicationStackOverflowHook
 | |
| #include "portmacro.h"
 | |
| #include "spinlock.h"
 | |
| #include "xt_instr_macros.h"
 | |
| #include "xtensa/xtensa_context.h"
 | |
| #include "xtensa/corebits.h"
 | |
| #include "xtensa/config/core.h"
 | |
| #include "xtensa/config/core-isa.h"
 | |
| #include "xtensa/xtruntime.h"
 | |
| #include "esp_private/esp_int_wdt.h"
 | |
| #include "esp_private/systimer.h"
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_heap_caps.h"
 | |
| #include "esp_system.h"
 | |
| #include "esp_task.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_cpu.h"
 | |
| #include "esp_rom_sys.h"
 | |
| #include "esp_task_wdt.h"
 | |
| #include "esp_heap_caps_init.h"
 | |
| #include "esp_freertos_hooks.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_memory_utils.h"
 | |
| #ifdef CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER
 | |
| #include "soc/periph_defs.h"
 | |
| #include "soc/system_reg.h"
 | |
| #include "hal/systimer_hal.h"
 | |
| #include "hal/systimer_ll.h"
 | |
| #endif // CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER
 | |
| 
 | |
| _Static_assert(portBYTE_ALIGNMENT == 16, "portBYTE_ALIGNMENT must be set to 16");
 | |
| 
 | |
| /* ---------------------------------------------------- Variables ------------------------------------------------------
 | |
|  * - Various variables used to maintain the FreeRTOS port's state. Used from both port.c and various .S files
 | |
|  * - Constant offsets are used by assembly to jump to particular TCB members or a stack area (such as the CPSA). We use
 | |
|  *   C constants instead of preprocessor macros due to assembly lacking "offsetof()".
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | |
| 
 | |
| #if XCHAL_CP_NUM > 0
 | |
| /* Offsets used to navigate to a task's CPSA on the stack */
 | |
| const DRAM_ATTR uint32_t offset_pxEndOfStack = offsetof(StaticTask_t, pxDummy8);
 | |
| const DRAM_ATTR uint32_t offset_cpsa = XT_CP_SIZE;  /* Offset to start of the CPSA area on the stack. See uxInitialiseStackCPSA(). */
 | |
| #if configNUM_CORES > 1
 | |
| /* Offset to TCB_t.uxCoreAffinityMask member. Used to pin unpinned tasks that use the FPU. */
 | |
| const DRAM_ATTR uint32_t offset_uxCoreAffinityMask = offsetof(StaticTask_t, uxDummy25);
 | |
| #if configUSE_CORE_AFFINITY != 1
 | |
| #error "configUSE_CORE_AFFINITY must be 1 on multicore targets with coprocessor support"
 | |
| #endif
 | |
| #endif /* configNUM_CORES > 1 */
 | |
| #endif /* XCHAL_CP_NUM > 0 */
 | |
| 
 | |
| volatile unsigned port_xSchedulerRunning[portNUM_PROCESSORS] = {0}; // Indicates whether scheduler is running on a per-core basis
 | |
| unsigned int port_interruptNesting[portNUM_PROCESSORS] = {0};  // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit
 | |
| //FreeRTOS SMP Locks
 | |
| portMUX_TYPE port_xTaskLock = portMUX_INITIALIZER_UNLOCKED;
 | |
| portMUX_TYPE port_xISRLock = portMUX_INITIALIZER_UNLOCKED;
 | |
| 
 | |
| /* ------------------------------------------------ IDF Compatibility --------------------------------------------------
 | |
|  * - These need to be defined for IDF to compile
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | |
| 
 | |
| // --------------------- Interrupts ------------------------
 | |
| 
 | |
| BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void)
 | |
| {
 | |
|     return (port_interruptNesting[xPortGetCoreID()] != 0);
 | |
| }
 | |
| 
 | |
| // ------------------ Critical Sections --------------------
 | |
| 
 | |
| /*
 | |
| Variables used by IDF critical sections only (SMP tracks critical nesting inside TCB now)
 | |
| [refactor-todo] Figure out how IDF critical sections will be merged with SMP FreeRTOS critical sections
 | |
| */
 | |
| BaseType_t port_uxCriticalNestingIDF[portNUM_PROCESSORS] = {0};
 | |
| BaseType_t port_uxCriticalOldInterruptStateIDF[portNUM_PROCESSORS] = {0};
 | |
| 
 | |
| /*
 | |
| *******************************************************************************
 | |
| * Interrupt stack. The size of the interrupt stack is determined by the config
 | |
| * parameter "configISR_STACK_SIZE" in FreeRTOSConfig.h
 | |
| *******************************************************************************
 | |
| */
 | |
| volatile StackType_t DRAM_ATTR __attribute__((aligned(16))) port_IntStack[portNUM_PROCESSORS][configISR_STACK_SIZE];
 | |
| /* One flag for each individual CPU. */
 | |
| volatile uint32_t port_switch_flag[portNUM_PROCESSORS];
 | |
| 
 | |
| BaseType_t xPortEnterCriticalTimeout(portMUX_TYPE *lock, BaseType_t timeout)
 | |
| {
 | |
|     /* Interrupts may already be disabled (if this function is called in nested
 | |
|      * manner). However, there's no atomic operation that will allow us to check,
 | |
|      * thus we have to disable interrupts again anyways.
