mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-26 19:45:00 +00:00 
			
		
		
		
	 822a40a6cf
			
		
	
	822a40a6cf
	
	
	
		
			
			adc: fixed the issue that ADC power is left on after the calibration is done See merge request espressif/esp-idf!12207
		
			
				
	
	
		
			671 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			671 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2019 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <esp_types.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/timers.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_pm.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "driver/rtc_io.h"
 | |
| #include "sys/lock.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/adc.h"
 | |
| #include "adc1_private.h"
 | |
| 
 | |
| #include "hal/adc_types.h"
 | |
| #include "hal/adc_hal.h"
 | |
| 
 | |
| #if SOC_DAC_PERIPH_NUM > 0
 | |
| #include "driver/dac.h"
 | |
| #include "hal/dac_hal.h"
 | |
| #endif
 | |
| 
 | |
| #include "hal/adc_hal_conf.h"
 | |
| 
 | |
| #define ADC_CHECK_RET(fun_ret) ({                  \
 | |
|     if (fun_ret != ESP_OK) {                                \
 | |
|         ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__);  \
 | |
|         return ESP_FAIL;                                    \
 | |
|     }                                                       \
 | |
| })
 | |
| 
 | |
| static const char *ADC_TAG = "ADC";
 | |
| 
 | |
| #define ADC_CHECK(a, str, ret_val) ({                                               \
 | |
|     if (!(a)) {                                                                     \
 | |
|         ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str);                \
 | |
|         return (ret_val);                                                           \
 | |
|     }                                                                               \
 | |
| })
 | |
| 
 | |
| #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
 | |
| 
 | |
| #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
 | |
| 
 | |
| //////////////////////// Locks ///////////////////////////////////////////
 | |
| extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
 | |
| 
 | |
| #define RTC_ENTER_CRITICAL()    portENTER_CRITICAL(&rtc_spinlock)
 | |
| #define RTC_EXIT_CRITICAL()     portEXIT_CRITICAL(&rtc_spinlock)
 | |
| #define DIGI_ENTER_CRITICAL()
 | |
| #define DIGI_EXIT_CRITICAL()
 | |
| 
 | |
| #define ADC_POWER_ENTER()       RTC_ENTER_CRITICAL()
 | |
| #define ADC_POWER_EXIT()        RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL()
 | |
| #define DIGI_CONTROLLER_EXIT()  DIGI_EXIT_CRITICAL()
 | |
| 
 | |
| #define SARADC1_ENTER()         RTC_ENTER_CRITICAL()
 | |
| #define SARADC1_EXIT()          RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #define SARADC2_ENTER()         RTC_ENTER_CRITICAL()
 | |
| #define SARADC2_EXIT()          RTC_EXIT_CRITICAL()
 | |
| 
 | |
| //n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers
 | |
| #define VREF_ENTER(n)           RTC_ENTER_CRITICAL()
 | |
| #define VREF_EXIT(n)            RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #define FSM_ENTER()             RTC_ENTER_CRITICAL()
 | |
| #define FSM_EXIT()              RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
| //prevent ADC1 being used by I2S dma and other tasks at the same time.
 | |
| static _lock_t adc1_dma_lock;
 | |
| #define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock )
 | |
| #define SARADC1_RELEASE() _lock_release( &adc1_dma_lock )
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| In ADC2, there're two locks used for different cases:
 | |
| 1. lock shared with app and Wi-Fi:
 | |
|    ESP32:
 | |
|         When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed.
 | |
|    ESP32S2:
 | |
|         The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.
 | |
| 
 | |
| 2. lock shared between tasks:
 | |
|    when several tasks sharing the ADC2, we want to guarantee
 | |
|    all the requests will be handled.
 | |
|    Since conversions are short (about 31us), app returns the lock very soon,
 | |
|    we use a spinlock to stand there waiting to do conversions one by one.
 | |
| 
 | |
| adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
 | |
| */
 | |
| 
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
