mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			233 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <stdio.h>
 | |
| #include <freertos/FreeRTOS.h>
 | |
| #include <freertos/task.h>
 | |
| #include <freertos/semphr.h>
 | |
| 
 | |
| #include <unity.h>
 | |
| #include <test_utils.h>
 | |
| #include <esp_spi_flash.h>
 | |
| #include <esp_attr.h>
 | |
| #include <esp_flash_encrypt.h>
 | |
| #include <string.h>
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
 | |
| 
 | |
| static void test_encrypted_write(size_t offset, const uint8_t *data, size_t length);
 | |
| static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length);
 | |
| static void verify_erased_flash(size_t offset, size_t length);
 | |
| 
 | |
| static size_t start;
 | |
| 
 | |
| static void setup_tests(void)
 | |
| {
 | |
|     if (start == 0) {
 | |
|         const esp_partition_t *part = get_test_data_partition();
 | |
|         start = part->address;
 | |
|         printf("Test data partition @ 0x%x\n", start);
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST_CASE("test 16 byte encrypted writes", "[flash_encryption][test_env=UT_T1_FlashEncryption]")
 | |
| {
 | |
|     setup_tests();
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_OK,
 | |
|                       spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE));
 | |
| 
 | |
|     uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47
 | |
|     for(int i = 0; i < sizeof(fortyeight_bytes); i++) {
 | |
|         fortyeight_bytes[i] = i;
 | |
|     }
 | |
| 
 | |
|     /* Verify unaligned start or length fails */
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG,
 | |
|                       spi_flash_write_encrypted(start+1, fortyeight_bytes, 32));
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE,
 | |
|                       spi_flash_write_encrypted(start, fortyeight_bytes, 15));
 | |
| 
 | |
|     /* ensure nothing happened to the flash yet */
 | |
|     verify_erased_flash(start, 0x20);
 | |
| 
 | |
|     /* Write 32 byte block, this is the "normal" encrypted write */
 | |
|     test_encrypted_write(start, fortyeight_bytes, 0x20);
 | |
|     verify_erased_flash(start + 0x20, 0x20);
 | |
| 
 | |
|     /* Slip in an unaligned spi_flash_read_encrypted() test */
 | |
|     uint8_t buf[0x10];
 | |
|     spi_flash_read_encrypted(start+0x10, buf, 0x10);
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16);
 | |
| 
 | |
|     /* Write 16 bytes unaligned */
 | |
|     test_encrypted_write(start + 0x30, fortyeight_bytes, 0x10);
 | |
|     /* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */
 | |
|     verify_erased_flash(start + 0x20, 0x10);
 | |
|     verify_erased_flash(start + 0x40, 0x10);
 | |
| 
 | |
|     /* Write 48 bytes starting at a 32-byte aligned offset */
 | |
|     test_encrypted_write(start + 0x40, fortyeight_bytes, 0x30);
 | |
|     /* 16 bytes after this write should still be 0xFF -unencrypted- */
 | |
|     verify_erased_flash(start + 0x70, 0x10);
 | |
| 
 | |
|     /* Write 48 bytes starting at a 16-byte aligned offset */
 | |
|     test_encrypted_write(start + 0x90, fortyeight_bytes, 0x30);
 | |
|     /* 16 bytes after this write should still be 0xFF -unencrypted- */
 | |
|     verify_erased_flash(start + 0x120, 0x10);
 | |
| }
 | |
| 
 | |
| static void test_encrypted_write(size_t offset, const uint8_t *data, size_t length)
 | |
| {
 | |
|     uint8_t readback[length];
 | |
|     printf("encrypt %d bytes at 0x%x\n", length, offset);
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_OK,
 | |
|                           spi_flash_write_encrypted(offset, data, length));
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_OK,
 | |
|                           spi_flash_read_encrypted(offset, readback, length));
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length);
 | |
| }
 | |
| 
 | |
| TEST_CASE("test 16 byte encrypted writes (esp_flash)", "[flash_encryption][esp_flash_enc][test_env=UT_T1_FlashEncryption]")
 | |
| {
 | |
|     setup_tests();
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_OK,
 | |
|                       spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE));
 | |
| 
 | |
|     uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47
 | |
|     for(int i = 0; i < sizeof(fortyeight_bytes); i++) {
 | |
|         fortyeight_bytes[i] = i;
 | |
|     }
 | |
| 
 | |
|     /* Verify unaligned start or length fails */
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG,
 | |
|                       esp_flash_write_encrypted(NULL, start+1, fortyeight_bytes, 32));
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE,
 | |
|                       esp_flash_write_encrypted(NULL, start, fortyeight_bytes, 15));
 | |
| 
 | |
|     /* ensure nothing happened to the flash yet */
 | |
|     verify_erased_flash(start, 0x20);
 | |
| 
 | |
|     /* Write 32 byte block, this is the "normal" encrypted write */
