mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 20:51:41 +00:00 
			
		
		
		
	 66fb5a29bb
			
		
	
	66fb5a29bb
	
	
	
		
			
			Apply the pre-commit hook whitespace fixes to all files in the repo. (Line endings, blank lines at end of file, trailing whitespace)
		
			
				
	
	
		
			270 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <math.h>
 | |
| #include <stdio.h>
 | |
| #include "soc/cpu.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/task.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "unity.h"
 | |
| #include "test_utils.h"
 | |
| 
 | |
| /* Note: these functions are included here for unit test purposes. They are not needed for writing
 | |
|  * normal code. If writing standard C floating point code, libgcc should correctly include implementations
 | |
|  * that use the floating point registers correctly. */
 | |
| 
 | |
| static float addsf(float a, float b)
 | |
| {
 | |
|     float result;
 | |
|     asm volatile (
 | |
|         "wfr f0, %1\n"
 | |
|         "wfr f1, %2\n"
 | |
|         "add.s f2, f0, f1\n"
 | |
|         "rfr %0, f2\n"
 | |
|         :"=r"(result):"r"(a), "r"(b)
 | |
|     );
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static float mulsf(float a, float b)
 | |
| {
 | |
|     float result;
 | |
|     asm volatile (
 | |
|         "wfr f0, %1\n"
 | |
|         "wfr f1, %2\n"
 | |
|         "mul.s f2, f0, f1\n"
 | |
|         "rfr %0, f2\n"
 | |
|         :"=r"(result):"r"(a), "r"(b)
 | |
|     );
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static float divsf(float a, float b)
 | |
| {
 | |
|     float result;
 | |
|     asm volatile (
 | |
|         "wfr f0, %1\n"
 | |
|         "wfr f1, %2\n"
 | |
|         "div0.s f3, f1 \n"
 | |
|         "nexp01.s f4, f1 \n"
 | |
|         "const.s f5, 1 \n"
 | |
|         "maddn.s f5, f4, f3 \n"
 | |
|         "mov.s f6, f3 \n"
 | |
|         "mov.s f7, f1 \n"
 | |
|         "nexp01.s f8, f0 \n"
 | |
|         "maddn.s f6, f5, f3 \n"
 | |
|         "const.s f5, 1 \n"
 | |
|         "const.s f2, 0 \n"
 | |
|         "neg.s f9, f8 \n"
 | |
|         "maddn.s f5,f4,f6 \n"
 | |
|         "maddn.s f2, f9, f3 \n"
 | |
|         "mkdadj.s f7, f0 \n"
 | |
|         "maddn.s f6,f5,f6 \n"
 | |
|         "maddn.s f9,f4,f2 \n"
 | |
|         "const.s f5, 1 \n"
 | |
|         "maddn.s f5,f4,f6 \n"
 | |
|         "maddn.s f2,f9,f6 \n"
 | |
|         "neg.s f9, f8 \n"
 | |
|         "maddn.s f6,f5,f6 \n"
 | |
|         "maddn.s f9,f4,f2 \n"
 | |
|         "addexpm.s f2, f7 \n"
 | |
|         "addexp.s f6, f7 \n"
 | |
|         "divn.s f2,f9,f6\n"
 | |
|         "rfr %0, f2\n"
 | |
|         :"=r"(result):"r"(a), "r"(b)
 | |
|     );
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static float sqrtsf(float a)
 | |
| {
 | |
|     float result;
 | |
|     asm volatile (
 | |
|         "wfr f0, %1\n"
 | |
|         "sqrt0.s f2, f0\n"
 | |
|         "const.s f5, 0\n"
 | |
|         "maddn.s f5, f2, f2\n"
 | |
|         "nexp01.s f3, f0\n"
 | |
|         "const.s f4, 3\n"
 | |
|         "addexp.s f3, f4\n"
 | |
|         "maddn.s f4, f5, f3\n"
 | |
|         "nexp01.s f5, f0\n"
