mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	 65cfc9e656
			
		
	
	65cfc9e656
	
	
	
		
			
			On ESP32, UART_INTR_BRK_DET may be triggered after setting the new ISR handler. Disable these interrrupts.
		
			
				
	
	
		
			532 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			532 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <string.h>
 | |
| #include <sys/param.h>
 | |
| #include "unity.h"
 | |
| #include "test_utils.h"             // unity_send_signal
 | |
| #include "driver/uart.h"            // for the uart driver access
 | |
| #include "esp_log.h"
 | |
| #include "esp_system.h"             // for uint32_t esp_random()
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "soc/uart_periph.h"
 | |
| #include "hal/uart_ll.h"
 | |
| #include "hal/uart_hal.h"
 | |
| 
 | |
| #define UART_TAG         "Uart"
 | |
| #define UART_NUM1        (UART_NUM_1)
 | |
| #define BUF_SIZE         (100)
 | |
| #define UART1_RX_PIN     (22)
 | |
| #define UART1_TX_PIN     (23)
 | |
| #define UART_BAUD_11520  (11520)
 | |
| #define UART_BAUD_115200 (115200)
 | |
| #define TOLERANCE        (0.02)    //baud rate error tolerance 2%.
 | |
| 
 | |
| #define UART1_CTS_PIN    (13)
 | |
| // RTS for RS485 Half-Duplex Mode manages DE/~RE
 | |
| #define UART1_RTS_PIN    (18)
 | |
| 
 | |
| // Number of packets to be send during test
 | |
| #define PACKETS_NUMBER  (10)
 | |
| 
 | |
| // Wait timeout for uart driver
 | |
| #define PACKET_READ_TICS    (1000 / portTICK_RATE_MS)
 | |
| 
 | |
| #define TEST_DEFAULT_CLK UART_SCLK_APB
 | |
| 
 | |
| static void uart_config(uint32_t baud_rate, uart_sclk_t source_clk)
 | |
| {
 | |
|     uart_config_t uart_config = {
 | |
|         .baud_rate = baud_rate,
 | |
|         .source_clk = source_clk,
 | |
|         .data_bits = UART_DATA_8_BITS,
 | |
|         .parity = UART_PARITY_DISABLE,
 | |
|         .stop_bits = UART_STOP_BITS_1,
 | |
|         .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
 | |
|     };
 | |
| 
 | |
|     uart_driver_install(UART_NUM1, BUF_SIZE * 2, BUF_SIZE * 2, 20, NULL, 0);
 | |
|     uart_param_config(UART_NUM1, &uart_config);
 | |
|     TEST_ESP_OK(uart_set_loop_back(UART_NUM1, true));
 | |
| }
 | |
| 
 | |
| static volatile bool exit_flag;
 | |
| 
 | |
| static void test_task(void *pvParameters)
 | |
| {
 | |
|     xSemaphoreHandle *sema = (xSemaphoreHandle *) pvParameters;
 | |
|     char* data = (char *) malloc(256);
 | |
| 
 | |
|     while (exit_flag == false) {
 | |
|         uart_tx_chars(UART_NUM1, data, 256);
 | |
|         // The uart_wait_tx_done() function does not block anything if ticks_to_wait = 0.
 | |
|         uart_wait_tx_done(UART_NUM1, 0);
 | |
|     }
 | |
| 
 | |
|     free(data);
 | |
|     xSemaphoreGive(*sema);
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| static void test_task2(void *pvParameters)
 | |
| {
 | |
|     while (exit_flag == false) {
 | |
|         // This task obstruct a setting tx_done_sem semaphore in the UART interrupt.
 | |
|         // It leads to waiting the ticks_to_wait time in uart_wait_tx_done() function.
 | |
|         uart_disable_tx_intr(UART_NUM1);
 | |
|     }
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| TEST_CASE("test uart_wait_tx_done is not blocked when ticks_to_wait=0", "[uart]")
 | |
| {
 | |
|     uart_config(UART_BAUD_11520, TEST_DEFAULT_CLK);
 | |
| 
