mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1181 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1181 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <freertos/FreeRTOS.h>
 | |
| #include <freertos/task.h>
 | |
| #include <freertos/semphr.h>
 | |
| 
 | |
| #include <unity.h>
 | |
| #include "esp_flash.h"
 | |
| #include "driver/spi_common_internal.h"
 | |
| #include "esp_flash_spi_init.h"
 | |
| #include "memspi_host_driver.h"
 | |
| #include <esp_attr.h>
 | |
| #include "esp_log.h"
 | |
| 
 | |
| #include <test_utils.h>
 | |
| 
 | |
| #include "unity.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "soc/io_mux_reg.h"
 | |
| #include "sdkconfig.h"
 | |
| 
 | |
| #include "ccomp_timer.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "esp_rom_sys.h"
 | |
| #include "esp_timer.h"
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| #include "esp32s2/rom/cache.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
| #include "esp32s3/rom/cache.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C3
 | |
| #include "esp32c3/rom/cache.h"
 | |
| #endif
 | |
| 
 | |
| #define FUNC_SPI    1
 | |
| 
 | |
| static uint8_t sector_buf[4096];
 | |
| 
 | |
| #define MAX_ADDR_24BIT      0x1000000
 | |
| #define TEST_SPI_SPEED      ESP_FLASH_10MHZ
 | |
| #define TEST_SPI_READ_MODE  SPI_FLASH_FASTRD
 | |
| // #define FORCE_GPIO_MATRIX
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #define EXTRA_SPI1_CLK_IO   17  //the pin which is usually used by the PSRAM clk
 | |
| #define SPI1_CS_IO          16  //the pin which is usually used by the PSRAM cs
 | |
| 
 | |
| #define HSPI_PIN_NUM_MOSI   HSPI_IOMUX_PIN_NUM_MOSI
 | |
| #define HSPI_PIN_NUM_MISO   HSPI_IOMUX_PIN_NUM_MISO
 | |
| #define HSPI_PIN_NUM_CLK    HSPI_IOMUX_PIN_NUM_CLK
 | |
| #define HSPI_PIN_NUM_HD     HSPI_IOMUX_PIN_NUM_HD
 | |
| #define HSPI_PIN_NUM_WP     HSPI_IOMUX_PIN_NUM_WP
 | |
| #define HSPI_PIN_NUM_CS     HSPI_IOMUX_PIN_NUM_CS
 | |
| 
 | |
| #define VSPI_PIN_NUM_MOSI   VSPI_IOMUX_PIN_NUM_MOSI
 | |
| #define VSPI_PIN_NUM_MISO   VSPI_IOMUX_PIN_NUM_MISO
 | |
| #define VSPI_PIN_NUM_CLK    VSPI_IOMUX_PIN_NUM_CLK
 | |
| #define VSPI_PIN_NUM_HD     VSPI_IOMUX_PIN_NUM_HD
 | |
| #define VSPI_PIN_NUM_WP     VSPI_IOMUX_PIN_NUM_WP
 | |
| #define VSPI_PIN_NUM_CS     VSPI_IOMUX_PIN_NUM_CS
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
| #define SPI1_CS_IO          26  //the pin which is usually used by the PSRAM cs
 | |
| #define SPI1_HD_IO          27  //the pin which is usually used by the PSRAM hd
 | |
| #define SPI1_WP_IO          28  //the pin which is usually used by the PSRAM wp
 | |
| 
 | |
| #define FSPI_PIN_NUM_MOSI   35
 | |
| #define FSPI_PIN_NUM_MISO   37
 | |
| #define FSPI_PIN_NUM_CLK    36
 | |
| #define FSPI_PIN_NUM_HD     33
 | |
| #define FSPI_PIN_NUM_WP     38
 | |
| #define FSPI_PIN_NUM_CS     34
 | |
| 
 | |
| // Just use the same pins for HSPI
 | |
| #define HSPI_PIN_NUM_MOSI   FSPI_PIN_NUM_MOSI
 | |
| #define HSPI_PIN_NUM_MISO   FSPI_PIN_NUM_MISO
 | |
| #define HSPI_PIN_NUM_CLK    FSPI_PIN_NUM_CLK
 | |
| #define HSPI_PIN_NUM_HD     FSPI_PIN_NUM_HD
 | |
| #define HSPI_PIN_NUM_WP     FSPI_PIN_NUM_WP
 | |
| #define HSPI_PIN_NUM_CS     FSPI_PIN_NUM_CS
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
| #define SPI1_CS_IO          26  //the pin which is usually used by the PSRAM cs
 | |
| #define SPI1_HD_IO          27  //the pin which is usually used by the PSRAM hd
 | |
| #define SPI1_WP_IO          28  //the pin which is usually used by the PSRAM wp
 | |
| 
 | |
| #define FSPI_PIN_NUM_MOSI   35
 | |
| #define FSPI_PIN_NUM_MISO   37
 | |
| #define FSPI_PIN_NUM_CLK    36
 | |
| #define FSPI_PIN_NUM_HD     33
 | |
| #define FSPI_PIN_NUM_WP     38
 | |
| #define FSPI_PIN_NUM_CS     34
 | |
| 
 | |
| // Just use the same pins for HSPI
 | |
| #define HSPI_PIN_NUM_MOSI   FSPI_PIN_NUM_MOSI
 | |
| #define HSPI_PIN_NUM_MISO   FSPI_PIN_NUM_MISO
 | |
| #define HSPI_PIN_NUM_CLK    FSPI_PIN_NUM_CLK
 | |
| #define HSPI_PIN_NUM_HD     FSPI_PIN_NUM_HD
 | |
| #define HSPI_PIN_NUM_WP     FSPI_PIN_NUM_WP
 | |
| #define HSPI_PIN_NUM_CS     FSPI_PIN_NUM_CS
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32C3
 | |
| #define SPI1_CS_IO          26  //the pin which is usually used by the PSRAM cs
 | |
| #define SPI1_HD_IO          27  //the pin which is usually used by the PSRAM hd
 | |
| #define SPI1_WP_IO          28  //the pin which is usually used by the PSRAM wp
 | |
| 
 | |
| #define FSPI_PIN_NUM_MOSI   7
 | |
| #define FSPI_PIN_NUM_MISO   2
 | |
| #define FSPI_PIN_NUM_CLK    6
 | |
| #define FSPI_PIN_NUM_HD     4
 | |
| #define FSPI_PIN_NUM_WP     5
 | |
| #define FSPI_PIN_NUM_CS     10
 | |
| 
 | |
| // Just use the same pins for HSPI
 | |
| #define HSPI_PIN_NUM_MOSI   FSPI_PIN_NUM_MOSI
 | |
| #define HSPI_PIN_NUM_MISO   FSPI_PIN_NUM_MISO
 | |
| #define HSPI_PIN_NUM_CLK    FSPI_PIN_NUM_CLK
 | |
| #define HSPI_PIN_NUM_HD     FSPI_PIN_NUM_HD
 | |
| #define HSPI_PIN_NUM_WP     FSPI_PIN_NUM_WP
 | |
| #define HSPI_PIN_NUM_CS     FSPI_PIN_NUM_CS
 | |
| #endif
 | |
| 
 | |
| #define TEST_CONFIG_NUM (sizeof(config_list)/sizeof(flashtest_config_t))
 | |
| 
 | |
| typedef void (*flash_test_func_t)(const esp_partition_t *part);
 | |
| 
 | |
| /* Use FLASH_TEST_CASE for SPI flash tests that only use the main SPI flash chip
 | |
| */
 | |
| #define FLASH_TEST_CASE(STR, FUNC_TO_RUN) \
 | |
|     TEST_CASE(STR, "[esp_flash]") {flash_test_func(FUNC_TO_RUN, 1 /* first index reserved for main flash */ );}
 | |
| 
 | |
| #define FLASH_TEST_CASE_IGNORE(STR, FUNC_TO_RUN) \
 | |
|     TEST_CASE(STR, "[esp_flash][ignore]") {flash_test_func(FUNC_TO_RUN, 1 /* first index reserved for main flash */ );}
 | |
| 
 | |
| /* Use FLASH_TEST_CASE_3 for tests which also run on external flash, which sits in the place of PSRAM
 | |
|    (these tests are incompatible with PSRAM)
 | |
| 
 | |
|    These tests run for all the flash chip configs shown in config_list, below (internal and external).