 | |
|      *
 | |
|      * However, if this is call is NOT nested (i.e., the first call to enter a
 | |
|      * critical section), we will save the previous interrupt level so that the
 | |
|      * saved level can be restored on the last call to exit the critical.
 | |
|      */
 | |
|     BaseType_t xOldInterruptLevel = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL);
 | |
|     if (!spinlock_acquire(lock, timeout)) {
 | |
|         //Timed out attempting to get spinlock. Restore previous interrupt level and return
 | |
|         XTOS_RESTORE_JUST_INTLEVEL((int) xOldInterruptLevel);
 | |
|         return pdFAIL;
 | |
|     }
 | |
|     //Spinlock acquired. Increment the IDF critical nesting count.
 | |
|     BaseType_t coreID = xPortGetCoreID();
 | |
|     BaseType_t newNesting = port_uxCriticalNestingIDF[coreID] + 1;
 | |
|     port_uxCriticalNestingIDF[coreID] = newNesting;
 | |
|     //If this is the first entry to a critical section. Save the old interrupt level.
 | |
|     if ( newNesting == 1 ) {
 | |
|         port_uxCriticalOldInterruptStateIDF[coreID] = xOldInterruptLevel;
 | |
|     }
 | |
|     return pdPASS;
 | |
| 
 | |
| }
 | |
| 
 | |
| void vPortExitCriticalIDF(portMUX_TYPE *lock)
 | |
| {
 | |
|     /* This function may be called in a nested manner. Therefore, we only need
 | |
|      * to reenable interrupts if this is the last call to exit the critical. We
 | |
|      * can use the nesting count to determine whether this is the last exit call.
 | |
|      */
 | |
|     spinlock_release(lock);
 | |
|     BaseType_t coreID = xPortGetCoreID();
 | |
|     BaseType_t nesting = port_uxCriticalNestingIDF[coreID];
 | |
|     if (nesting > 0) {
 | |
|         nesting--;
 | |
|         port_uxCriticalNestingIDF[coreID] = nesting;
 | |
|         //This is the last exit call, restore the saved interrupt level
 | |
|         if ( nesting == 0 ) {
 | |
|             XTOS_RESTORE_JUST_INTLEVEL((int) port_uxCriticalOldInterruptStateIDF[coreID]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
| In case any IDF libs called the port critical functions directly instead of through the macros.
 | |
| Just inline call the IDF versions
 | |
| */
 | |
| void vPortEnterCritical(portMUX_TYPE *lock)
 | |
| {
 | |
|     vPortEnterCriticalIDF(lock);
 | |
| }
 | |
| 
 | |
| void vPortExitCritical(portMUX_TYPE *lock)
 | |
| {
 | |
|     vPortExitCriticalIDF(lock);
 | |
| }
 | |
| 
 | |
| // ----------------------- System --------------------------
 | |
| 
 | |
| #define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1)
 | |
| 
 | |
| void vPortSetStackWatchpoint( void *pxStackStart )
 | |
| {
 | |
|     //Set watchpoint 1 to watch the last 32 bytes of the stack.
 | |
|     //Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because
 | |
|     //the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32
 | |
|     //bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most
 | |
|     //28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes.
 | |
|     //This way, we make sure we trigger before/when the stack canary is corrupted, not after.
 | |
|     int addr = (int)pxStackStart;
 | |
|     addr = (addr + 31) & (~31);
 | |
|     esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE);
 | |
| }
 | |
| 
 | |
| // ---------------------- Tick Timer -----------------------
 | |
| 
 | |
| BaseType_t xPortSysTickHandler(void);
 | |
| 
 | |
| #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
 | |
| extern void _frxt_tick_timer_init(void);
 | |
| extern void _xt_tick_divisor_init(void);
 | |
| 
 | |
| #ifdef CONFIG_FREERTOS_CORETIMER_0
 | |
|     #define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER0_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF)
 | |
| #endif
 | |
| #ifdef CONFIG_FREERTOS_CORETIMER_1
 | |
|     #define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER1_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * @brief Initialize CCONT timer to generate the tick interrupt
 | |
|  *
 | |
|  */
 | |
| void vPortSetupTimer(void)
 | |
| {
 | |
|     /* Init the tick divisor value */
 | |
|     _xt_tick_divisor_init();
 | |
| 
 | |
|     _frxt_tick_timer_init();
 | |
| }
 | |
| 
 | |
| #elif CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER
 | |
| 
 | |
| _Static_assert(SOC_CPU_CORES_NUM <= SOC_SYSTIMER_ALARM_NUM - 1, "the number of cores must match the number of core alarms in SYSTIMER");
 | |
| 
 | |
| void SysTickIsrHandler(void *arg);
 | |
| 
 | |
| static uint32_t s_handled_systicks[portNUM_PROCESSORS] = { 0 };
 | |
| 
 | |
| #define SYSTICK_INTR_ID (ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE)
 | |
| 
 | |
| /**
 | |
|  * @brief Set up the systimer peripheral to generate the tick interrupt
 | |
|  *
 | |
|  * Both timer alarms are configured in periodic mode.
 | |
|  * It is done at the same time so SysTicks for both CPUs occur at the same time or very close.
 | |
|  * Shifts a time of triggering interrupts for core 0 and core 1.