 | |
|         "neg.s f6, f5\n"
 | |
|         "maddn.s f2, f4, f2\n"
 | |
|         "const.s f1, 0\n"
 | |
|         "const.s f4, 0\n"
 | |
|         "const.s f7, 0\n"
 | |
|         "maddn.s f1, f6, f2\n"
 | |
|         "maddn.s f4, f2, f3\n"
 | |
|         "const.s f6, 3\n"
 | |
|         "maddn.s f7, f6, f2\n"
 | |
|         "maddn.s f5, f1, f1\n"
 | |
|         "maddn.s f6, f4, f2\n"
 | |
|         "neg.s f3, f7\n"
 | |
|         "maddn.s f1, f5, f3\n"
 | |
|         "maddn.s f7, f6, f7\n"
 | |
|         "mksadj.s f2, f0\n"
 | |
|         "nexp01.s f5, f0\n"
 | |
|         "maddn.s f5, f1, f1\n"
 | |
|         "neg.s f3, f7\n"
 | |
|         "addexpm.s f1, f2\n"
 | |
|         "addexp.s f3, f2\n"
 | |
|         "divn.s f1, f5, f3\n"
 | |
|         "rfr %0, f1\n"
 | |
|         :"=r"(result):"r"(a)
 | |
|     );
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| TEST_CASE("test FP add", "[fp]")
 | |
| {
 | |
|     float a = 100.0f;
 | |
|     float b = 0.5f;
 | |
|     float c = addsf(a, b);
 | |
|     float eps = c - 100.5f;
 | |
|     printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
 | |
|     TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
 | |
| }
 | |
| 
 | |
| TEST_CASE("test FP mul", "[fp]")
 | |
| {
 | |
|     float a = 100.0f;
 | |
|     float b = 0.05f;
 | |
|     float c = mulsf(a, b);
 | |
|     float eps = c - 5.0f;
 | |
|     printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
 | |
|     TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
 | |
| }
 | |
| 
 | |
| TEST_CASE("test FP div", "[fp]")
 | |
| {
 | |
|     float a = 100.0f;
 | |
|     float b = 5.0f;
 | |
|     float c = divsf(a, b);
 | |
|     float eps = c - 20.0f;
 | |
|     printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
 | |
|     TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
 | |
| }
 | |
| 
 | |
| TEST_CASE("test FP sqrt", "[fp]")
 | |
| {
 | |
|     float a = 100.0f;
 | |
|     float c = sqrtsf(a);
 | |
|     float eps = c - 10.0f;
 | |
|     printf("a=%g c=%g eps=%g\r\n", a, c, eps);
 | |
|     TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct TestFPState {
 | |
|     int fail;
 | |
|     SemaphoreHandle_t done;
 | |
| };
 | |
| 
 | |
| static const int testFpIter = 100000;
 | |
| 
 | |
| static void tskTestFP(void *pvParameters)
 | |
| {
 | |
|     struct TestFPState *state = (struct TestFPState *) pvParameters;
 | |
|     for (int i = 0; i < testFpIter; ++i) {
 | |
|         // calculate zero in a slightly obscure way
 | |
|         float y = sqrtsf(addsf(1.0f, divsf(mulsf(sqrtsf(2), sqrtsf(2)), 2.0f)));
 | |
|         y = mulsf(y, y);
 | |
|         y = addsf(y, -2.0f);
 | |
|         // check that result is not far from zero
 | |
|         float eps = fabs(y);
 | |
|         if (eps > 1e-6f) {
 | |
|             state->fail++;
 | |
|             printf("%s: i=%d y=%f eps=%f\r\n", __func__, i, y, eps);
 | |
|         }
 | |
|     }
 | |
|     TEST_ASSERT(xSemaphoreGive(state->done));
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| TEST_CASE("context switch saves FP registers", "[fp]")
 | |
| {
 | |