 | |
|     test_encrypted_write_new_impl(start, fortyeight_bytes, 0x20);
 | |
|     verify_erased_flash(start + 0x20, 0x20);
 | |
| 
 | |
|     /* Slip in an unaligned esp_flash_read_encrypted() test */
 | |
|     uint8_t buf[0x10];
 | |
|     esp_flash_read_encrypted(NULL, start+0x10, buf, 0x10);
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16);
 | |
| 
 | |
|     /* Write 16 bytes unaligned */
 | |
|     test_encrypted_write_new_impl(start + 0x30, fortyeight_bytes, 0x10);
 | |
|     /* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */
 | |
|     verify_erased_flash(start + 0x20, 0x10);
 | |
|     verify_erased_flash(start + 0x40, 0x10);
 | |
| 
 | |
|     /* Write 48 bytes starting at a 32-byte aligned offset */
 | |
|     test_encrypted_write_new_impl(start + 0x40, fortyeight_bytes, 0x30);
 | |
|     /* 16 bytes after this write should still be 0xFF -unencrypted- */
 | |
|     verify_erased_flash(start + 0x70, 0x10);
 | |
| 
 | |
|     /* Write 48 bytes starting at a 16-byte aligned offset */
 | |
|     test_encrypted_write_new_impl(start + 0x90, fortyeight_bytes, 0x30);
 | |
|     /* 16 bytes after this write should still be 0xFF -unencrypted- */
 | |
|     verify_erased_flash(start + 0x120, 0x10);
 | |
| }
 | |
| 
 | |
| static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length)
 | |
| {
 | |
|     uint8_t readback[length];
 | |
|     printf("encrypt %d bytes at 0x%x\n", length, offset);
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_OK,
 | |
|                           esp_flash_write_encrypted(NULL, offset, data, length));
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_OK,
 | |
|                           esp_flash_read_encrypted(NULL, offset, readback, length));
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length);
 | |
| }
 | |
| 
 | |
| static void verify_erased_flash(size_t offset, size_t length)
 | |
| {
 | |
|     uint8_t readback[length];
 | |
|     printf("verify erased 0x%x - 0x%x\n", offset, offset + length);
 | |
|     TEST_ASSERT_EQUAL_HEX(ESP_OK,
 | |
|                           spi_flash_read(offset, readback, length));
 | |
|     for (int i = 0; i < length; i++) {
 | |
|         char message[32];
 | |
|         sprintf(message, "unerased flash @ 0x%08x", offset + i);
 | |
|         TEST_ASSERT_EQUAL_HEX_MESSAGE(0xFF, readback[i], message);
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST_CASE("test read & write random encrypted data", "[flash_encryption][test_env=UT_T1_FlashEncryption]")
 | |
| {
 | |
|     const int MAX_LEN = 192;
 | |
|     //buffer to hold the read data
 | |
|     WORD_ALIGNED_ATTR uint8_t buffer_to_write[MAX_LEN+4];
 | |
|     //test with unaligned buffer
 | |
|     uint8_t* data_buf = &buffer_to_write[3];
 | |
| 
 | |
|     setup_tests();
 | |
| 
 | |
|     esp_err_t err = spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE);
 | |
|     TEST_ESP_OK(err);
 | |
| 
 | |
|     //initialize the buffer to compare
 | |
|     uint8_t *cmp_buf = heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
 | |
|     assert(((intptr_t)cmp_buf % 4) == 0);
 | |
|     err = spi_flash_read_encrypted(start, cmp_buf, SPI_FLASH_SEC_SIZE);
 | |
|     TEST_ESP_OK(err);
 | |
| 
 | |
|     srand(789);
 | |
| 
 | |
|     uint32_t offset = 0;
 | |
|     do {
 | |
|         //the encrypted write only works at 16-byte boundary
 | |
|         int skip = (rand() % 4) * 16;
 | |
|         int len = ((rand() % (MAX_LEN/16)) + 1) * 16;
 | |
| 
 | |
|         for (int i = 0; i < MAX_LEN; i++) {
 | |
|             data_buf[i] = rand();
 | |
|         }
 | |
| 
 | |
|         offset += skip;
 | |
|         if (offset + len > SPI_FLASH_SEC_SIZE) {
 | |
|             if (offset > SPI_FLASH_SEC_SIZE) {
 | |
|                 break;
 | |
|             }
 | |
|             len = SPI_FLASH_SEC_SIZE - offset;
 | |
|         }
 | |
| 
 | |
|         printf("write %d bytes to 0x%08x...\n", len, start + offset);
 | |
|         err = spi_flash_write_encrypted(start + offset, data_buf, len);
 | |
|         TEST_ESP_OK(err);
 | |
| 
 | |
|         memcpy(cmp_buf + offset, data_buf, len);
 | |
|         offset += len;
 | |
|     } while (offset < SPI_FLASH_SEC_SIZE);
 | |
| 
 | |
|     offset = 0;
 | |
|     do {
 | |
|         int len = ((rand() % (MAX_LEN/16)) + 1) * 16;
 | |
|         if (offset + len > SPI_FLASH_SEC_SIZE) {
 | |
|             len = SPI_FLASH_SEC_SIZE - offset;
 | |
|         }
 | |
| 
 | |
|         err = spi_flash_read_encrypted(start + offset, data_buf, len);
 | |
|         TEST_ESP_OK(err);
 | |
| 
 | |
|         printf("compare %d bytes at 0x%08x...\n", len, start + offset);
 | |
| 
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(cmp_buf + offset, data_buf, len);
 | |
|         offset += len;
 | |
|     } while (offset < SPI_FLASH_SEC_SIZE);
 | |
| 
 | |
|     free(cmp_buf);
 | |
| }
 | |
| 
 | |
| #endif // CONFIG_SECURE_FLASH_ENC_ENABLED
 | 