 | |
|     xSemaphoreHandle exit_sema = xSemaphoreCreateBinary();
 | |
|     exit_flag = false;
 | |
| 
 | |
|     xTaskCreate(test_task,  "tsk1", 2048, &exit_sema, 5, NULL);
 | |
|     xTaskCreate(test_task2, "tsk2", 2048, NULL,       5, NULL);
 | |
| 
 | |
|     printf("Waiting for 5 sec\n");
 | |
|     vTaskDelay(5000 / portTICK_PERIOD_MS);
 | |
|     exit_flag = true;
 | |
| 
 | |
|     if (xSemaphoreTake(exit_sema, 1000 / portTICK_PERIOD_MS) == pdTRUE) {
 | |
|         vSemaphoreDelete(exit_sema);
 | |
|     } else {
 | |
|         TEST_FAIL_MESSAGE("uart_wait_tx_done is blocked");
 | |
|     }
 | |
|     TEST_ESP_OK(uart_driver_delete(UART_NUM1));
 | |
| }
 | |
| 
 | |
| TEST_CASE("test uart get baud-rate", "[uart]")
 | |
| {
 | |
| #if SOC_UART_SUPPORT_REF_TICK
 | |
|     uint32_t baud_rate1 = 0;
 | |
|     printf("init uart%d, use reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_11520);
 | |
|     uart_config(UART_BAUD_11520, UART_SCLK_REF_TICK);
 | |
|     uart_get_baudrate(UART_NUM1, &baud_rate1);
 | |
|     printf("get  baud rate when use reftick: %d\n", (int)baud_rate1);
 | |
|     TEST_ASSERT_UINT32_WITHIN(UART_BAUD_11520 * TOLERANCE, UART_BAUD_11520, baud_rate1);
 | |
| #endif
 | |
|     uint32_t baud_rate2 = 0;
 | |
|     printf("init uart%d, unuse reftick, baud rate : %d\n", (int)UART_NUM1, (int)UART_BAUD_115200);
 | |
|     uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
 | |
|     uart_get_baudrate(UART_NUM1, &baud_rate2);
 | |
|     printf("get  baud rate when don't use reftick: %d\n", (int)baud_rate2);
 | |
|     TEST_ASSERT_UINT32_WITHIN(UART_BAUD_115200 * TOLERANCE, UART_BAUD_115200, baud_rate2);
 | |
| 
 | |
|     uart_driver_delete(UART_NUM1);
 | |
|     ESP_LOGI(UART_TAG, "get baud-rate test passed  ....\n");
 | |
| }
 | |
| 
 | |
| TEST_CASE("test uart tx data with break", "[uart]")
 | |
| {
 | |
|     const int buf_len = 200;
 | |
|     const int send_len = 128;
 | |
|     const int brk_len = 10;
 | |
|     char *psend = (char *)malloc(buf_len);
 | |
|     TEST_ASSERT_NOT_NULL(psend);
 | |
|     memset(psend, '0', buf_len);
 | |
|     uart_config(UART_BAUD_115200, TEST_DEFAULT_CLK);
 | |
|     printf("Uart%d send %d bytes with break\n", UART_NUM1, send_len);
 | |
|     uart_write_bytes_with_break(UART_NUM1, (const char *)psend, send_len, brk_len);
 | |
|     uart_wait_tx_done(UART_NUM1, (portTickType)portMAX_DELAY);
 | |
|     //If the code is running here, it means the test passed, otherwise it will crash due to the interrupt wdt timeout.
 | |
|     printf("Send data with break test passed\n");
 | |
|     free(psend);
 | |
|     uart_driver_delete(UART_NUM1);
 | |
| }
 | |
| 
 | |
| static void uart_word_len_set_get_test(int uart_num)
 | |
| {
 | |
|     printf("uart word len set and get test\n");
 | |
|     uart_word_length_t word_length_set = 0;
 | |
|     uart_word_length_t word_length_get = 0;
 | |
|     for (int i = 0; i < UART_DATA_BITS_MAX; i++) {
 | |
|         word_length_set = UART_DATA_5_BITS + i;
 | |
|         TEST_ESP_OK(uart_set_word_length(uart_num, word_length_set));
 | |
|         TEST_ESP_OK(uart_get_word_length(uart_num, &word_length_get));
 | |
|         TEST_ASSERT_EQUAL(word_length_set, word_length_get);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void uart_stop_bit_set_get_test(int uart_num)
 | |
| {
 | |
