mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	 0a95151a75
			
		
	
	0a95151a75
	
	
	
		
			
			There is no ccomp timer on C3, which means our performance tests will start failing again due to variance caused by cache misses. This MR adds TEST_PERFORMANCE_CCOMP_ macro that will only fail performance test if CCOMP timer is supported on the target
		
			
				
	
	
		
			422 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <stdio.h>
 | |
| #include <sys/param.h>
 | |
| #include <freertos/FreeRTOS.h>
 | |
| #include <freertos/task.h>
 | |
| #include <freertos/semphr.h>
 | |
| 
 | |
| #include <unity.h>
 | |
| #include <esp_spi_flash.h>
 | |
| #include <esp_attr.h>
 | |
| #include "driver/timer.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "test_utils.h"
 | |
| #include "ccomp_timer.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_rom_sys.h"
 | |
| #include "esp_timer.h"
 | |
| 
 | |
| #include "sdkconfig.h"
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #include "esp32/rom/spi_flash.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
| #include "esp32s2/rom/spi_flash.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
| #include "esp32s3/rom/spi_flash.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C3
 | |
| #include "esp32c3/rom/spi_flash.h"
 | |
| #endif
 | |
| 
 | |
| struct flash_test_ctx {
 | |
|     uint32_t offset;
 | |
|     bool fail;
 | |
|     SemaphoreHandle_t done;
 | |
| };
 | |
| 
 | |
| static const char TAG[] = "test_spi_flash";
 | |
| 
 | |
| /* Base offset in flash for tests. */
 | |
| static size_t start;
 | |
| 
 | |
| static void setup_tests(void)
 | |
| {
 | |
|     if (start == 0) {
 | |
|         const esp_partition_t *part = get_test_data_partition();
 | |
|         start = part->address;
 | |
|         printf("Test data partition @ 0x%x\n", start);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void flash_test_task(void *arg)
 | |
| {
 | |
|     struct flash_test_ctx *ctx = (struct flash_test_ctx *) arg;
 | |
|     vTaskDelay(100 / portTICK_PERIOD_MS);
 | |
|     const uint32_t sector = start / SPI_FLASH_SEC_SIZE + ctx->offset;
 | |
|     printf("t%d\n", sector);
 | |
|     printf("es%d\n", sector);
 | |
|     if (spi_flash_erase_sector(sector) != ESP_OK) {
 | |
|         ctx->fail = true;
 | |
|         printf("Erase failed\r\n");
 | |
|         xSemaphoreGive(ctx->done);
 | |
|         vTaskDelete(NULL);
 | |
|     }
 | |
|     printf("ed%d\n", sector);
 | |
| 
 | |
|     vTaskDelay(0 / portTICK_PERIOD_MS);
 | |
| 
 | |
|     uint32_t val = 0xabcd1234;
 | |
|     for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) {
 | |
|         if (spi_flash_write(sector * SPI_FLASH_SEC_SIZE + offset, (const uint8_t *) &val, 4) != ESP_OK) {
 | |
|             printf("Write failed at offset=%d\r\n", offset);
 | |
|             ctx->fail = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     printf("wd%d\n", sector);
 | |
| 
 | |
|     vTaskDelay(0 / portTICK_PERIOD_MS);
 | |
| 
 | |
|     uint32_t val_read;
 | |
|     for (uint32_t offset = 0; offset < SPI_FLASH_SEC_SIZE; offset += 4) {
 | |
|         if (spi_flash_read(sector * SPI_FLASH_SEC_SIZE + offset, (uint8_t *) &val_read, 4) != ESP_OK) {
 | |
|             printf("Read failed at offset=%d\r\n", offset);
 | |
|             ctx->fail = true;
 | |
|             break;
 | |
|         }
 | |