 | |
|  */
 | |
| #if defined(CONFIG_SPIRAM)
 | |
| 
 | |
| #define FLASH_TEST_CASE_3(STR, FUNCT_TO_RUN)
 | |
| #define FLASH_TEST_CASE_3_IGNORE(STR, FUNCT_TO_RUN)
 | |
| #else //CONFIG_SPIRAM
 | |
| #if !CONFIG_IDF_TARGET_ESP32C3
 | |
| #define FLASH_TEST_CASE_3(STR, FUNC_TO_RUN) \
 | |
|     TEST_CASE(STR", 3 chips", "[esp_flash_3][test_env=UT_T1_ESP_FLASH]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
 | |
| 
 | |
| #define FLASH_TEST_CASE_3_IGNORE(STR, FUNC_TO_RUN) \
 | |
|     TEST_CASE(STR", 3 chips", "[esp_flash_3][test_env=UT_T1_ESP_FLASH][ignore]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
 | |
| #else //CONFIG_IDF_TARGET_ESP32C3
 | |
| #define FLASH_TEST_CASE_3(STR, FUNC_TO_RUN) \
 | |
|     TEST_CASE(STR", 2 chips", "[esp_flash_2][test_env=UT_T1_ESP_FLASH]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
 | |
| 
 | |
| #define FLASH_TEST_CASE_3_IGNORE(STR, FUNC_TO_RUN) \
 | |
|     TEST_CASE(STR", 2 chips", "[esp_flash_2][test_env=UT_T1_ESP_FLASH][ignore]") {flash_test_func(FUNC_TO_RUN, TEST_CONFIG_NUM);}
 | |
| #endif // !CONFIG_IDF_TARGET_ESP32C3
 | |
| #endif //CONFIG_SPIRAM
 | |
| 
 | |
| //currently all the configs are the same with esp_flash_spi_device_config_t, no more information required
 | |
| typedef esp_flash_spi_device_config_t flashtest_config_t;
 | |
| 
 | |
| static const char TAG[] = "test_esp_flash";
 | |
| 
 | |
| #define FLASHTEST_CONFIG_COMMON     \
 | |
|     /* 0 always reserved for main flash */ \
 | |
|     { \
 | |
|         /* no need to init */ \
 | |
|         .host_id = -1, \
 | |
|     } \
 | |
|     , \
 | |
|     { \
 | |
|         .io_mode = TEST_SPI_READ_MODE,\
 | |
|         .speed = TEST_SPI_SPEED, \
 | |
|         .host_id = SPI1_HOST, \
 | |
|         .cs_id = 1, \
 | |
|         /* the pin which is usually used by the PSRAM */ \
 | |
|         .cs_io_num = SPI1_CS_IO, \
 | |
|         .input_delay_ns = 0, \
 | |
|     }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| flashtest_config_t config_list[] = {
 | |
|     FLASHTEST_CONFIG_COMMON,
 | |
|     /* current runner doesn't have a flash on HSPI */
 | |
|     // {
 | |
|     //     .io_mode = TEST_SPI_READ_MODE,
 | |
|     //     .speed = TEST_SPI_SPEED,
 | |
|     //     .host_id = HSPI_HOST,
 | |
|     //     .cs_id = 0,
 | |
|     //     // uses GPIO matrix on esp32s2 regardless if FORCE_GPIO_MATRIX
 | |
|     //     .cs_io_num = HSPI_PIN_NUM_CS,
 | |
|     //     .input_delay_ns = 20,
 | |
|     // },
 | |
|     {
 | |
|         .io_mode = TEST_SPI_READ_MODE,
 | |
|         .speed = TEST_SPI_SPEED,
 | |
|         .host_id = VSPI_HOST,
 | |
|         .cs_id = 0,
 | |
|         .cs_io_num = VSPI_PIN_NUM_CS,
 | |
|         .input_delay_ns = 0,
 | |
|     },
 | |
| };
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
| flashtest_config_t config_list[] = {
 | |
|     FLASHTEST_CONFIG_COMMON,
 | |
|     {
 | |
|         .io_mode = TEST_SPI_READ_MODE,
 | |
|         .speed = TEST_SPI_SPEED,
 | |
|         .host_id = FSPI_HOST,
 | |
|         .cs_id = 0,
 | |
|         .cs_io_num = FSPI_PIN_NUM_CS,
 | |
|         .input_delay_ns = 0,
 | |
|     },
 | |
|     {
 | |
|         .io_mode = TEST_SPI_READ_MODE,
 | |
|         .speed = TEST_SPI_SPEED,
 | |
|         .host_id = HSPI_HOST,
 | |
|         .cs_id = 0,
 | |
|         // uses GPIO matrix on esp32s2 regardless of FORCE_GPIO_MATRIX
 | |
|         .cs_io_num = HSPI_PIN_NUM_CS,
 | |
|         .input_delay_ns = 0,
 | |
|     },
 | |
| };
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
| flashtest_config_t config_list[] = {
 | |
|     FLASHTEST_CONFIG_COMMON,
 | |
|     /* No runners for esp32s3 for these config yet */
 | |
|     {
 | |
|         .io_mode = TEST_SPI_READ_MODE,
 | |
|         .speed = TEST_SPI_SPEED,
 | |
|         .host_id = SPI2_HOST,
 | |
|         .cs_id = 0,
 | |
|         .cs_io_num = FSPI_PIN_NUM_CS,
 | |
|         .input_delay_ns = 0,
 | |
|     },
 | |
| };
 | |
| #elif CONFIG_IDF_TARGET_ESP32C3
 | |
| flashtest_config_t config_list[] = {
 | |
|     /* No SPI1 CS1 flash on esp32c3 test */
 | |
|     {
 | |
|         /* no need to init */
 | |
|         .host_id = -1,
 | |
|     },
 | |
|     {
 | |
|         .io_mode = TEST_SPI_READ_MODE,
 | |
|         .speed = TEST_SPI_SPEED,
 | |
|         .host_id = SPI2_HOST,
 | |
|         .cs_id = 0,
 | |
|         .cs_io_num = FSPI_PIN_NUM_CS,
 | |
|         .input_delay_ns = 0,
 | |
|     },
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static void get_chip_host(esp_flash_t* chip, spi_host_device_t* out_host_id, int* out_cs_id)
 | |
| {
 | |
|     spi_host_device_t host_id;
 | |
|     int cs_id;
 | |
|     if (chip == NULL) {
 | |
|         host_id = SPI1_HOST;
 | |
|         cs_id = 0;
 | |
|     } else {
 | |
|         spi_flash_hal_context_t* host_data = (spi_flash_hal_context_t*)chip->host;
 | |
|         host_id = spi_flash_ll_hw_get_id(host_data->spi);
 | |
|         cs_id = host_data->cs_num;
 | |
|     }
 | |
|     if (out_host_id) {
 | |
|         *out_host_id = host_id;
 | |
|     }
 | |
|     if (out_cs_id) {
 | |
|         *out_cs_id = cs_id;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void setup_bus(spi_host_device_t host_id)
 | |
| {
 | |
|     if (host_id == SPI1_HOST) {
 | |
|         ESP_LOGI(TAG, "setup flash on SPI1 CS1...\n");
 | |
|         //no need to initialize the bus, however the CLK may need one more output if it's on the usual place of PSRAM
 | |
| #ifdef EXTRA_SPI1_CLK_IO
 | |
|         esp_rom_gpio_connect_out_signal(EXTRA_SPI1_CLK_IO, SPICLK_OUT_IDX, 0, 0);
 | |
| #endif
 | |
| 
 | |
| #if !DISABLED_FOR_TARGETS(ESP32)
 | |
| #if !CONFIG_ESPTOOLPY_FLASHMODE_QIO && !CONFIG_ESPTOOLPY_FLASHMODE_QOUT
 | |
|         //Initialize the WP and HD pins, which are not automatically initialized on ESP32-S2.