| //prevent ADC2 being used by wifi and other tasks at the same time.
 | |
| static _lock_t adc2_wifi_lock;
 | |
| /** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock. */
 | |
| #define SARADC2_ACQUIRE()       _lock_acquire( &adc2_wifi_lock )
 | |
| #define SARADC2_RELEASE()       _lock_release( &adc2_wifi_lock )
 | |
| #define SARADC2_TRY_ACQUIRE()   _lock_try_acquire( &adc2_wifi_lock )
 | |
| #define SARADC2_LOCK_CHECK()    ((uint32_t *)adc2_wifi_lock != NULL)
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
| #define SARADC2_ACQUIRE()
 | |
| #define SARADC2_RELEASE()
 | |
| #define SARADC2_TRY_ACQUIRE()   (0)     //WIFI controller and rtc controller have independent parameter configuration.
 | |
| #define SARADC2_LOCK_CHECK()    (true)
 | |
| 
 | |
| #endif // CONFIG_IDF_TARGET_*
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
| static esp_pm_lock_handle_t s_adc2_arbiter_lock;
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| #endif  // !CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC Common
 | |
| ---------------------------------------------------------------*/
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
| static uint32_t get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan)
 | |
| {
 | |
|     adc_atten_t atten = adc_hal_get_atten(adc_n, chan);
 | |
| 
 | |
|     extern uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool no_cal);
 | |
|     return adc_get_calibration_offset(adc_n, chan, atten, false);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // ADC Power
 | |
| 
 | |
| // This gets incremented when adc_power_acquire() is called, and decremented when
 | |
| // adc_power_release() is called. ADC is powered down when the value reaches zero.
 | |
| // Should be modified within critical section (ADC_ENTER/EXIT_CRITICAL).
 | |
| static int s_adc_power_on_cnt;
 | |
| 
 | |
| static void adc_power_on_internal(void)
 | |
| {
 | |
|     /* Set the power always on to increase precision. */
 | |
|     adc_hal_set_power_manage(ADC_POWER_SW_ON);
 | |
| }
 | |
| 
 | |
| void adc_power_acquire(void)
 | |
| {
 | |
|     bool powered_on = false;
 | |
|     ADC_POWER_ENTER();
 | |
|     s_adc_power_on_cnt++;
 | |
|     if (s_adc_power_on_cnt == 1) {
 | |
|         adc_power_on_internal();
 | |
|         powered_on = true;
 | |
|     }
 | |
|     ADC_POWER_EXIT();
 | |
|     if (powered_on) {
 | |
|         ESP_LOGV(ADC_TAG, "%s: ADC powered on", __func__);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void adc_power_on(void)
 | |
| {
 | |
|     ADC_POWER_ENTER();
 | |
|     adc_power_on_internal();
 | |
|     ADC_POWER_EXIT();
 | |
| }
 | |
| 
 | |
| static void adc_power_off_internal(void)
 | |
| {
 | |
|     adc_hal_set_power_manage(ADC_POWER_SW_OFF);
 | |
| }
 | |
| 
 | |
| void adc_power_release(void)
 | |
| {
 | |
|     bool powered_off = false;
 | |
|     ADC_POWER_ENTER();
 | |
|     s_adc_power_on_cnt--;
 | |
|     /* Sanity check */
 | |
|     if (s_adc_power_on_cnt < 0) {
 | |
|         ADC_POWER_EXIT();
 | |
|         ESP_LOGE(ADC_TAG, "%s called, but s_adc_power_on_cnt == 0", __func__);
 | |
|         abort();
 | |
|     } else if (s_adc_power_on_cnt == 0) {
 | |
|         adc_power_off_internal();
 | |
|         powered_off = true;
 | |
|     }
 | |
|     ADC_POWER_EXIT();
 | |
|     if (powered_off) {
 | |
|         ESP_LOGV(ADC_TAG, "%s: ADC powered off", __func__);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void adc_power_off(void)
 | |
| {
 | |
|     ADC_POWER_ENTER();
 | |
|     adc_power_off_internal();
 | |
|     ADC_POWER_EXIT();
 | |
| }
 | |
| 
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
| esp_err_t adc_set_clk_div(uint8_t clk_div)
 | |
| {
 | |
|     DIGI_CONTROLLER_ENTER();
 | |
|     adc_hal_digi_set_clk_div(clk_div);
 | |
|     DIGI_CONTROLLER_EXIT();
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void adc_rtc_chan_init(adc_unit_t adc_unit)
 | |
| {
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         /* Workaround: Disable the synchronization operation function of ADC1 and DAC.
 | |
|            If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */
 | |
|         dac_hal_rtc_sync_by_adc(false);
 | |
|         adc_hal_rtc_output_invert(ADC_NUM_1, SOC_ADC1_DATA_INVERT_DEFAULT);
 | |
|         adc_hal_set_sar_clk_div(ADC_NUM_1, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_1));