|         if (val_read != val) {
 | |
|             printf("Read invalid value=%08x at offset=%d\r\n", val_read, offset);
 | |
|             ctx->fail = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     printf("td%d\n", sector);
 | |
|     xSemaphoreGive(ctx->done);
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| TEST_CASE("flash write and erase work both on PRO CPU and on APP CPU", "[spi_flash][ignore]")
 | |
| {
 | |
|     setup_tests();
 | |
| 
 | |
|     SemaphoreHandle_t done = xSemaphoreCreateCounting(4, 0);
 | |
|     struct flash_test_ctx ctx[] = {
 | |
|             { .offset = 0x10 + 6, .done = done },
 | |
|             { .offset = 0x10 + 7, .done = done },
 | |
|             { .offset = 0x10 + 8, .done = done },
 | |
| #ifndef CONFIG_FREERTOS_UNICORE
 | |
|             { .offset = 0x10 + 9, .done = done }
 | |
| #endif
 | |
|     };
 | |
| 
 | |
|     xTaskCreatePinnedToCore(flash_test_task, "t0", 2048, &ctx[0], 3, NULL, 0);
 | |
|     xTaskCreatePinnedToCore(flash_test_task, "t1", 2048, &ctx[1], 3, NULL, tskNO_AFFINITY);
 | |
|     xTaskCreatePinnedToCore(flash_test_task, "t2", 2048, &ctx[2], 3, NULL, tskNO_AFFINITY);
 | |
| #ifndef CONFIG_FREERTOS_UNICORE
 | |
|     xTaskCreatePinnedToCore(flash_test_task, "t3", 2048, &ctx[3], 3, NULL, 1);
 | |
| #endif
 | |
| 
 | |
|     const size_t task_count = sizeof(ctx)/sizeof(ctx[0]);
 | |
|     for (int i = 0; i < task_count; ++i) {
 | |
|         xSemaphoreTake(done, portMAX_DELAY);
 | |
|         TEST_ASSERT_FALSE(ctx[i].fail);
 | |
|     }
 | |
|     vSemaphoreDelete(done);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|     size_t buf_size;
 | |
|     uint8_t* buf;
 | |
|     size_t flash_addr;
 | |
|     size_t repeat_count;
 | |
|     SemaphoreHandle_t done;
 | |
| } read_task_arg_t;
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|     size_t delay_time_us;
 | |
|     size_t repeat_count;
 | |
| } block_task_arg_t;
 | |
| 
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
| #define int_clr_timers int_clr
 | |
| #endif
 | |
| 
 | |
| static void IRAM_ATTR timer_isr(void* varg) {
 | |
|     block_task_arg_t* arg = (block_task_arg_t*) varg;
 | |
|     timer_group_clr_intr_status_in_isr(TIMER_GROUP_0, TIMER_0);
 | |
|     timer_group_enable_alarm_in_isr(TIMER_GROUP_0, TIMER_0);
 | |
|     esp_rom_delay_us(arg->delay_time_us);
 | |
|     arg->repeat_count++;
 | |
| }
 | |
| 
 | |
| static void read_task(void* varg) {
 | |
|     read_task_arg_t* arg = (read_task_arg_t*) varg;
 | |
|     for (size_t i = 0; i < arg->repeat_count; ++i) {
 | |
|         ESP_ERROR_CHECK( spi_flash_read(arg->flash_addr, arg->buf, arg->buf_size) );
 | |
|     }
 | |
|     xSemaphoreGive(arg->done);
 | |
|     vTaskDelay(1);
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| TEST_CASE("spi flash functions can run along with IRAM interrupts", "[spi_flash][esp_flash]")
 | |
| {
 | |
|     const size_t size = 128;
 | |
|     read_task_arg_t read_arg = {
 | |
|             .buf_size = size,
 | |
|             .buf = (uint8_t*) malloc(size),
 | |
|             .flash_addr = 0,
 | |
|             .repeat_count = 1000,
 | |
|             .done = xSemaphoreCreateBinary()
 | |
|     };
 | |
| 
 | |
|     timer_config_t config = {
 | |
|             .alarm_en = true,
 | |
|             .counter_en = false,
 | |
|             .intr_type = TIMER_INTR_LEVEL,
 | |