 | |
|  */
 | |
| void vPortSetupTimer(void)
 | |
| {
 | |
|     unsigned cpuid = xPortGetCoreID();
 | |
| #ifdef CONFIG_FREERTOS_CORETIMER_SYSTIMER_LVL3
 | |
|     const unsigned level = ESP_INTR_FLAG_LEVEL3;
 | |
| #else
 | |
|     const unsigned level = ESP_INTR_FLAG_LEVEL1;
 | |
| #endif
 | |
|     /* Systimer HAL layer object */
 | |
|     static systimer_hal_context_t systimer_hal;
 | |
|     /* set system timer interrupt vector */
 | |
|     ESP_ERROR_CHECK(esp_intr_alloc(ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE + cpuid, ESP_INTR_FLAG_IRAM | level, SysTickIsrHandler, &systimer_hal, NULL));
 | |
| 
 | |
|     if (cpuid == 0) {
 | |
|         periph_module_enable(PERIPH_SYSTIMER_MODULE);
 | |
|         systimer_hal_init(&systimer_hal);
 | |
|         systimer_hal_tick_rate_ops_t ops = {
 | |
|             .ticks_to_us = systimer_ticks_to_us,
 | |
|             .us_to_ticks = systimer_us_to_ticks,
 | |
|         };
 | |
|         systimer_hal_set_tick_rate_ops(&systimer_hal, &ops);
 | |
|         systimer_ll_set_counter_value(systimer_hal.dev, SYSTIMER_COUNTER_OS_TICK, 0);
 | |
|         systimer_ll_apply_counter_value(systimer_hal.dev, SYSTIMER_COUNTER_OS_TICK);
 | |
| 
 | |
|         for (cpuid = 0; cpuid < SOC_CPU_CORES_NUM; cpuid++) {
 | |
|             systimer_hal_counter_can_stall_by_cpu(&systimer_hal, SYSTIMER_COUNTER_OS_TICK, cpuid, false);
 | |
|         }
 | |
| 
 | |
|         for (cpuid = 0; cpuid < portNUM_PROCESSORS; ++cpuid) {
 | |
|             uint32_t alarm_id = SYSTIMER_ALARM_OS_TICK_CORE0 + cpuid;
 | |
| 
 | |
|             /* configure the timer */
 | |
|             systimer_hal_connect_alarm_counter(&systimer_hal, alarm_id, SYSTIMER_COUNTER_OS_TICK);
 | |
|             systimer_hal_set_alarm_period(&systimer_hal, alarm_id, 1000000UL / CONFIG_FREERTOS_HZ);
 | |
|             systimer_hal_select_alarm_mode(&systimer_hal, alarm_id, SYSTIMER_ALARM_MODE_PERIOD);
 | |
|             systimer_hal_counter_can_stall_by_cpu(&systimer_hal, SYSTIMER_COUNTER_OS_TICK, cpuid, true);
 | |
|             if (cpuid == 0) {
 | |
|                 systimer_hal_enable_alarm_int(&systimer_hal, alarm_id);
 | |
|                 systimer_hal_enable_counter(&systimer_hal, SYSTIMER_COUNTER_OS_TICK);
 | |
| #ifndef CONFIG_FREERTOS_UNICORE
 | |
|                 // SysTick of core 0 and core 1 are shifted by half of period
 | |
|                 systimer_hal_counter_value_advance(&systimer_hal, SYSTIMER_COUNTER_OS_TICK, 1000000UL / CONFIG_FREERTOS_HZ / 2);
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         uint32_t alarm_id = SYSTIMER_ALARM_OS_TICK_CORE0 + cpuid;
 | |
|         systimer_hal_enable_alarm_int(&systimer_hal, alarm_id);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Systimer interrupt handler.
 | |
|  *
 | |
|  * The Systimer interrupt for SysTick works in periodic mode no need to calc the next alarm.
 | |
|  * If a timer interrupt is ever serviced more than one tick late, it is necessary to process multiple ticks.
 | |
|  */
 | |
| IRAM_ATTR void SysTickIsrHandler(void *arg)
 | |
| {
 | |
|     uint32_t cpuid = xPortGetCoreID();
 | |
|     systimer_hal_context_t *systimer_hal = (systimer_hal_context_t *)arg;
 | |
| #ifdef CONFIG_PM_TRACE
 | |
|     ESP_PM_TRACE_ENTER(TICK, cpuid);
 | |
| #endif
 | |
| 
 | |
|     uint32_t alarm_id = SYSTIMER_ALARM_OS_TICK_CORE0 + cpuid;
 | |
|     do {
 | |
|         systimer_ll_clear_alarm_int(systimer_hal->dev, alarm_id);
 | |
| 
 | |
|         uint32_t diff = systimer_hal_get_counter_value(systimer_hal, SYSTIMER_COUNTER_OS_TICK) / systimer_ll_get_alarm_period(systimer_hal->dev, alarm_id) - s_handled_systicks[cpuid];
 | |
|         if (diff > 0) {
 | |
|             if (s_handled_systicks[cpuid] == 0) {
 | |
|                 s_handled_systicks[cpuid] = diff;
 | |
|                 diff = 1;
 | |
|             } else {
 | |
|                 s_handled_systicks[cpuid] += diff;
 | |
|             }
 | |
| 
 | |
|             do {
 | |
|                 xPortSysTickHandler();
 | |
|             } while (--diff);
 | |
|         }
 | |
|     } while (systimer_ll_is_alarm_int_fired(systimer_hal->dev, alarm_id));
 | |
| 
 | |
| #ifdef CONFIG_PM_TRACE
 | |
|     ESP_PM_TRACE_EXIT(TICK, cpuid);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------- Port Implementations -------------------------------------------------
 | |
|  * Implementations of Porting Interface functions
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | |
| 
 | |
| // --------------------- Interrupts ------------------------
 | |
| 
 | |
| BaseType_t xPortCheckIfInISR(void)
 | |
| {
 | |
|     //Disable interrupts so that reading port_interruptNesting is atomic
 | |
|     BaseType_t ret;
 | |
|     unsigned int prev_int_level = portDISABLE_INTERRUPTS();
 | |
|     ret = (port_interruptNesting[xPortGetCoreID()] != 0) ? pdTRUE : pdFALSE;
 | |