 | |
|         int wp_pin = spi_periph_signal[host_id].spiwp_iomux_pin;
 | |
|         int hd_pin = spi_periph_signal[host_id].spihd_iomux_pin;
 | |
|         gpio_iomux_in(wp_pin, spi_periph_signal[host_id].spiwp_in);
 | |
|         gpio_iomux_out(wp_pin, spi_periph_signal[host_id].func, false);
 | |
|         gpio_iomux_in(hd_pin, spi_periph_signal[host_id].spihd_in);
 | |
|         gpio_iomux_out(hd_pin, spi_periph_signal[host_id].func, false);
 | |
| #endif //CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT
 | |
| #endif //!DISABLED_FOR_TARGETS(ESP32)
 | |
| 
 | |
| #if !DISABLED_FOR_TARGETS(ESP32)
 | |
|     } else if (host_id == SPI2_HOST) {
 | |
|         ESP_LOGI(TAG, "setup flash on SPI%d (FSPI) CS0...\n", host_id + 1);
 | |
|         spi_bus_config_t fspi_bus_cfg = {
 | |
|             .mosi_io_num = FSPI_PIN_NUM_MOSI,
 | |
|             .miso_io_num = FSPI_PIN_NUM_MISO,
 | |
|             .sclk_io_num = FSPI_PIN_NUM_CLK,
 | |
|             .quadhd_io_num = FSPI_PIN_NUM_HD,
 | |
|             .quadwp_io_num = FSPI_PIN_NUM_WP,
 | |
|             .max_transfer_sz = 64,
 | |
|         };
 | |
| #ifdef FORCE_GPIO_MATRIX
 | |
|         fspi_bus_cfg.quadhd_io_num = 5;
 | |
| #endif
 | |
|         esp_err_t ret = spi_bus_initialize(host_id, &fspi_bus_cfg, 0);
 | |
|         TEST_ESP_OK(ret);
 | |
| #endif
 | |
|         //currently the SPI bus for main flash chip is initialized through GPIO matrix
 | |
|     } else if (host_id == SPI2_HOST) {
 | |
|         ESP_LOGI(TAG, "setup flash on SPI%d (HSPI) CS0...\n", host_id + 1);
 | |
|         spi_bus_config_t hspi_bus_cfg = {
 | |
|             .mosi_io_num = HSPI_PIN_NUM_MOSI,
 | |
|             .miso_io_num = HSPI_PIN_NUM_MISO,
 | |
|             .sclk_io_num = HSPI_PIN_NUM_CLK,
 | |
|             .quadhd_io_num = HSPI_PIN_NUM_HD,
 | |
|             .quadwp_io_num = HSPI_PIN_NUM_WP,
 | |
|             .max_transfer_sz = 64,
 | |
|         };
 | |
| #if !DISABLED_FOR_TARGETS(ESP32S2)
 | |
| #ifdef FORCE_GPIO_MATRIX
 | |
|         hspi_bus_cfg.quadhd_io_num = 23;
 | |
| #endif
 | |
| #endif
 | |
|         esp_err_t ret = spi_bus_initialize(host_id, &hspi_bus_cfg, 0);
 | |
|         TEST_ESP_OK(ret);
 | |
| 
 | |
| #if !DISABLED_FOR_TARGETS(ESP32)
 | |
|         // HSPI have no multiline mode, use GPIO to pull those pins up
 | |
|         gpio_set_direction(HSPI_PIN_NUM_HD, GPIO_MODE_OUTPUT);
 | |
|         gpio_set_level(HSPI_PIN_NUM_HD, 1);
 | |
| 
 | |
|         gpio_set_direction(HSPI_PIN_NUM_WP, GPIO_MODE_OUTPUT);
 | |
|         gpio_set_level(HSPI_PIN_NUM_WP, 1);
 | |
| #endif
 | |
|     }
 | |
| #if !DISABLED_FOR_TARGETS(ESP32S2, ESP32S3, ESP32C3)
 | |
|     else if (host_id == VSPI_HOST) {
 | |
|         ESP_LOGI(TAG, "setup flash on SPI%d (VSPI) CS0...\n", host_id + 1);
 | |
|         spi_bus_config_t vspi_bus_cfg = {
 | |
|             .mosi_io_num = VSPI_PIN_NUM_MOSI,
 | |
|             .miso_io_num = VSPI_PIN_NUM_MISO,
 | |
|             .sclk_io_num = VSPI_PIN_NUM_CLK,
 | |
|             .quadhd_io_num = VSPI_PIN_NUM_HD,
 | |
|             .quadwp_io_num = VSPI_PIN_NUM_WP,
 | |
|             .max_transfer_sz = 64,
 | |
|         };
 | |
| #ifdef FORCE_GPIO_MATRIX
 | |
|         vspi_bus_cfg.quadhd_io_num = 23;
 | |
| #endif
 | |
|         esp_err_t ret = spi_bus_initialize(host_id, &vspi_bus_cfg, 0);
 | |
|         TEST_ESP_OK(ret);
 | |
|     }
 | |
| #endif // disabled for esp32s2
 | |
|     else {
 | |
|         ESP_LOGE(TAG, "invalid bus");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void release_bus(int host_id)
 | |
| {
 | |
|     //SPI1 bus can't be deinitialized
 | |
|     if (host_id == SPI2_HOST || host_id == SPI3_HOST) {
 | |
|         spi_bus_free(host_id);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void setup_new_chip(const flashtest_config_t* test_cfg, esp_flash_t** out_chip)
 | |
| {
 | |
|     //the bus should be initialized before the flash is attached to the bus
 | |
|     if (test_cfg->host_id == -1) {
 | |
|         *out_chip = NULL;
 | |
|         return;
 | |
|     }
 | |
|     setup_bus(test_cfg->host_id);
 | |
| 
 | |
|     esp_flash_spi_device_config_t dev_cfg = {
 | |
|         .host_id = test_cfg->host_id,
 | |
|         .io_mode = test_cfg->io_mode,
 | |
|         .speed = test_cfg->speed,
 | |
|         .cs_id = test_cfg->cs_id,
 | |
|         .cs_io_num = test_cfg->cs_io_num,
 | |
|         .input_delay_ns = test_cfg->input_delay_ns,
 | |
|     };
 | |
|     esp_flash_t* init_chip;
 | |
|     esp_err_t err = spi_bus_add_flash_device(&init_chip, &dev_cfg);
 | |
|     TEST_ESP_OK(err);
 | |
|     err = esp_flash_init(init_chip);
 | |
|     TEST_ESP_OK(err);
 | |
|     *out_chip = init_chip;
 | |
| }
 | |
| 
 | |
| static void teardown_test_chip(esp_flash_t* chip)
 | |
| {
 | |
|     spi_host_device_t host_id;
 | |
|     get_chip_host(chip, &host_id, NULL);
 | |
|     //happen to work when chip==NULL
 | |
|     spi_bus_remove_flash_device(chip);
 | |
|     release_bus(host_id);
 | |
| }
 | |
| 
 | |
| static void flash_test_core(flash_test_func_t func, const flashtest_config_t* config)
 | |
| {
 | |
|     esp_flash_t* chip;
 | |
|     setup_new_chip(config, &chip);
 | |
| 
 | |
|     uint32_t size;
 | |
|     esp_err_t err = esp_flash_get_size(chip, &size);
 | |
|     TEST_ESP_OK(err);
 | |
|     ESP_LOGI(TAG, "Flash size: 0x%08X", size);
 | |
| 
 | |
|     const esp_partition_t* test_part = get_test_data_partition();
 | |
|     TEST_ASSERT_NOT_EQUAL(NULL, test_part->flash_chip);
 | |
| 
 | |
|     esp_partition_t part = *test_part;
 | |
|     part.flash_chip = chip;
 | |
| 
 | |
|     ESP_LOGI(TAG, "Testing chip %p, address 0x%08X...", part.flash_chip, part.address);
 | |
|     (*func)(&part);
 | |
| 
 | |
|     // For flash with size over 16MB, add one extra round of test for the 32-bit address area