|             .counter_dir = TIMER_COUNT_UP,
 | |
|             .auto_reload = true,
 | |
|             .divider = 80
 | |
|     };
 | |
| 
 | |
|     block_task_arg_t block_arg = {
 | |
|             .repeat_count = 0,
 | |
|             .delay_time_us = 100
 | |
|     };
 | |
| 
 | |
|     ESP_ERROR_CHECK( timer_init(TIMER_GROUP_0, TIMER_0, &config) );
 | |
|     timer_pause(TIMER_GROUP_0, TIMER_0);
 | |
|     ESP_ERROR_CHECK( timer_set_alarm_value(TIMER_GROUP_0, TIMER_0, 120) );
 | |
|     intr_handle_t handle;
 | |
|     ESP_ERROR_CHECK( timer_isr_register(TIMER_GROUP_0, TIMER_0, &timer_isr, &block_arg, ESP_INTR_FLAG_IRAM, &handle) );
 | |
|     timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0);
 | |
|     timer_enable_intr(TIMER_GROUP_0, TIMER_0);
 | |
|     timer_start(TIMER_GROUP_0, TIMER_0);
 | |
| 
 | |
|     xTaskCreatePinnedToCore(read_task, "r", 2048, &read_arg, 3, NULL, portNUM_PROCESSORS - 1);
 | |
|     xSemaphoreTake(read_arg.done, portMAX_DELAY);
 | |
| 
 | |
|     timer_pause(TIMER_GROUP_0, TIMER_0);
 | |
|     timer_disable_intr(TIMER_GROUP_0, TIMER_0);
 | |
|     esp_intr_free(handle);
 | |
|     vSemaphoreDelete(read_arg.done);
 | |
|     free(read_arg.buf);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t us_start;
 | |
|     size_t len;
 | |
|     const char* name;
 | |
| } time_meas_ctx_t;
 | |
| 
 | |
| static void time_measure_start(time_meas_ctx_t* ctx)
 | |
| {
 | |
|     ctx->us_start = esp_timer_get_time();
 | |
|     ccomp_timer_start();
 | |
| }
 | |
| 
 | |
| static uint32_t time_measure_end(time_meas_ctx_t* ctx)
 | |
| {
 | |
|     uint32_t c_time_us = ccomp_timer_stop();
 | |
|     uint32_t time_us = esp_timer_get_time() - ctx->us_start;
 | |
| 
 | |
|     ESP_LOGI(TAG, "%s: compensated: %.2lf kB/s, typical: %.2lf kB/s", ctx->name, ctx->len / (c_time_us/1000.), ctx->len / (time_us/1000.));
 | |
|     return ctx->len * 1000 / (c_time_us / 1000);
 | |
| }
 | |
| 
 | |
| #define TEST_TIMES      20
 | |
| #define TEST_SECTORS    4
 | |
| 
 | |
| static uint32_t measure_erase(const esp_partition_t* part)
 | |
| {
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE * TEST_SECTORS;
 | |
|     time_meas_ctx_t time_ctx = {.name = "erase", .len = total_len};
 | |
| 
 | |
|     time_measure_start(&time_ctx);
 | |
|     esp_err_t err = spi_flash_erase_range(part->address, total_len);
 | |
|     TEST_ESP_OK(err);
 | |
|     return time_measure_end(&time_ctx);
 | |
| }
 | |
| 
 | |
| // should called after measure_erase
 | |
| static uint32_t measure_write(const char* name, const esp_partition_t* part, const uint8_t* data_to_write, int seg_len)
 | |
| {
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE;
 | |
|     time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
 | |
| 
 | |
|     time_measure_start(&time_ctx);
 | |
|     for (int i = 0; i < TEST_TIMES; i ++) {
 | |
|         // Erase one time, but write 100 times the same data
 | |
|         size_t len = total_len;
 | |
|         int offset = 0;
 | |
| 
 | |
|         while (len) {
 | |
|             int len_write = MIN(seg_len, len);
 | |
|             esp_err_t err = spi_flash_write(part->address + offset, data_to_write + offset, len_write);
 | |
|             TEST_ESP_OK(err);
 | |
| 
 | |
|             offset += len_write;
 | |
|             len -= len_write;
 | |
|         }
 | |
|     }
 | |
|     return time_measure_end(&time_ctx);