|     portRESTORE_INTERRUPTS(prev_int_level);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| // ------------------ Critical Sections --------------------
 | |
| 
 | |
| void vPortTakeLock( portMUX_TYPE *lock )
 | |
| {
 | |
|     spinlock_acquire( lock, portMUX_NO_TIMEOUT);
 | |
| }
 | |
| 
 | |
| void vPortReleaseLock( portMUX_TYPE *lock )
 | |
| {
 | |
|     spinlock_release( lock );
 | |
| }
 | |
| 
 | |
| // ---------------------- Yielding -------------------------
 | |
| 
 | |
| // ----------------------- System --------------------------
 | |
| 
 | |
| /* ------------------------------------------------ FreeRTOS Portable --------------------------------------------------
 | |
|  * - Provides implementation for functions required by FreeRTOS
 | |
|  * - Declared in portable.h
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | |
| 
 | |
| // ----------------- Scheduler Start/End -------------------
 | |
| 
 | |
| extern void _xt_coproc_init(void);
 | |
| 
 | |
| BaseType_t xPortStartScheduler( void )
 | |
| {
 | |
|     portDISABLE_INTERRUPTS();
 | |
|     // Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored
 | |
| 
 | |
| #if XCHAL_CP_NUM > 0
 | |
|     /* Initialize co-processor management for tasks. Leave CPENABLE alone. */
 | |
|     _xt_coproc_init();
 | |
| #endif
 | |
| 
 | |
|     /* Setup the hardware to generate the tick. */
 | |
|     vPortSetupTimer();
 | |
| 
 | |
|     port_xSchedulerRunning[xPortGetCoreID()] = 1;
 | |
| 
 | |
| #if configNUM_CORES > 1
 | |
|     // Workaround for non-thread safe multi-core OS startup (see IDF-4524)
 | |
|     if (xPortGetCoreID() != 0) {
 | |
|         vTaskStartSchedulerOtherCores();
 | |
|     }
 | |
| #endif // configNUM_CORES > 1
 | |
| 
 | |
|     // Cannot be directly called from C; never returns
 | |
|     __asm__ volatile ("call0    _frxt_dispatch\n");
 | |
| 
 | |
|     /* Should not get here. */
 | |
|     return pdTRUE;
 | |
| }
 | |
| 
 | |
| void vPortEndScheduler( void )
 | |
| {
 | |
|     ;
 | |
| }
 | |
| 
 | |
| // ------------------------ Stack --------------------------
 | |
| 
 | |
| // User exception dispatcher when exiting
 | |
| void _xt_user_exit(void);
 | |
| 
 | |
| #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
 | |
| // Wrapper to allow task functions to return (increases stack overhead by 16 bytes)
 | |
| static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters)
 | |
| {
 | |
|     pxCode(pvParameters);
 | |
|     //FreeRTOS tasks should not return. Log the task name and abort.
 | |
|     char *pcTaskName = pcTaskGetName(NULL);
 | |
|     ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName);
 | |
|     abort();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * @brief Align stack pointer in a downward growing stack
 | |
|  *
 | |
|  * This macro is used to round a stack pointer downwards to the nearest n-byte boundary, where n is a power of 2.
 | |
|  * This macro is generally used when allocating aligned areas on a downward growing stack.
 | |
|  */
 | |
| #define STACKPTR_ALIGN_DOWN(n, ptr)     ((ptr) & (~((n)-1)))
 | |
| 
 | |
| #if XCHAL_CP_NUM > 0
 | |
| /**
 | |
|  * @brief Allocate and initialize coprocessor save area on the stack
 | |
|  *
 | |
|  * This function allocates the coprocessor save area on the stack (sized XT_CP_SIZE) which includes...
 | |
|  *  - Individual save areas for each coprocessor (size XT_CPx_SA, inclusive of each area's alignment)
 | |
|  *  - Coprocessor context switching flags (e.g., XT_CPENABLE, XT_CPSTORED, XT_CP_CS_ST, XT_CP_ASA).
 | |
|  *
 | |
|  * The coprocessor save area is aligned to a 16-byte boundary.
 | |
|  * The coprocessor context switching flags are then initialized
 | |
|  *
 | |
|  * @param[in] uxStackPointer Current stack pointer address
 | |
|  * @return Stack pointer that points to allocated and initialized the coprocessor save area
 | |
|  */
 | |
| FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackCPSA(UBaseType_t uxStackPointer)
 | |
| {
 | |
|     /*
 | |
|     HIGH ADDRESS
 | |
|     |-------------------|      XT_CP_SIZE
 | |
|     | CPn SA            |           ^
 | |
|     | ...               |           |
 | |
|     | CP0 SA            |           |
 | |
|     | ----------------- |           |       ---- XCHAL_TOTAL_SA_ALIGN aligned
 | |
|     |-------------------|           |   12 bytes
 | |
|     | XT_CP_ASA         |           |       ^
 | |
|     | XT_CP_CS_ST       |           |       |
 | |
|     | XT_CPSTORED       |           |       |
 | |
|     | XT_CPENABLE       |           |       |
 | |
|     |-------------------| ---------------------- 16 byte aligned
 | |
|     LOW ADDRESS
 | |
|     */
 | |
| 
 | |
|     // Allocate overall coprocessor save area, aligned down to 16 byte boundary
 | |
|     uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_CP_SIZE);
 | |
|     // Initialize the coprocessor context switching flags.