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|         adc_hal_hall_disable(); //Disable other peripherals.
 | |
|         adc_hal_amp_disable();  //Currently the LNA is not open, close it by default.
 | |
| #endif
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
 | |
|         adc_hal_rtc_output_invert(ADC_NUM_2, SOC_ADC2_DATA_INVERT_DEFAULT);
 | |
|         adc_hal_set_sar_clk_div(ADC_NUM_2, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_2));
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
 | |
| {
 | |
|     gpio_num_t gpio_num = 0;
 | |
|     //If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
|         gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel);
 | |
|         ADC_CHECK_RET(rtc_gpio_init(gpio_num));
 | |
|         ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
 | |
|         ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
 | |
|         ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
 | |
|         gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel);
 | |
|         ADC_CHECK_RET(rtc_gpio_init(gpio_num));
 | |
|         ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
 | |
|         ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
 | |
|         ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
 | |
| {
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         SARADC1_ENTER();
 | |
|         adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
 | |
|         SARADC1_EXIT();
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         SARADC2_ENTER();
 | |
|         adc_hal_rtc_output_invert(ADC_NUM_2, inv_en);
 | |
|         SARADC2_EXIT();
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     ADC_CHECK(bits < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
 | |
| #else
 | |
|     ADC_CHECK(bits == ADC_WIDTH_BIT_13, "WIDTH ERR: " CONFIG_IDF_TARGET " support 13 bit width", ESP_ERR_INVALID_ARG);
 | |
| #endif
 | |
| 
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         SARADC1_ENTER();
 | |
|         adc_hal_rtc_set_output_format(ADC_NUM_1, bits);
 | |
|         SARADC1_EXIT();
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         SARADC2_ENTER();
 | |
|         adc_hal_rtc_set_output_format(ADC_NUM_2, bits);
 | |
|         SARADC2_EXIT();
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Reset RTC controller FSM.
 | |
|  *
 | |
|  * @return
 | |
|  *      - ESP_OK Success
 | |
|  */
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
| esp_err_t adc_rtc_reset(void)
 | |
| {
 | |
|     FSM_ENTER();
 | |
|     adc_hal_rtc_reset();
 | |
|     FSM_EXIT();
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*-------------------------------------------------------------------------------------
 | |
|  *                      ADC1
 | |
|  *------------------------------------------------------------------------------------*/
 | |
| esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
| 
 | |
|     int io = ADC_GET_IO_NUM(ADC_NUM_1, channel);
 | |
|     if (io < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     } else {
 | |
|         *gpio_num = (gpio_num_t)io;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
|     ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     adc_gpio_init(ADC_UNIT_1, channel);
 | |
|     SARADC1_ENTER();
 | |
|     adc_rtc_chan_init(ADC_UNIT_1);
 | |
|     adc_hal_set_atten(ADC_NUM_1, channel, atten);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
| #if SOC_ADC_HW_CALIBRATION_V1
 | |
|     adc_hal_calibration_init(ADC_NUM_1);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_width(adc_bits_width_t width_bit)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
 | |
| #elif !defined(CONFIG_IDF_TARGET_ESP32)
 | |
|     ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: " CONFIG_IDF_TARGET " support 13 bit width", ESP_ERR_INVALID_ARG);
 | |
| #endif
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_dma_mode_acquire(void)
 | |
| {
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts.
 | |
|        for adc1, block until acquire the lock. */
 | |
|     SARADC1_ACQUIRE();
 | |
|     ESP_LOGD( ADC_TAG, "dma mode takes adc1 lock." );
 | |
| 
 | |
|     adc_power_acquire();
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     /* switch SARADC into DIG channel */