 | |
| }
 | |
| 
 | |
| static uint32_t measure_read(const char* name, const esp_partition_t* part, uint8_t* data_read, int seg_len)
 | |
| {
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE;
 | |
|     time_meas_ctx_t time_ctx = {.name = name, .len = total_len * TEST_TIMES};
 | |
| 
 | |
|     time_measure_start(&time_ctx);
 | |
|     for (int i = 0; i < TEST_TIMES; i ++) {
 | |
|         size_t len = total_len;
 | |
|         int offset = 0;
 | |
| 
 | |
|         while (len) {
 | |
|             int len_read = MIN(seg_len, len);
 | |
|             esp_err_t err = spi_flash_read(part->address + offset, data_read + offset, len_read);
 | |
|             TEST_ESP_OK(err);
 | |
| 
 | |
|             offset += len_read;
 | |
|             len -= len_read;
 | |
|         }
 | |
|     }
 | |
|     return time_measure_end(&time_ctx);
 | |
| }
 | |
| 
 | |
| #define MEAS_WRITE(n)   (measure_write("write in "#n"-byte chunks", part, data_to_write, n))
 | |
| #define MEAS_READ(n)    (measure_read("read in "#n"-byte chunks", part, data_read, n))
 | |
| 
 | |
| TEST_CASE("Test spi_flash read/write performance", "[spi_flash]")
 | |
| {
 | |
|     const esp_partition_t *part = get_test_data_partition();
 | |
| 
 | |
|     const int total_len = SPI_FLASH_SEC_SIZE;
 | |
|     uint8_t *data_to_write = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | |
|     uint8_t *data_read = heap_caps_malloc(total_len, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | |
| 
 | |
|     srand(777);
 | |
|     for (int i = 0; i < total_len; i++) {
 | |
|         data_to_write[i] = rand();
 | |
|     }
 | |
| 
 | |
|     uint32_t erase_1 = measure_erase(part);
 | |
|     uint32_t speed_WR_4B = MEAS_WRITE(4);
 | |
|     uint32_t speed_RD_4B = MEAS_READ(4);
 | |
|     uint32_t erase_2 = measure_erase(part);
 | |
|     uint32_t speed_WR_2KB = MEAS_WRITE(2048);
 | |
|     uint32_t speed_RD_2KB = MEAS_READ(2048);
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_write, data_read, total_len);
 | |
| 
 | |
| // Data checks are disabled when PSRAM is used or in Freertos compliance check test
 | |
| #if !CONFIG_SPIRAM && !CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
 | |
| #  define CHECK_DATA(suffix) TEST_PERFORMANCE_CCOMP_GREATER_THAN(FLASH_SPEED_BYTE_PER_SEC_LEGACY_##suffix, "%d", speed_##suffix)
 | |
| #  define CHECK_ERASE(var) TEST_PERFORMANCE_CCOMP_GREATER_THAN(FLASH_SPEED_BYTE_PER_SEC_LEGACY_ERASE, "%d", var)
 | |
| #else
 | |
| #  define CHECK_DATA(suffix) ((void)speed_##suffix)
 | |
| #  define CHECK_ERASE(var) ((void)var)
 | |
| #endif
 | |
| 
 | |
|     CHECK_DATA(WR_4B);
 | |
|     CHECK_DATA(RD_4B);
 | |
|     CHECK_DATA(WR_2KB);
 | |
|     CHECK_DATA(RD_2KB);
 | |
| 
 | |
|     // Erase time may vary a lot, can increase threshold if this fails with a reasonable speed
 | |
|     CHECK_ERASE(erase_1);
 | |
|     CHECK_ERASE(erase_2);
 | |
| 
 | |
|     free(data_to_write);
 | |
|     free(data_read);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #if portNUM_PROCESSORS > 1
 | |
| TEST_CASE("spi_flash deadlock with high priority busy-waiting task", "[spi_flash][esp_flash]")
 | |
| {
 | |
|     typedef struct {
 | |
|         QueueHandle_t queue;
 | |
|         volatile bool done;
 | |
|     } deadlock_test_arg_t;
 | |
| 
 | |
|     /* Create two tasks: high-priority consumer on CPU0, low-priority producer on CPU1.