 | |
|     if (size > MAX_ADDR_24BIT) {
 | |
|         part.address = 0x1030000;
 | |
|         part.size = 0x0010000;
 | |
|         ESP_LOGI(TAG, "Testing chip %p, address 0x%08X...", part.flash_chip, part.address);
 | |
|         (*func)(&part);
 | |
|     }
 | |
| 
 | |
|     teardown_test_chip(chip);
 | |
| }
 | |
| 
 | |
| static void flash_test_func(flash_test_func_t func, int test_num)
 | |
| {
 | |
|     esp_log_level_set("gpio", ESP_LOG_NONE);
 | |
|     for (int i = 0; i < test_num; i++) {
 | |
|         ESP_LOGI(TAG, "Testing config %d/%d", i+1, test_num);
 | |
|         flash_test_core(func, &config_list[i]);
 | |
|     }
 | |
|     ESP_LOGI(TAG, "Completed %d configs", test_num);
 | |
| }
 | |
| 
 | |
| /* ---------- Test code start ------------*/
 | |
| 
 | |
| static void test_metadata(const esp_partition_t* part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     uint32_t id, size;
 | |
|     TEST_ESP_OK(esp_flash_read_id(chip, &id));
 | |
|     TEST_ESP_OK(esp_flash_get_size(chip, &size));
 | |
|     printf("Flash ID %08x detected size %d bytes\n", id, size);
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("SPI flash metadata functions", test_metadata);
 | |
| FLASH_TEST_CASE_3("SPI flash metadata functions", test_metadata);
 | |
| 
 | |
| static uint32_t erase_test_region(const esp_partition_t *part, int num_sectors)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     uint32_t offs = part->address;
 | |
| 
 | |
|     /* chip should be initialised */
 | |
|     TEST_ASSERT(esp_flash_default_chip != NULL
 | |
|                 && esp_flash_chip_driver_initialized(esp_flash_default_chip));
 | |
| 
 | |
|     TEST_ASSERT(num_sectors * 4096 <= part->size);
 | |
| 
 | |
|     bzero(sector_buf, sizeof(sector_buf));
 | |
| 
 | |
|     printf("Erase @ 0x%x...\n", offs);
 | |
|     TEST_ASSERT_EQUAL_HEX32(ESP_OK, esp_flash_erase_region(chip, offs, num_sectors * 4096) );
 | |
| 
 | |
|     printf("Verify erased...\n");
 | |
|     for (int i = 0; i < num_sectors; i++) {
 | |
|         TEST_ASSERT_EQUAL_HEX32(ESP_OK, esp_flash_read(chip, sector_buf, offs + i * 4096, sizeof(sector_buf)));
 | |
| 
 | |
|         printf("Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x\n", sector_buf[0], sector_buf[1], sector_buf[2], sector_buf[3]);
 | |
|         for (int i = 0; i < sizeof(sector_buf); i++) {
 | |
|             TEST_ASSERT_EQUAL_HEX8(0xFF, sector_buf[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return offs;
 | |
| }
 | |
| 
 | |
| void test_simple_read_write(const esp_partition_t* part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     uint32_t offs = erase_test_region(part, 1);
 | |
| 
 | |
|     const int test_seed = 778;
 | |
|     srand(test_seed);
 | |
|     for (int i = 0 ; i < sizeof(sector_buf); i++) {
 | |
|         sector_buf[i] = rand();
 | |
|     }
 | |
| 
 | |
|     printf("Write %p...\n", (void *)offs);
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, sector_buf, offs, sizeof(sector_buf)) );
 | |
| 
 | |
|     bzero(sector_buf, sizeof(sector_buf));
 | |
| 
 | |
|     printf("Read back...\n");
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, sector_buf, offs, sizeof(sector_buf)) );
 | |
| 
 | |
|     printf("Buffer starts 0x%02x 0x%02x 0x%02x 0x%02x\n", sector_buf[0], sector_buf[1], sector_buf[2], sector_buf[3]);
 | |
| 
 | |
|     srand(test_seed);
 | |
|     for (int i = 0; i < sizeof(sector_buf); i++) {
 | |
|         uint8_t data = rand();
 | |
|         TEST_ASSERT_EQUAL_HEX8(data, sector_buf[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("SPI flash simple read/write", test_simple_read_write);
 | |
| FLASH_TEST_CASE_3("SPI flash simple read/write", test_simple_read_write);
 | |
| 
 | |
| void test_unaligned_read_write(const esp_partition_t* part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     uint32_t offs = erase_test_region(part, 2);
 | |
| 
 | |
|     const char *msg = "i am a message";
 | |
|     TEST_ASSERT(strlen(msg) + 1 % 4 != 0);
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, msg, offs + 1, strlen(msg) + 1) );
 | |
| 
 | |
|     char buf[strlen(msg) + 1];
 | |
| 
 | |
|     memset(buf, 0xEE, sizeof(buf));
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, buf, offs + 1, strlen(msg) + 1) );
 | |
|     TEST_ASSERT_EQUAL_STRING_LEN(msg, buf, strlen(msg));
 | |
|     TEST_ASSERT(memcmp(buf, msg, strlen(msg) + 1) == 0);
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("SPI flash unaligned read/write", test_unaligned_read_write);
 | |
| FLASH_TEST_CASE_3("SPI flash unaligned read/write", test_unaligned_read_write);
 | |
| 
 | |
| void test_single_read_write(const esp_partition_t* part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     uint32_t offs = erase_test_region(part, 2);
 | |
| 
 | |
|     const int seed = 699;
 | |
|     srand(seed);
 | |
|     for (unsigned v = 0; v < 512; v++) {
 | |
|         uint32_t data = rand();
 | |
|         TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_write(chip, &data, offs + v, 1) );
 | |
|     }
 | |
| 
 | |
|     srand(seed);
 | |
|     for (unsigned v = 0; v < 512; v++) {
 | |
|         uint8_t readback;
 | |
|         uint32_t data = rand();
 | |
|         TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_read(chip, &readback, offs + v, 1) );
 | |
|         TEST_ASSERT_EQUAL_HEX8(data, readback);
 | |
|     }
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("SPI flash single byte reads/writes", test_single_read_write);
 | |
| FLASH_TEST_CASE_3("SPI flash single byte reads/writes", test_single_read_write);
 | |
| 
 | |
| 
 | |
| /* this test is notable because it generates a lot of unaligned reads/writes,
 | |
|    and also reads/writes across both a sector boundary & many page boundaries.