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_DIG);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_rtc_mode_acquire(void)
 | |
| {
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts.
 | |
|        for adc1, block until acquire the lock. */
 | |
|     SARADC1_ACQUIRE();
 | |
|     adc_power_acquire();
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     /* switch SARADC into RTC channel. */
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_lock_release(void)
 | |
| {
 | |
|     ADC_CHECK((uint32_t *)adc1_dma_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE );
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */
 | |
| 
 | |
|     adc_power_release();
 | |
|     SARADC1_RELEASE();
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| int adc1_get_raw(adc1_channel_t channel)
 | |
| {
 | |
|     int adc_value;
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
|     adc1_rtc_mode_acquire();
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
|     // Get calibration value before going into critical section
 | |
|     uint32_t cal_val = get_calibration_offset(ADC_NUM_1, channel);
 | |
|     adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
 | |
| #endif
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     adc_hal_hall_disable(); //Disable other peripherals.
 | |
|     adc_hal_amp_disable();  //Currently the LNA is not open, close it by default.
 | |
| #endif
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);    //Set controller
 | |
|     adc_hal_convert(ADC_NUM_1, channel, &adc_value);   //Start conversion, For ADC1, the data always valid.
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
|     adc_hal_rtc_reset();    //Reset FSM of rtc controller
 | |
| #endif
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     adc1_lock_release();
 | |
|     return adc_value;
 | |
| }
 | |
| 
 | |
| int adc1_get_voltage(adc1_channel_t channel)    //Deprecated. Use adc1_get_raw() instead
 | |
| {
 | |
|     return adc1_get_raw(channel);
 | |
| }
 | |
| 
 | |
| #if SOC_ULP_SUPPORTED
 | |
| void adc1_ulp_enable(void)
 | |
| {
 | |
|     adc_power_acquire();
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_ULP);
 | |
|     /* since most users do not need LNA and HALL with uLP, we disable them here
 | |
|        open them in the uLP if needed. */
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     /* disable other peripherals. */
 | |
|     adc_hal_hall_disable();
 | |
|     adc_hal_amp_disable();
 | |
| #endif
 | |
|     SARADC1_EXIT();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC2
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
 | |
| 
 | |
|     int io = ADC_GET_IO_NUM(ADC_NUM_2, channel);
 | |
|     if (io < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     } else {
 | |
|         *gpio_num = (gpio_num_t)io;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
 | |
| esp_err_t adc2_wifi_acquire(void)
 | |
| {
 | |
|     /* Wi-Fi module will use adc2. Use locks to avoid conflicts. */
 | |
|     SARADC2_ACQUIRE();
 | |
|     ESP_LOGD( ADC_TAG, "Wi-Fi takes adc2 lock." );
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_wifi_release(void)
 | |
| {
 | |
|     ADC_CHECK(SARADC2_LOCK_CHECK(), "wifi release called before acquire", ESP_ERR_INVALID_STATE );
 | |
|     SARADC2_RELEASE();
 | |
|     ESP_LOGD( ADC_TAG, "Wi-Fi returns adc2 lock." );
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
 | |
|     ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     adc_gpio_init(ADC_UNIT_2, channel);
 | |
| 
 | |
|     if ( SARADC2_TRY_ACQUIRE() == -1 ) {
 | |
|         //try the lock, return if failed (wifi using).
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| 
 | |
|     //avoid collision with other tasks
 | |
|     SARADC2_ENTER();
 | |
|     adc_rtc_chan_init(ADC_UNIT_2);
 | |
|     adc_hal_set_atten(ADC_NUM_2, channel, atten);
 | |
|     SARADC2_EXIT();
 | |
| 
 | |
|     SARADC2_RELEASE();
 | |
| 
 | |
| #if SOC_ADC_HW_CALIBRATION_V1
 | |
|     adc_hal_calibration_init(ADC_NUM_2);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline void adc2_init(void)
 | |
| {
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     /* Lock APB clock. */
 | |
|     if (s_adc2_arbiter_lock == NULL) {
 | |