|     struct TestFPState state = {
 | |
|         .done = xSemaphoreCreateCounting(4, 0)
 | |
|     };
 | |
|     TEST_ASSERT_NOT_NULL(state.done);
 | |
|     const int prio = UNITY_FREERTOS_PRIORITY + 1;
 | |
|     TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk1", 2048, &state, prio, NULL, 0));
 | |
|     TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk2", 2048, &state, prio, NULL, 0));
 | |
|     TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk3", 2048, &state, prio, NULL, portNUM_PROCESSORS - 1));
 | |
|     TEST_ASSERT(xTaskCreatePinnedToCore(tskTestFP, "tsk4", 2048, &state, prio, NULL, 0));
 | |
|     for (int i = 0; i < 4; ++i) {
 | |
|         TEST_ASSERT(xSemaphoreTake(state.done, pdMS_TO_TICKS(5000)));
 | |
|     }
 | |
|     vSemaphoreDelete(state.done);
 | |
|     if (state.fail) {
 | |
|         const int total = testFpIter * 4;
 | |
|         printf("Failed: %d, total: %d\r\n", state.fail, total);
 | |
|     }
 | |
|     TEST_ASSERT(state.fail == 0);
 | |
| }
 | |
| 
 | |
| /* Note: not static, to avoid optimisation of const result */
 | |
| float IRAM_ATTR test_fp_benchmark_fp_divide(int counts, unsigned *cycles)
 | |
| {
 | |
|     float f = MAXFLOAT;
 | |
|     uint32_t before, after;
 | |
|     RSR(CCOUNT, before);
 | |
| 
 | |
|     for (int i = 0; i < counts; i++) {
 | |
|         f /= 1.000432f;
 | |
|     }
 | |
| 
 | |
|     RSR(CCOUNT, after);
 | |
|     *cycles = (after - before) / counts;
 | |
| 
 | |
|     return f;
 | |
| }
 | |
| 
 | |
| TEST_CASE("floating point division performance", "[fp]")
 | |
| {
 | |
|     const unsigned COUNTS = 1000;
 | |
|     unsigned cycles = 0;
 | |
| 
 | |
|     // initialize fpu
 | |
|     volatile __attribute__((unused)) float dummy = sqrtf(rand());
 | |
| 
 | |
|     float f = test_fp_benchmark_fp_divide(COUNTS, &cycles);
 | |
| 
 | |
|     printf("%d divisions from %f = %f\n", COUNTS, MAXFLOAT, f);
 | |
|     printf("Per division = %d cycles\n", cycles);
 | |
| 
 | |
|     TEST_PERFORMANCE_LESS_THAN(CYCLES_PER_DIV, "%d cycles", cycles);
 | |
| }
 | |
| 
 | |
| /* Note: not static, to avoid optimisation of const result */
 | |
| float IRAM_ATTR test_fp_benchmark_fp_sqrt(int counts, unsigned *cycles)
 | |
| {
 | |
|     float f = MAXFLOAT;
 | |
|     uint32_t before, after;
 | |
|     RSR(CCOUNT, before);
 | |
| 
 | |
|     for (int i = 0; i < counts; i++) {
 | |
|         f = sqrtf(f);
 | |
|     }
 | |
| 
 | |
|     RSR(CCOUNT, after);
 | |
|     *cycles = (after - before) / counts;
 | |
| 
 | |
|     return f;
 | |
| }
 | |
| 
 | |
| TEST_CASE("floating point square root performance", "[fp]")
 | |
| {
 | |
|     const unsigned COUNTS = 200;
 | |
|     unsigned cycles = 0;
 | |
| 
 | |
|     // initialize fpu
 | |
|     volatile float __attribute__((unused)) dummy = sqrtf(rand());
 | |
| 
 | |
|     float f = test_fp_benchmark_fp_sqrt(COUNTS, &cycles);
 | |
| 
 | |
|     printf("%d square roots from %f = %f\n", COUNTS, MAXFLOAT, f);
 | |
|     printf("Per sqrt = %d cycles\n", cycles);
 | |
| 
 | |
|     TEST_PERFORMANCE_LESS_THAN(CYCLES_PER_SQRT, "%d cycles", cycles);
 | |
| }
 |