 | |
| */
 | |
| void test_three_byte_read_write(const esp_partition_t* part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     uint32_t offs = erase_test_region(part, 2);
 | |
| 
 | |
|     const int seed = 700;
 | |
|     esp_rom_printf("offs:%X\n", offs);
 | |
| 
 | |
|     srand(seed);
 | |
|     for (uint32_t v = 0; v < 86; v++) {
 | |
|         uint32_t data = rand();
 | |
|         TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, &data, offs + 3 * v, 3) );
 | |
|     }
 | |
| 
 | |
|     srand(seed);
 | |
|     for (uint32_t v = 0; v < 1; v++) {
 | |
|         uint32_t readback;
 | |
|         uint32_t data = rand();
 | |
|         TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, offs + 3 * v, 3) );
 | |
|         TEST_ASSERT_EQUAL_HEX32(data & 0xFFFFFF, readback & 0xFFFFFF);
 | |
|     }
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("SPI flash three byte reads/writes", test_three_byte_read_write);
 | |
| FLASH_TEST_CASE_3("SPI flash three byte reads/writes", test_three_byte_read_write);
 | |
| 
 | |
| void test_erase_large_region(const esp_partition_t *part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
| 
 | |
|     /* Write some noise at the start and the end of the region */
 | |
|     const char *ohai = "OHAI";
 | |
|     uint32_t readback;
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, ohai, part->address, 5));
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_write(chip, ohai, part->address + part->size - 5, 5));
 | |
| 
 | |
|     /* sanity check what we just wrote. since the partition may haven't been erased, we only check the part which is written to 0. */
 | |
|     uint32_t written_data = *((const uint32_t *)ohai);
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address + part->size - 5, 4));
 | |
|     TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address, 4));
 | |
|     TEST_ASSERT_EQUAL_HEX32(0, readback & (~written_data));
 | |
| 
 | |
|     /* Erase whole region */
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_erase_region(chip, part->address, part->size));
 | |
| 
 | |
|     /* ensure both areas we wrote are now all-FFs */
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address, 4));
 | |
|     TEST_ASSERT_EQUAL_HEX32(0xFFFFFFFF, readback);
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_OK, esp_flash_read(chip, &readback, part->address + part->size - 5, 4));
 | |
|     TEST_ASSERT_EQUAL_HEX32(0xFFFFFFFF, readback);
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("SPI flash erase large region", test_erase_large_region);
 | |
| FLASH_TEST_CASE_3("SPI flash erase large region", test_erase_large_region);
 | |
| 
 | |
| #if CONFIG_SPI_FLASH_AUTO_SUSPEND
 | |
| void esp_test_for_suspend(void)
 | |
| {
 | |
|     /*clear content in cache*/
 | |
| #if !CONFIG_IDF_TARGET_ESP32C3
 | |
|     Cache_Invalidate_DCache_All();
 | |
| #endif
 | |
|     Cache_Invalidate_ICache_All();
 | |
|     ESP_LOGI(TAG, "suspend test begins:");
 | |
|     printf("run into test suspend function\n");
 | |
|     printf("print something when flash is erasing:\n");
 | |
|     printf("aaaaa bbbbb zzzzz fffff qqqqq ccccc\n");
 | |
| }
 | |
| 
 | |
| static volatile bool task_erase_end, task_suspend_end = false;
 | |
| void task_erase_large_region(void *arg)
 | |
| {
 | |
|     esp_partition_t *part = (esp_partition_t *)arg;
 | |
|     test_erase_large_region(part);
 | |
|     task_erase_end = true;
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| void task_request_suspend(void *arg)
 | |
| {
 | |
|     vTaskDelay(2);
 | |
|     ESP_LOGI(TAG, "flash go into suspend");
 | |
|     esp_test_for_suspend();
 | |
|     task_suspend_end = true;
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| static void test_flash_suspend_resume(const esp_partition_t* part)
 | |
| {
 | |
|     xTaskCreatePinnedToCore(task_request_suspend, "suspend", 2048, (void *)"test_for_suspend", UNITY_FREERTOS_PRIORITY + 3, NULL, 0);
 | |
|     xTaskCreatePinnedToCore(task_erase_large_region, "test", 2048, (void *)part, UNITY_FREERTOS_PRIORITY + 2, NULL, 0);
 | |
|     while (!task_erase_end || !task_suspend_end) {
 | |
|     }
 | |
|     vTaskDelay(200);
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("SPI flash suspend and resume test", test_flash_suspend_resume);
 | |
| #endif //CONFIG_SPI_FLASH_AUTO_SUSPEND
 | |
| 
 | |
| static void test_write_protection(const esp_partition_t* part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
| 
 | |
|     bool wp = true;
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     ret = esp_flash_get_chip_write_protect(chip, &wp);
 | |
|     TEST_ESP_OK(ret);
 | |
| 
 | |
|     for (int i = 0; i < 4; i ++) {
 | |
|         bool wp_write = !wp;
 | |
|         ret = esp_flash_set_chip_write_protect(chip, wp_write);
 | |
|         TEST_ESP_OK(ret);
 | |
| 
 | |
|         bool wp_read;
 | |
|         ret = esp_flash_get_chip_write_protect(chip, &wp_read);
 | |
|         TEST_ESP_OK(ret);
 | |
|         TEST_ASSERT(wp_read == wp_write);
 | |
|         wp = wp_read;
 | |
|     }
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("Test esp_flash can enable/disable write protetion", test_write_protection);
 | |
| FLASH_TEST_CASE_3("Test esp_flash can enable/disable write protetion", test_write_protection);
 | |
| 
 | |
| static const uint8_t large_const_buffer[16400] = {
 | |
|     203, // first byte
 | |
|     1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
 | |
|     21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
 | |
|     [50 ... 99] = 2,
 | |
|     [1600 ... 2000] = 3,
 | |
|     [8000 ... 9000] = 77,
 | |
|     [15000 ... 16398] = 8,
 | |
|     43 // last byte
 | |
| };
 | |
| 
 | |
| static void test_write_large_buffer(const esp_partition_t *part, const uint8_t *source, size_t length);
 | |
| static void write_large_buffer(const esp_partition_t *part, const uint8_t *source, size_t length);
 | |
| static void read_and_check(const esp_partition_t *part, const uint8_t *source, size_t length);
 | |
| 
 | |
| // Internal functions for testing, from esp_flash_api.c
 | |
| esp_err_t esp_flash_set_io_mode(esp_flash_t* chip, bool qe);
 | |
| esp_err_t esp_flash_get_io_mode(esp_flash_t* chip, bool* qe);
 | |
| esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* flash_id);
 | |
| esp_err_t spi_flash_chip_mxic_probe(esp_flash_t *chip, uint32_t flash_id);
 | |
| 
 | |
| static bool is_winbond_chip(esp_flash_t* chip)
 | |
| {
 | |
|     uint32_t flash_id;
 | |