 | |
|     uint32_t *p = (uint32_t *)uxStackPointer;
 | |
|     p[0] = 0;   // Clear XT_CPENABLE and XT_CPSTORED
 | |
|     p[1] = 0;   // Clear XT_CP_CS_ST
 | |
|     // XT_CP_ASA points to the aligned start of the individual CP save areas (i.e., start of CP0 SA)
 | |
|     p[2] = (uint32_t)ALIGNUP(XCHAL_TOTAL_SA_ALIGN, (uint32_t)uxStackPointer + 12);
 | |
|     return uxStackPointer;
 | |
| }
 | |
| #endif /* XCHAL_CP_NUM > 0 */
 | |
| 
 | |
| /**
 | |
|  * @brief Allocate and initialize GCC TLS area
 | |
|  *
 | |
|  * This function allocates and initializes the area on the stack used to store GCC TLS (Thread Local Storage) variables.
 | |
|  * - The area's size is derived from the TLS section's linker variables, and rounded up to a multiple of 16 bytes
 | |
|  * - The allocated area is aligned to a 16-byte aligned address
 | |
|  * - The TLS variables in the area are then initialized
 | |
|  *
 | |
|  * Each task access the TLS variables using the THREADPTR register plus an offset to obtain the address of the variable.
 | |
|  * The value for the THREADPTR register is also calculated by this function, and that value should be use to initialize
 | |
|  * the THREADPTR register.
 | |
|  *
 | |
|  * @param[in] uxStackPointer Current stack pointer address
 | |
|  * @param[out] ret_threadptr_reg_init Calculated THREADPTR register initialization value
 | |
|  * @return Stack pointer that points to the TLS area
 | |
|  */
 | |
| FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackTLS(UBaseType_t uxStackPointer, uint32_t *ret_threadptr_reg_init)
 | |
| {
 | |
|     /*
 | |
|     TLS layout at link-time, where 0xNNN is the offset that the linker calculates to a particular TLS variable.
 | |
| 
 | |
|     LOW ADDRESS
 | |
|             |---------------------------|   Linker Symbols
 | |
|             | Section                   |   --------------
 | |
|             | .flash.rodata             |
 | |
|          0x0|---------------------------| <- _flash_rodata_start
 | |
|           ^ | Other Data                |
 | |
|           | |---------------------------| <- _thread_local_start
 | |
|           | | .tbss                     | ^
 | |
|           V |                           | |
 | |
|       0xNNN | int example;              | | tls_area_size
 | |
|             |                           | |
 | |
|             | .tdata                    | V
 | |
|             |---------------------------| <- _thread_local_end
 | |
|             | Other data                |
 | |
|             | ...                       |
 | |
|             |---------------------------|
 | |
|     HIGH ADDRESS
 | |
|     */
 | |
|     // Calculate the TLS area's size (rounded up to multiple of 16 bytes).
 | |
|     extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align;
 | |
|     const uint32_t tls_area_size = ALIGNUP(16, (uint32_t)&_thread_local_end - (uint32_t)&_thread_local_start);
 | |
|     // TODO: check that TLS area fits the stack
 | |
| 
 | |
|     // Allocate space for the TLS area on the stack. The area must be allocated at a 16-byte aligned address
 | |
|     uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - (UBaseType_t)tls_area_size);
 | |
|     // Initialize the TLS area with the initialization values of each TLS variable
 | |
|     memcpy((void *)uxStackPointer, &_thread_local_start, tls_area_size);
 | |
| 
 | |
|     /*
 | |
|     Calculate the THREADPTR register's initialization value based on the link-time offset and the TLS area allocated on
 | |
|     the stack.
 | |
| 
 | |
|     HIGH ADDRESS
 | |
|             |---------------------------|
 | |
|             | .tdata (*)                |
 | |
|           ^ | int example;              |
 | |
|           | |                           |
 | |
|           | | .tbss (*)                 |
 | |
|           | |---------------------------| <- uxStackPointer (start of TLS area)
 | |
|     0xNNN | |                           | ^
 | |
|           | |                           | |
 | |
|           |             ...               | (_thread_local_start - _flash_rodata_start) + align_up(TCB_SIZE, tls_section_alignment)
 | |
|           | |                           | |
 | |
|           | |                           | V
 | |
|           V |                           | <- threadptr register's value
 | |
| 
 | |
|     LOW ADDRESS
 | |
| 
 | |
|     Note: Xtensa is slightly different compared to the RISC-V port as there is an implicit aligned TCB_SIZE added to
 | |
|     the offset. (search for 'tpoff' in elf32-xtensa.c in BFD):
 | |
|         - "offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment)"
 | |
|         - TCB_SIZE is hardcoded to 8
 | |
|     */
 | |
|     const uint32_t tls_section_align = (uint32_t)&_flash_rodata_align;  // ALIGN value of .flash.rodata section
 | |
|     #define TCB_SIZE 8
 | |
|     const uint32_t base = ALIGNUP(tls_section_align, TCB_SIZE);
 | |
|     *ret_threadptr_reg_init = (uint32_t)uxStackPointer - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base;
 | |
| 
 | |
|     return uxStackPointer;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Initialize the task's starting interrupt stack frame
 | |
|  *
 | |
|  * This function initializes the task's starting interrupt stack frame. The dispatcher will use this stack frame in a
 | |
|  * context restore routine. Therefore, the starting stack frame must be initialized as if the task was interrupted right
 | |
|  * before its first instruction is called.