|         esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| #endif  //CONFIG_IDF_TARGET_ESP32S2
 | |
| }
 | |
| 
 | |
| static inline void adc2_dac_disable( adc2_channel_t channel)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1
 | |
|         dac_output_disable(DAC_CHANNEL_1);
 | |
|     } else if ( channel == ADC2_CHANNEL_9 ) {
 | |
|         dac_output_disable(DAC_CHANNEL_2);
 | |
|     }
 | |
| #else
 | |
|     if ( channel == ADC2_CHANNEL_6 ) { // the same as DAC channel 1
 | |
|         dac_output_disable(DAC_CHANNEL_1);
 | |
|     } else if ( channel == ADC2_CHANNEL_7 ) {
 | |
|         dac_output_disable(DAC_CHANNEL_2);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @note For ESP32S2:
 | |
|  *       The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
 | |
|  *       Or, the RTC controller will fail when get raw data.
 | |
|  *       This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors.
 | |
|  */
 | |
| esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
 | |
| {
 | |
|     int adc_value = 0;
 | |
| 
 | |
|     ADC_CHECK(raw_out != NULL, "ADC out value err", ESP_ERR_INVALID_ARG);
 | |
|     ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
 | |
| #else
 | |
|     ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: ESP32S2 support 13 bit width", ESP_ERR_INVALID_ARG);
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
|     // Get calibration value before going into critical section
 | |
|     uint32_t cal_val = get_calibration_offset(ADC_NUM_2, channel);
 | |
|     adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
 | |
| #endif
 | |
| 
 | |
|     if ( SARADC2_TRY_ACQUIRE() == -1 ) {
 | |
|         //try the lock, return if failed (wifi using).
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     adc_power_acquire();         //in critical section with whole rtc module
 | |
| 
 | |
|     //avoid collision with other tasks
 | |
|     adc2_init();   // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
 | |
|     SARADC2_ENTER();
 | |
| #ifdef CONFIG_ADC_DISABLE_DAC
 | |
|     adc2_dac_disable(channel);      //disable other peripherals
 | |
| #endif
 | |
|     adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
 | |
|     adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);// set controller
 | |
| 
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     if (s_adc2_arbiter_lock) {
 | |
|         esp_pm_lock_acquire(s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
| #endif //CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
|     if (adc_hal_convert(ADC_NUM_2, channel, &adc_value)) {
 | |
|         adc_value = -1;
 | |
|     }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     /* Release APB clock. */
 | |
|     if (s_adc2_arbiter_lock) {
 | |
|         esp_pm_lock_release(s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
| #endif //CONFIG_IDF_TARGET_ESP32
 | |
|     SARADC2_EXIT();
 | |
| 
 | |
|     adc_power_release();
 | |
|     SARADC2_RELEASE();
 | |
| 
 | |
|     if (adc_value < 0) {
 | |
|         ESP_LOGD( ADC_TAG, "ADC2 ARB: Return data is invalid." );
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     *raw_out = adc_value;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)
 | |
| {
 | |
|     return adc_vref_to_gpio(ADC_UNIT_2, gpio);
 | |
| }
 | |
| 
 | |
| esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| #endif
 | |
|     adc2_channel_t ch = ADC2_CHANNEL_MAX;
 | |
|     /* Check if the GPIO supported. */
 | |
|     for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
 | |
|         if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
 | |
|             ch = i;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (ch == ADC2_CHANNEL_MAX) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     adc_power_acquire();
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         VREF_ENTER(1);
 | |
|         adc_hal_vref_output(ADC_NUM_1, ch, true);
 | |
|         VREF_EXIT(1);
 | |
|     } else if (adc_unit & ADC_UNIT_2) {
 | |
|         VREF_ENTER(2);
 | |
|         adc_hal_vref_output(ADC_NUM_2, ch, true);
 | |
|         VREF_EXIT(2);
 | |
|     }
 | |
| 
 | |
|     //Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage.
 | |
|     adc_gpio_init(ADC_UNIT_2, ch);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #endif //CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
 |