|     esp_err_t ret = esp_flash_read_chip_id(chip, &flash_id);
 | |
|     TEST_ESP_OK(ret);
 | |
|     if ((flash_id >> 16) == 0xEF) {
 | |
|         return true;
 | |
|     } else {
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool is_mxic_chip(esp_flash_t* chip)
 | |
| {
 | |
|     uint32_t flash_id;
 | |
|     esp_err_t ret = esp_flash_read_chip_id(chip, &flash_id);
 | |
|     TEST_ESP_OK(ret);
 | |
|     return (spi_flash_chip_mxic_probe(chip, flash_id)==ESP_OK);
 | |
| }
 | |
| 
 | |
| IRAM_ATTR NOINLINE_ATTR static void test_toggle_qe(const esp_partition_t* part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
| 
 | |
|     bool qe;
 | |
|     if (chip == NULL) {
 | |
|         chip = esp_flash_default_chip;
 | |
|     }
 | |
|     esp_flash_io_mode_t io_mode_before = chip->read_mode;
 | |
|     esp_err_t ret = esp_flash_get_io_mode(chip, &qe);
 | |
|     TEST_ESP_OK(ret);
 | |
| 
 | |
|     bool allow_failure = is_winbond_chip(chip) || is_mxic_chip(chip);
 | |
| 
 | |
|     for (int i = 0; i < 4; i ++) {
 | |
|         esp_rom_printf(DRAM_STR("write qe: %d->%d\n"), qe, !qe);
 | |
|         qe = !qe;
 | |
|         chip->read_mode = qe? SPI_FLASH_QOUT: SPI_FLASH_SLOWRD;
 | |
|         ret = esp_flash_set_io_mode(chip, qe);
 | |
|         if (allow_failure && !qe && ret == ESP_ERR_FLASH_NO_RESPONSE) {
 | |
|             //allows clear qe failure for Winbond chips
 | |
|             ret = ESP_OK;
 | |
|         }
 | |
|         TEST_ESP_OK(ret);
 | |
| 
 | |
|         bool qe_read;
 | |
|         ret = esp_flash_get_io_mode(chip, &qe_read);
 | |
|         TEST_ESP_OK(ret);
 | |
|         ESP_LOGD(TAG, "qe read: %d", qe_read);
 | |
|         if (!qe && qe_read) {
 | |
|             if (allow_failure) {
 | |
|                 ESP_LOGW(TAG, "cannot clear QE bit for known permanent QE (Winbond or MXIC) chips.");
 | |
|             } else {
 | |
|                 ESP_LOGE(TAG, "cannot clear QE bit, please make sure force clearing QE option is enabled in `spi_flash_common_set_io_mode`, and this chip is not a permanent QE one.");
 | |
|             }
 | |
|             chip->read_mode = io_mode_before;
 | |
|             return;
 | |
|         }
 | |
|         TEST_ASSERT_EQUAL(qe, qe_read);
 | |
|     }
 | |
|     //restore the io_mode after test
 | |
|     chip->read_mode = io_mode_before;
 | |
| }
 | |
| 
 | |
| // These tests show whether the QE is permanent or not for the chip tested.
 | |
| // To test the behaviour of a new SPI flash chip, enable force_check flag in generic driver
 | |
| // `spi_flash_common_set_io_mode` and then run this test.
 | |
| FLASH_TEST_CASE_IGNORE("Test esp_flash_write can toggle QE bit", test_toggle_qe);
 | |
| FLASH_TEST_CASE_3_IGNORE("Test esp_flash_write can toggle QE bit", test_toggle_qe);
 | |
| 
 | |
| void test_permutations_part(const flashtest_config_t* config, esp_partition_t* part, void* source_buf, size_t length)
 | |
| {
 | |
|     if (config->host_id != -1) {
 | |
|         esp_flash_speed_t speed = ESP_FLASH_SPEED_MIN;
 | |
|         while (speed != ESP_FLASH_SPEED_MAX) {
 | |
|             //test io_mode in the inner loop to test QE set/clear function, since
 | |
|             //the io mode will switch frequently.
 | |
|             esp_flash_io_mode_t io_mode = SPI_FLASH_READ_MODE_MIN;
 | |
|             while (io_mode != SPI_FLASH_READ_MODE_MAX) {
 | |
|                 if (io_mode > SPI_FLASH_FASTRD &&
 | |
|                     !SOC_SPI_PERIPH_SUPPORT_MULTILINE_MODE(config->host_id)) {
 | |
|                     io_mode++;
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 esp_flash_t* chip;
 | |
|                 flashtest_config_t temp_config = *config;
 | |
|                 temp_config.io_mode = io_mode;
 | |
|                 temp_config.speed = speed;
 | |
|                 setup_new_chip(&temp_config, &chip);
 | |
|                 ESP_LOGI(TAG, "test flash io mode: %d, speed: %d", io_mode, speed);
 | |
| 
 | |
|                 part->flash_chip = chip;
 | |
|                 read_and_check(part, source_buf, length);
 | |
|                 teardown_test_chip(chip);
 | |
| 
 | |
|                 io_mode++;
 | |
|             }
 | |
|             speed++;
 | |
|         }
 | |
|     } else {
 | |
|         //test main flash
 | |
|         part->flash_chip = NULL;
 | |
|         read_and_check(part, source_buf, length);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void test_permutations_chip(const flashtest_config_t* config)
 | |
| {
 | |
|     esp_log_level_set("gpio", ESP_LOG_NONE);
 | |
|     esp_flash_t* chip;
 | |
|     flashtest_config_t temp_config = *config;
 | |
|     // Use the lowest speed to read configs, data and write data to make sure success
 | |
|     temp_config.io_mode = SPI_FLASH_READ_MODE_MIN;
 | |
|     temp_config.speed = ESP_FLASH_SPEED_MIN;
 | |
|     setup_new_chip(&temp_config, &chip);
 | |
| 
 | |
|     //Get size to determine whether to test one extra partition
 | |
|     uint32_t size;
 | |
|     esp_err_t err = esp_flash_get_size(chip, &size);
 | |
|     TEST_ESP_OK(err);
 | |
|     ESP_LOGI(TAG, "Flash size: 0x%08X", size);
 | |
|     bool addr_32bit = (size > MAX_ADDR_24BIT);
 | |
| 
 | |
|     // Get test partition, and locate temporary partitions according to the default one
 | |
|     const esp_partition_t* test_part = get_test_data_partition();
 | |
|     const int length = sizeof(large_const_buffer);
 | |
|     TEST_ASSERT(test_part->size > length + 2 + SPI_FLASH_SEC_SIZE);
 | |
| 
 | |
|     esp_partition_t part[2] = {};
 | |
|     part[0] = *test_part;
 | |
|     part[0].flash_chip = chip;
 | |
|     // For flash with size over 16MB, add one extra round of test for the 32-bit address area
 | |
|     if (addr_32bit) {
 | |
|         part[1] = *test_part;
 | |
|         part[1].flash_chip = chip;
 | |
|         part[1].address = 0x1030000;
 | |
|         part[1].size = 0x0010000;
 | |
|     } else {
 | |
|         part[1].size = 0;
 | |
|     }
 | |
| 
 | |
|     // Prepare test data and write to the specified region
 | |
|     uint8_t *source_buf = malloc(length);
 | |
|     TEST_ASSERT_NOT_NULL(source_buf);
 | |
|     srand(778);
 | |
|     for (int i = 0; i < length; i++) {
 | |
|         source_buf[i] = rand();
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < 2; i++) {
 | |
|         if (part[i].size == 0) continue;
 | |
|         write_large_buffer(&part[i], source_buf, length);
 | |
|     }
 | |
| 
 | |
|     teardown_test_chip(chip);
 | |
| 
 | |
|     for (int i = 0; i < 2; i++) {
 | |