 | |
|  *
 | |
|  * - The stack frame is allocated to a 16-byte aligned address
 | |
|  * - The THREADPTR register is saved in the extra storage area of the stack frame. This is also initialized
 | |
|  *
 | |
|  * @param[in] uxStackPointer Current stack pointer address
 | |
|  * @param[in] pxCode Task function
 | |
|  * @param[in] pvParameters Task function's parameter
 | |
|  * @param[in] threadptr_reg_init THREADPTR register initialization value
 | |
|  * @return Stack pointer that points to the stack frame
 | |
|  */
 | |
| FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackFrame(UBaseType_t uxStackPointer, TaskFunction_t pxCode, void *pvParameters, uint32_t threadptr_reg_init)
 | |
| {
 | |
|     /*
 | |
|     HIGH ADDRESS
 | |
|     |---------------------------|       ^ XT_STK_FRMSZ
 | |
|     |                           |       |
 | |
|     | Stack Frame Extra Storage |       |
 | |
|     |                           |       |
 | |
|     | ------------------------- |       |   ^ XT_STK_EXTRA
 | |
|     |                           |       |   |
 | |
|     | Intr/Exc Stack Frame      |       |   |
 | |
|     |                           |       V   V
 | |
|     | ------------------------- | ---------------------- 16 byte aligned
 | |
|     LOW ADDRESS
 | |
|     */
 | |
| 
 | |
|     /*
 | |
|     Allocate space for the task's starting interrupt stack frame.
 | |
|     - The stack frame must be allocated to a 16-byte aligned address.
 | |
|     - We use XT_STK_FRMSZ (instead of sizeof(XtExcFrame)) as it...
 | |
|         - includes the size of the extra storage area
 | |
|         - includes the size for a base save area before the stack frame
 | |
|         - rounds up the total size to a multiple of 16
 | |
|     */
 | |
|     UBaseType_t uxStackPointerPrevious = uxStackPointer;
 | |
|     uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - XT_STK_FRMSZ);
 | |
| 
 | |
|     // Clear the entire interrupt stack frame
 | |
|     memset((void *)uxStackPointer, 0, (size_t)(uxStackPointerPrevious - uxStackPointer));
 | |
| 
 | |
|     XtExcFrame *frame = (XtExcFrame *)uxStackPointer;
 | |
| 
 | |
|     /*
 | |
|     Initialize common registers
 | |
|     */
 | |
|     frame->a0 = 0;                                          // Set the return address to 0 terminate GDB backtrace
 | |
|     frame->a1 = uxStackPointer + XT_STK_FRMSZ;              // Saved stack pointer should point to physical top of stack frame
 | |
|     frame->exit = (UBaseType_t) _xt_user_exit;              // User exception exit dispatcher
 | |
| 
 | |
|     /*
 | |
|     Initialize the task's entry point. This will differ depending on
 | |
|     - Whether the task's entry point is the wrapper function or pxCode
 | |
|     - Whether Windowed ABI is used (for windowed, we mimic the task entry point being call4'd )
 | |
|     */
 | |
|     #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
 | |
|         frame->pc = (UBaseType_t) vPortTaskWrapper;         // Task entry point is the wrapper function
 | |
|         #ifdef __XTENSA_CALL0_ABI__
 | |
|             frame->a2 = (UBaseType_t) pxCode;               // Wrapper function's argument 0 (which is the task function)
 | |
|             frame->a3 = (UBaseType_t) pvParameters;         // Wrapper function's argument 1 (which is the task function's argument)
 | |
|         #else // __XTENSA_CALL0_ABI__
 | |
|             frame->a6 = (UBaseType_t) pxCode;               // Wrapper function's argument 0 (which is the task function), passed as if we call4'd
 | |
|             frame->a7 = (UBaseType_t) pvParameters;         // Wrapper function's argument 1 (which is the task function's argument), passed as if we call4'd
 | |
|         #endif // __XTENSA_CALL0_ABI__
 | |
|     #else
 | |
|         frame->pc = (UBaseType_t) pxCode;                   // Task entry point is the provided task function
 | |
|         #ifdef __XTENSA_CALL0_ABI__
 | |
|             frame->a2 = (UBaseType_t) pvParameters;         // Task function's argument
 | |
|         #else // __XTENSA_CALL0_ABI__
 | |
|             frame->a6 = (UBaseType_t) pvParameters;         // Task function's argument, passed as if we call4'd
 | |
|         #endif // __XTENSA_CALL0_ABI__
 | |
|     #endif
 | |
| 
 | |
|     /*
 | |
|     Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode.