 | |
|      * Consumer polls the queue until it gets some data, then yields.
 | |
|      * Run flash operation on CPU0. Check that when IPC1 task blocks out the producer,
 | |
|      * the task which does flash operation does not get blocked by the consumer.
 | |
|      */
 | |
| 
 | |
|     void producer_task(void* varg)
 | |
|     {
 | |
|         int dummy = 0;
 | |
|         deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg;
 | |
|         while (!arg->done) {
 | |
|             xQueueSend(arg->queue, &dummy, 0);
 | |
|             vTaskDelay(1);
 | |
|         }
 | |
|         vTaskDelete(NULL);
 | |
|     }
 | |
| 
 | |
|     void consumer_task(void* varg)
 | |
|     {
 | |
|         int dummy;
 | |
|         deadlock_test_arg_t* arg = (deadlock_test_arg_t*) varg;
 | |
|         while (!arg->done) {
 | |
|             if (xQueueReceive(arg->queue, &dummy, 0) == pdTRUE) {
 | |
|                 vTaskDelay(1);
 | |
|             }
 | |
|         }
 | |
|         vTaskDelete(NULL);
 | |
|     }
 | |
|     deadlock_test_arg_t arg = {
 | |
|         .queue = xQueueCreate(32, sizeof(int)),
 | |
|         .done = false
 | |
|     };
 | |
| 
 | |
|     TEST_ASSERT(xTaskCreatePinnedToCore(&producer_task, "producer", 4096, &arg, 5, NULL, 1));
 | |
|     TEST_ASSERT(xTaskCreatePinnedToCore(&consumer_task, "consumer", 4096, &arg, 10, NULL, 0));
 | |
| 
 | |
|     for (int i = 0; i < 1000; i++) {
 | |
|         uint32_t dummy;
 | |
|         TEST_ESP_OK(spi_flash_read(0, &dummy, sizeof(dummy)));
 | |
|     }
 | |
| 
 | |
|     arg.done = true;
 | |
|     vTaskDelay(5);
 | |
|     vQueueDelete(arg.queue);
 | |
| 
 | |
|     /* Check that current task priority is still correct */
 | |
|     TEST_ASSERT_EQUAL_INT(uxTaskPriorityGet(NULL), UNITY_FREERTOS_PRIORITY);
 | |
| }
 | |
| #endif // portNUM_PROCESSORS > 1
 | |
| 
 | |
| TEST_CASE("WEL is cleared after boot", "[spi_flash]")
 | |
| {
 | |
|     esp_rom_spiflash_chip_t *legacy_chip = &g_rom_flashchip;
 | |
|     uint32_t status;
 | |
|     esp_rom_spiflash_read_status(legacy_chip, &status);
 | |
| 
 | |
|     TEST_ASSERT((status & 0x2) == 0);
 | |
| }
 | |
| 
 | |
| #if CONFIG_ESPTOOLPY_FLASHMODE_QIO
 | |
| // ISSI chip has its QE bit on other chips' BP4, which may get cleared by accident
 | |
| TEST_CASE("rom unlock will not erase QE bit", "[spi_flash]")
 | |
| {
 | |
|     esp_rom_spiflash_chip_t *legacy_chip = &g_rom_flashchip;
 | |
|     uint32_t status;
 | |
|     printf("dev_id: %08X \n", legacy_chip->device_id);
 | |
| 
 | |
|     if (((legacy_chip->device_id >> 16) & 0xff) != 0x9D) {
 | |
|         TEST_IGNORE_MESSAGE("This test is only for ISSI chips. Ignore.");
 | |
|     }
 | |
|     esp_rom_spiflash_unlock();
 | |
|     esp_rom_spiflash_read_status(legacy_chip, &status);
 | |
|     printf("status: %08x\n", status);
 | |
| 
 | |
|     TEST_ASSERT(status & 0x40);
 | |
| }
 | |
| #endif
 |