|         if (part[i].size == 0) continue;
 | |
| 
 | |
|         part[i].flash_chip = (esp_flash_t*)-1;
 | |
|         ESP_LOGI(TAG, "Testing address 0x%08X...", part[i].address);
 | |
|         test_permutations_part(config, &part[i], source_buf, length);
 | |
|     }
 | |
| 
 | |
|     free(source_buf);
 | |
| }
 | |
| 
 | |
| TEST_CASE("SPI flash test reading with all speed/mode permutations", "[esp_flash]")
 | |
| {
 | |
|     test_permutations_chip(&config_list[0]);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPIRAM
 | |
| TEST_CASE("SPI flash test reading with all speed/mode permutations, 3 chips", "[esp_flash_3][test_env=UT_T1_ESP_FLASH]")
 | |
| {
 | |
|     for (int i = 0; i < TEST_CONFIG_NUM; i++) {
 | |
|         test_permutations_chip(&config_list[i]);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static void test_write_large_const_buffer(const esp_partition_t* part)
 | |
| {
 | |
|     test_write_large_buffer(part, large_const_buffer, sizeof(large_const_buffer));
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("Test esp_flash_write large const buffer", test_write_large_const_buffer);
 | |
| FLASH_TEST_CASE_3("Test esp_flash_write large const buffer", test_write_large_const_buffer);
 | |
| 
 | |
| static void test_write_large_ram_buffer(const esp_partition_t* part)
 | |
| {
 | |
|     // buffer in RAM
 | |
|     uint8_t *source_buf = malloc(sizeof(large_const_buffer));
 | |
|     TEST_ASSERT_NOT_NULL(source_buf);
 | |
|     memcpy(source_buf, large_const_buffer, sizeof(large_const_buffer));
 | |
|     test_write_large_buffer(part, source_buf, sizeof(large_const_buffer));
 | |
|     free(source_buf);
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("Test esp_flash_write large RAM buffer", test_write_large_ram_buffer);
 | |
| FLASH_TEST_CASE_3("Test esp_flash_write large RAM buffer", test_write_large_ram_buffer);
 | |
| 
 | |
| static void write_large_buffer(const esp_partition_t *part, const uint8_t *source, size_t length)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     printf("Writing chip %p %p, %d bytes from source %p\n", chip, (void*)part->address, length, source);
 | |
| 
 | |
|     ESP_ERROR_CHECK( esp_flash_erase_region(chip, part->address, (length + SPI_FLASH_SEC_SIZE) & ~(SPI_FLASH_SEC_SIZE - 1)) );
 | |
| 
 | |
|     // note writing to unaligned address
 | |
|     ESP_ERROR_CHECK( esp_flash_write(chip, source, part->address + 1, length) );
 | |
| }
 | |
| 
 | |
| static void read_and_check(const esp_partition_t *part, const uint8_t *source, size_t length)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     printf("Checking chip %p 0x%08X, %d bytes\n", chip, part->address, length);
 | |
|     uint8_t *buf = malloc(length);
 | |
|     TEST_ASSERT_NOT_NULL(buf);
 | |
|     ESP_ERROR_CHECK( esp_flash_read(chip, buf, part->address + 1, length) );
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(source, buf, length);
 | |
|     free(buf);
 | |
| 
 | |
|     // check nothing was written at beginning or end
 | |
|     uint8_t ends[8];
 | |
| 
 | |
|     ESP_ERROR_CHECK( esp_flash_read(chip, ends, part->address, sizeof(ends)) );
 | |
|     TEST_ASSERT_EQUAL_HEX8(0xFF, ends[0]);
 | |
|     TEST_ASSERT_EQUAL_HEX8(source[0], ends[1]);
 | |
| 
 | |
|     ESP_ERROR_CHECK( esp_flash_read(chip, ends, part->address + length, sizeof(ends)) );
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX8(source[length - 1], ends[0]);
 | |
|     TEST_ASSERT_EQUAL_HEX8(0xFF, ends[1]);
 | |
|     TEST_ASSERT_EQUAL_HEX8(0xFF, ends[2]);
 | |
|     TEST_ASSERT_EQUAL_HEX8(0xFF, ends[3]);
 | |
| }
 | |
| 
 | |
| static void test_write_large_buffer(const esp_partition_t* part, const uint8_t *source, size_t length)
 | |
| {
 | |
|     TEST_ASSERT(part->size > length + 2 + SPI_FLASH_SEC_SIZE);
 | |
| 
 | |
|     write_large_buffer(part, source, length);
 | |
|     read_and_check(part, source, length);
 | |
| }
 | |
| 
 | |
| #if !CONFIG_SPIRAM
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t us_start;
 | |
|     size_t len;
 | |
|     const char* name;
 | |
| } time_meas_ctx_t;
 | |
| 
 | |
| static void time_measure_start(time_meas_ctx_t* ctx)
 | |
| {
 | |
|     ctx->us_start = esp_timer_get_time();
 | |
|     ccomp_timer_start();
 | |
| }
 | |
| 
 | |
| static uint32_t time_measure_end(time_meas_ctx_t* ctx)
 | |
| {
 | |
|     uint32_t c_time_us = ccomp_timer_stop();
 | |
|     uint32_t time_us = esp_timer_get_time() - ctx->us_start;
 | |
| 
 | |
|     ESP_LOGI(TAG, "%s: compensated: %.2lf kB/s, typical: %.2lf kB/s", ctx->name, ctx->len / (c_time_us / 1000.), ctx->len / (time_us/1000.));
 | |
|     return ctx->len * 1000 / (c_time_us / 1000);
 | |
| }
 | |
| 
 | |
| #define TEST_TIMES      20
 | |
| #define TEST_SECTORS    4
 | |
| 
 | |
| static uint32_t measure_erase(const esp_partition_t* part)
 | |
| {
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE * TEST_SECTORS;
 | |
|     time_meas_ctx_t time_ctx = {.name = "erase", .len = total_len};
 | |
| 
 | |
|     time_measure_start(&time_ctx);
 | |
|     esp_err_t err = esp_flash_erase_region(part->flash_chip, part->address, total_len);
 | |
|     TEST_ESP_OK(err);
 | |
|     return time_measure_end(&time_ctx);
 | |
| }
 | |
| 
 | |
| // should called after measure_erase
 | |
| static uint32_t measure_write(const char* name, const esp_partition_t* part, const uint8_t* data_to_write, int seg_len)
 | |
| {
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE;
 | |
|     time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
 | |
| 
 | |
|     time_measure_start(&time_ctx);
 | |
|     for (int i = 0; i < TEST_TIMES; i ++) {
 | |
|         // Erase one time, but write 100 times the same data
 | |
|         size_t len = total_len;
 | |
|         int offset = 0;
 | |
| 
 | |
|         while (len) {
 | |
|             int len_write = MIN(seg_len, len);
 | |
|             esp_err_t err = esp_flash_write(part->flash_chip, data_to_write + offset, part->address + offset, len_write);
 | |
|             TEST_ESP_OK(err);
 | |
| 
 | |
|             offset += len_write;
 | |
|             len -= len_write;
 | |
|         }
 | |
|     }
 | |
|     return time_measure_end(&time_ctx);
 | |
| }
 | |
| 
 | |
| static uint32_t measure_read(const char* name, const esp_partition_t* part, uint8_t* data_read, int seg_len)
 | |
| {
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE;
 | |
|     time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
 | |
| 
 | |
|     time_measure_start(&time_ctx);
 | |