 | |
|     For windowed ABI also set WOE and CALLINC (pretend task was 'call4'd)
 | |
|     */
 | |
|     #ifdef __XTENSA_CALL0_ABI__
 | |
|         frame->ps = PS_UM | PS_EXCM;
 | |
|     #else // __XTENSA_CALL0_ABI__
 | |
|         frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1);
 | |
|     #endif // __XTENSA_CALL0_ABI__
 | |
| 
 | |
|     #ifdef XT_USE_SWPRI
 | |
|         // Set the initial virtual priority mask value to all 1's.
 | |
|         frame->vpri = 0xFFFFFFFF;
 | |
|     #endif
 | |
| 
 | |
|     // Initialize the threadptr register in the extra save area of the stack frame
 | |
|     uint32_t *threadptr_reg = (uint32_t *)(uxStackPointer + XT_STK_EXTRA);
 | |
|     *threadptr_reg = threadptr_reg_init;
 | |
| 
 | |
|     return uxStackPointer;
 | |
| }
 | |
| 
 | |
| #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
 | |
| StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
 | |
|                                      StackType_t * pxEndOfStack,
 | |
|                                      TaskFunction_t pxCode,
 | |
|                                      void * pvParameters )
 | |
| #else
 | |
| StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
 | |
|                                      TaskFunction_t pxCode,
 | |
|                                      void * pvParameters )
 | |
| #endif
 | |
| {
 | |
| #ifdef __clang_analyzer__
 | |
|     // Teach clang-tidy that pxTopOfStack cannot be a pointer to const
 | |
|     volatile StackType_t * pxTemp = pxTopOfStack;
 | |
|     pxTopOfStack = pxTemp;
 | |
| #endif /*__clang_analyzer__ */
 | |
|     /*
 | |
|     HIGH ADDRESS
 | |
|     |---------------------------| <- pxTopOfStack on entry
 | |
|     | Coproc Save Area          | (CPSA MUST BE FIRST)
 | |
|     | ------------------------- |
 | |
|     | TLS Variables             |
 | |
|     | ------------------------- | <- Start of useable stack
 | |
|     | Starting stack frame      |
 | |
|     | ------------------------- | <- pxTopOfStack on return (which is the tasks current SP)
 | |
|     |             |             |
 | |
|     |             |             |
 | |
|     |             V             |
 | |
|     ----------------------------- <- Bottom of stack
 | |
|     LOW ADDRESS
 | |
| 
 | |
|     - All stack areas are aligned to 16 byte boundary
 | |
|     - We use UBaseType_t for all of stack area initialization functions for more convenient pointer arithmetic
 | |
|     */
 | |
| 
 | |
|     UBaseType_t uxStackPointer = (UBaseType_t)pxTopOfStack;
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| 
 | |
| #if XCHAL_CP_NUM > 0
 | |
|     // Initialize the coprocessor save area. THIS MUST BE THE FIRST AREA due to access from _frxt_task_coproc_state()
 | |
|     uxStackPointer = uxInitialiseStackCPSA(uxStackPointer);
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| #endif /* XCHAL_CP_NUM > 0 */
 | |
| 
 | |
|     // Initialize the GCC TLS area
 | |
|     uint32_t threadptr_reg_init;
 | |
|     uxStackPointer = uxInitialiseStackTLS(uxStackPointer, &threadptr_reg_init);
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| 
 | |
|     // Initialize the starting interrupt stack frame
 | |
|     uxStackPointer = uxInitialiseStackFrame(uxStackPointer, pxCode, pvParameters, threadptr_reg_init);
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| 
 | |
|     // Return the task's current stack pointer address which should point to the starting interrupt stack frame
 | |
|     return (StackType_t *)uxStackPointer;
 | |
| }
 | |
| // -------------------- Co-Processor -----------------------
 | |
| #if ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 )
 | |
| 
 | |
| void _xt_coproc_release(volatile void *coproc_sa_base, BaseType_t xTargetCoreID);
 | |
| 
 | |
| void vPortCleanUpCoprocArea( void *pxTCB )
 | |
| {
 | |
|     UBaseType_t uxCoprocArea;
 | |
|     BaseType_t xTargetCoreID;
 | |
| 
 | |
|     /* Get pointer to the task's coprocessor save area from TCB->pxEndOfStack. See uxInitialiseStackCPSA() */
 | |
|     uxCoprocArea = ( UBaseType_t ) ( ( ( StaticTask_t * ) pxTCB )->pxDummy8 );  /* Get TCB_t.pxEndOfStack */
 | |
|     uxCoprocArea = STACKPTR_ALIGN_DOWN(16, uxCoprocArea - XT_CP_SIZE);
 | |
| 
 | |
|     /* Extract core ID from the affinity mask */
 | |
|     xTargetCoreID = ( ( StaticTask_t * ) pxTCB )->uxDummy25 ;
 | |
|     xTargetCoreID = ( BaseType_t ) __builtin_ffs( ( int ) xTargetCoreID );
 | |
|     assert( xTargetCoreID >= 1 ); // __builtin_ffs always returns first set index + 1
 | |
|     xTargetCoreID -= 1;
 | |
| 
 | |
|     /* If task has live floating point registers somewhere, release them */
 | |
|     _xt_coproc_release( (void *)uxCoprocArea, xTargetCoreID );
 | |
| }
 | |
| #endif // ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 )
 | |
| 
 | |
| // ------- Thread Local Storage Pointers Deletion Callbacks -------
 | |
| 
 | |
| #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
 | |
| void vPortTLSPointersDelCb( void *pxTCB )
 | |
| {
 | |
|     /* Typecast pxTCB to StaticTask_t type to access TCB struct members.
 | |
|      * pvDummy15 corresponds to pvThreadLocalStoragePointers member of the TCB.
 | |
|      */
 | |
|     StaticTask_t *tcb = ( StaticTask_t * )pxTCB;
 | |
| 
 | |
|     /* The TLSP deletion callbacks are stored at an offset of (configNUM_THREAD_LOCAL_STORAGE_POINTERS/2) */
 | |
|     TlsDeleteCallbackFunction_t *pvThreadLocalStoragePointersDelCallback = ( TlsDeleteCallbackFunction_t * )( &( tcb->pvDummy15[ ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ] ) );
 | |
| 
 | |
|     /* We need to iterate over half the depth of the pvThreadLocalStoragePointers area
 | |
|      * to access all TLS pointers and their respective TLS deletion callbacks.
 | |
|      */
 | |
|     for ( int x = 0; x < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ); x++ ) {
 | |
|         if ( pvThreadLocalStoragePointersDelCallback[ x ] != NULL ) {  //If del cb is set
 | |
|             /* In case the TLSP deletion callback has been overwritten by a TLS pointer, gracefully abort. */
 | |
|             if ( !esp_ptr_executable( pvThreadLocalStoragePointersDelCallback[ x ] ) ) {
 | |
|                 // We call EARLY log here as currently portCLEAN_UP_TCB() is called in a critical section
 | |
|                 ESP_EARLY_LOGE("FreeRTOS", "Fatal error: TLSP deletion callback at index %d overwritten with non-excutable pointer %p", x, pvThreadLocalStoragePointersDelCallback[ x ]);
 | |
|                 abort();
 | |
|             }
 | |
| 
 | |
|             pvThreadLocalStoragePointersDelCallback[ x ]( x, tcb->pvDummy15[ x ] );   //Call del cb
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif // CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
 | |
| 
 | |
| // -------------------- Tick Handler -----------------------
 | |
| 
 | |
| extern void esp_vApplicationIdleHook(void);
 | |
| extern void esp_vApplicationTickHook(void);
 | |
| 
 | |
| BaseType_t xPortSysTickHandler(void)
 | |
| {
 | |
|     portbenchmarkIntLatency();
 | |
|     traceISR_ENTER(SYSTICK_INTR_ID);
 | |
|     BaseType_t ret;
 | |
|     esp_vApplicationTickHook();
 | |
|     if (portGET_CORE_ID() == 0) {
 | |
|         // FreeRTOS SMP requires that only core 0 calls xTaskIncrementTick()
 | |
|         ret = xTaskIncrementTick();
 | |
|     } else {
 | |
|         ret = pdFALSE;
 | |
|     }
 | |
|     if (ret != pdFALSE) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     } else {
 | |
|         traceISR_EXIT();
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| // ------------------- Hook Functions ----------------------
 | |
| 
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #if ( configCHECK_FOR_STACK_OVERFLOW > 0 )
 | |
| void  __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName )
 | |
| {
 | |
| #define ERR_STR1 "***ERROR*** A stack overflow in task "
 | |
| #define ERR_STR2 " has been detected."
 | |
|     const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};
 | |
| 
 | |
|     char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 };
 | |
| 
 | |
|     char *dest = buf;
 | |
|     for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) {
 | |
|         dest = strcat(dest, str[i]);
 | |
|     }
 | |
|     esp_system_abort(buf);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
 | |
| /*
 | |
| By default, the port uses vApplicationMinimalIdleHook() to run IDF style idle
 | |
| hooks. However, users may also want to provide their own vApplicationMinimalIdleHook().
 | |
| In this case, we use to -Wl,--wrap option to wrap the user provided vApplicationMinimalIdleHook()
 | |
| */
 | |
| extern void __real_vApplicationMinimalIdleHook( void );
 | |
| void __wrap_vApplicationMinimalIdleHook( void )
 | |
| {
 | |
|     esp_vApplicationIdleHook(); //Run IDF style hooks
 | |
|     __real_vApplicationMinimalIdleHook(); //Call the user provided vApplicationMinimalIdleHook()
 | |
| }
 | |
| #else // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
 | |
| void vApplicationMinimalIdleHook( void )
 | |
| {
 | |
|     esp_vApplicationIdleHook(); //Run IDF style hooks
 | |
| }
 | |
| #endif // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
 | |
| 
 | |
| /*
 | |
|  * Hook function called during prvDeleteTCB() to cleanup any
 | |
|  * user defined static memory areas in the TCB.
 | |
|  */
 | |
| #if CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP
 | |
| void __real_vPortCleanUpTCB( void *pxTCB );
 | |
| 
 | |
| void __wrap_vPortCleanUpTCB( void *pxTCB )
 | |
| #else
 | |
| void vPortCleanUpTCB ( void *pxTCB )
 | |
| #endif /* CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP */
 | |
| {
 | |
| #if ( CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP )
 | |
|     /* Call user defined vPortCleanUpTCB */
 | |
|     __real_vPortCleanUpTCB( pxTCB );
 | |
| #endif /* CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP */
 | |
| 
 | |
| #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
 | |
|     /* Call TLS pointers deletion callbacks */
 | |
|     vPortTLSPointersDelCb( pxTCB );
 | |
| #endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */
 | |
| 
 | |
| #if ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 )
 | |
|     /* Cleanup coproc save area */
 | |
|     vPortCleanUpCoprocArea( pxTCB );
 | |
| #endif // ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 )
 | |
| }
 |