|     for (int i = 0; i < TEST_TIMES; i ++) {
 | |
|         size_t len = total_len;
 | |
|         int offset = 0;
 | |
| 
 | |
|         while (len) {
 | |
|             int len_read = MIN(seg_len, len);
 | |
|             esp_err_t err = esp_flash_read(part->flash_chip, data_read + offset, part->address + offset, len_read);
 | |
|             TEST_ESP_OK(err);
 | |
| 
 | |
|             offset += len_read;
 | |
|             len -= len_read;
 | |
|         }
 | |
|     }
 | |
|     return time_measure_end(&time_ctx);
 | |
| }
 | |
| 
 | |
| #define MEAS_WRITE(n)   (measure_write("write in "#n"-byte chunks", part, data_to_write, n))
 | |
| #define MEAS_READ(n)    (measure_read("read in "#n"-byte chunks", part, data_read, n))
 | |
| 
 | |
| static void test_flash_read_write_performance(const esp_partition_t *part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE;
 | |
|     uint8_t *data_to_write = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | |
|     uint8_t *data_read = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | |
| 
 | |
|     srand(777);
 | |
|     for (int i = 0; i < total_len; i++) {
 | |
|         data_to_write[i] = rand();
 | |
|     }
 | |
| 
 | |
|     uint32_t erase_1 = measure_erase(part);
 | |
|     uint32_t speed_WR_4B = MEAS_WRITE(4);
 | |
|     uint32_t speed_RD_4B = MEAS_READ(4);
 | |
|     uint32_t erase_2 = measure_erase(part);
 | |
|     uint32_t speed_WR_2KB = MEAS_WRITE(2048);
 | |
|     uint32_t speed_RD_2KB = MEAS_READ(2048);
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_write, data_read, total_len);
 | |
| 
 | |
| #if !CONFIG_SPIRAM && !CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
 | |
| #  define CHECK_DATA(bus, suffix) TEST_PERFORMANCE_CCOMP_GREATER_THAN(FLASH_SPEED_BYTE_PER_SEC_##bus##suffix, "%d", speed_##suffix)
 | |
| #  define CHECK_ERASE(bus, var) TEST_PERFORMANCE_CCOMP_GREATER_THAN(FLASH_SPEED_BYTE_PER_SEC_##bus##ERASE, "%d", var)
 | |
| #else
 | |
| #  define CHECK_DATA(bus, suffix) ((void)speed_##suffix)
 | |
| #  define CHECK_ERASE(bus, var)   ((void)var)
 | |
| #endif
 | |
| 
 | |
| // Erase time may vary a lot, can increase threshold if this fails with a reasonable speed
 | |
| #define CHECK_PERFORMANCE(bus) do {\
 | |
|             CHECK_DATA(bus, WR_4B); \
 | |
|             CHECK_DATA(bus, RD_4B); \
 | |
|             CHECK_DATA(bus, WR_2KB); \
 | |
|             CHECK_DATA(bus, RD_2KB); \
 | |
|             CHECK_ERASE(bus, erase_1); \
 | |
|             CHECK_ERASE(bus, erase_2); \
 | |
|         } while (0)
 | |
| 
 | |
|     spi_host_device_t host_id;
 | |
|     int cs_id;
 | |
| 
 | |
|     get_chip_host(chip, &host_id, &cs_id);
 | |
|     if (host_id != SPI1_HOST) {
 | |
|         // Chips on other SPI buses
 | |
|         CHECK_PERFORMANCE(EXT_);
 | |
|     } else if (cs_id == 0) {
 | |
|         // Main flash
 | |
|         CHECK_PERFORMANCE();
 | |
|     } else {
 | |
|         // Other cs pins on SPI1
 | |
|         CHECK_PERFORMANCE(SPI1_);
 | |
|     }
 | |
|     free(data_to_write);
 | |
|     free(data_read);
 | |
| }
 | |
| 
 | |
| TEST_CASE("Test esp_flash read/write performance", "[esp_flash][test_env=UT_T1_ESP_FLASH]") {flash_test_func(test_flash_read_write_performance, 1);}
 | |
| #endif // !CONFIG_SPIRAM
 | |
| FLASH_TEST_CASE_3("Test esp_flash read/write performance"", 3 chips", test_flash_read_write_performance);
 | |
| 
 | |
| #ifdef CONFIG_SPIRAM_USE_MALLOC
 | |
| 
 | |
| /* Utility: Read into a small internal RAM buffer using esp_flash_read() and compare what
 | |
|    we read with 'buffer' */
 | |
| static void s_test_compare_flash_contents_small_reads(esp_flash_t *chip, const uint8_t *buffer, size_t offs, size_t len)
 | |
| {
 | |
|     const size_t INTERNAL_BUF_SZ = 1024; // Should fit in internal RAM
 | |
|     uint8_t *ibuf = heap_caps_malloc(INTERNAL_BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
 | |
|     TEST_ASSERT_NOT_NULL(ibuf);
 | |
| 
 | |
|     for (int i = 0; i < len; i += INTERNAL_BUF_SZ) {
 | |
|         size_t to_read = MIN(INTERNAL_BUF_SZ, len - i);
 | |
|         ESP_ERROR_CHECK( esp_flash_read(chip, ibuf, offs + i, to_read) );
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(buffer + i, ibuf, to_read);
 | |
|     }
 | |
| 
 | |
|     free(ibuf);
 | |
| }
 | |
| 
 | |
| static void test_flash_read_large_psram_buffer(const esp_partition_t *part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     const size_t BUF_SZ = 256 * 1024;    // Too large for internal RAM
 | |
|     const size_t TEST_OFFS = 0x1000; // Can be any offset, really
 | |
| 
 | |
|     uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
 | |
|     TEST_ASSERT_NOT_NULL(buf);
 | |
| 
 | |
|     ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
 | |
| 
 | |
|     // Read back the same into smaller internal memory buffer and check it all matches
 | |
|     s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
 | |
| 
 | |
|     free(buf);
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("esp_flash_read large PSRAM buffer", test_flash_read_large_psram_buffer);
 | |
| 
 | |
| 
 | |
| /* similar to above test, but perform it under memory pressure */
 | |
| static void test_flash_read_large_psram_buffer_low_internal_mem(const esp_partition_t *part)
 | |
| {
 | |
|     esp_flash_t* chip = part->flash_chip;
 | |
|     const size_t BUF_SZ = 256 * 1024;    // Too large for internal RAM
 | |
|     const size_t REMAINING_INTERNAL = 1024; // Exhaust internal memory until maximum free block is less than this
 | |
|     const size_t TEST_OFFS = 0x8000;
 | |
| 
 | |
|     /* Exhaust the available free internal memory */
 | |
|     test_utils_exhaust_memory_rec erec = test_utils_exhaust_memory(MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT, REMAINING_INTERNAL);
 | |
| 
 | |
|     uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
 | |
|     TEST_ASSERT_NOT_NULL(buf);
 | |
| 
 | |
|     /* Calling esp_flash_read() here will need to allocate a small internal buffer,
 | |
|        so check it works. */
 | |
|     ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
 | |
| 
 | |
|     test_utils_free_exhausted_memory(erec);
 | |
| 
 | |
|     // Read back the same into smaller internal memory buffer and check it all matches
 | |
|     s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
 | |
| 
 | |
|     free(buf);
 | |
| }
 | |
| 
 | |
| FLASH_TEST_CASE("esp_flash_read large PSRAM buffer low memory", test_flash_read_large_psram_buffer_low_internal_mem);
 | |
| 
 | |
| 
 | |
| #endif
 | 