|     printf("uart stop bit set and get test\n");
 | |
|     uart_stop_bits_t stop_bit_set = 0;
 | |
|     uart_stop_bits_t stop_bit_get = 0;
 | |
|     for (int i = UART_STOP_BITS_1; i < UART_STOP_BITS_MAX; i++) {
 | |
|         stop_bit_set = i;
 | |
|         TEST_ESP_OK(uart_set_stop_bits(uart_num, stop_bit_set));
 | |
|         TEST_ESP_OK(uart_get_stop_bits(uart_num, &stop_bit_get));
 | |
|         TEST_ASSERT_EQUAL(stop_bit_set, stop_bit_get);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void uart_parity_set_get_test(int uart_num)
 | |
| {
 | |
|     printf("uart parity set and get test\n");
 | |
|     uart_parity_t parity_set[3] = {
 | |
|         UART_PARITY_DISABLE,
 | |
|         UART_PARITY_EVEN,
 | |
|         UART_PARITY_ODD,
 | |
|     };
 | |
|     uart_parity_t parity_get = 0;
 | |
|     for (int i = 0; i < 3; i++) {
 | |
|         TEST_ESP_OK(uart_set_parity(uart_num, parity_set[i]));
 | |
|         TEST_ESP_OK(uart_get_parity(uart_num, &parity_get));
 | |
|         TEST_ASSERT_EQUAL(parity_set[i], parity_get);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void uart_hw_flow_set_get_test(int uart_num)
 | |
| {
 | |
|     printf("uart hw flow control set and get test\n");
 | |
|     uart_hw_flowcontrol_t flowcontrol_set = 0;
 | |
|     uart_hw_flowcontrol_t flowcontrol_get = 0;
 | |
|     for (int i = 0; i < UART_HW_FLOWCTRL_DISABLE; i++) {
 | |
|         TEST_ESP_OK(uart_set_hw_flow_ctrl(uart_num, flowcontrol_set, 20));
 | |
|         TEST_ESP_OK(uart_get_hw_flow_ctrl(uart_num, &flowcontrol_get));
 | |
|         TEST_ASSERT_EQUAL(flowcontrol_set, flowcontrol_get);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void uart_wakeup_set_get_test(int uart_num)
 | |
| {
 | |
|     printf("uart wake up set and get test\n");
 | |
|     int wake_up_set = 0;
 | |
|     int wake_up_get = 0;
 | |
|     for (int i = 3; i < 0x3ff; i++) {
 | |
|         wake_up_set = i;
 | |
|         TEST_ESP_OK(uart_set_wakeup_threshold(uart_num, wake_up_set));
 | |
|         TEST_ESP_OK(uart_get_wakeup_threshold(uart_num, &wake_up_get));
 | |
|         TEST_ASSERT_EQUAL(wake_up_set, wake_up_get);
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST_CASE("uart general API test", "[uart]")
 | |
| {
 | |
|     const int uart_num = UART_NUM1;
 | |
|     uart_config_t uart_config = {
 | |
|         .baud_rate = 115200,
 | |
|         .data_bits = UART_DATA_8_BITS,
 | |
|         .parity = UART_PARITY_DISABLE,
 | |
|         .stop_bits = UART_STOP_BITS_1,
 | |
|         .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
 | |
|         .source_clk = TEST_DEFAULT_CLK,
 | |
|     };
 | |
|     uart_param_config(uart_num, &uart_config);
 | |
|     uart_word_len_set_get_test(uart_num);
 | |
|     uart_stop_bit_set_get_test(uart_num);
 | |
|     uart_parity_set_get_test(uart_num);
 | |
|     uart_hw_flow_set_get_test(uart_num);
 | |
|     uart_wakeup_set_get_test(uart_num);
 | |
| }
 | |
| 
 | |
| static void uart_write_task(void *param)
 | |
| {
 | |
|     int uart_num = (int)param;
 | |
|     uint8_t *tx_buf = (uint8_t *)malloc(1024);
 | |
|     if(tx_buf == NULL) {
 | |
|         TEST_FAIL_MESSAGE("tx buffer malloc fail");
 | |
|     }
 | |
|     for(int i = 1; i < 1023; i++) {
 | |
|         tx_buf[i] = (i & 0xff);
 | |
|     }
 | |
|     for(int i = 0; i < 1024; i++) {
 | |
|         //d[0] and d[1023] are header
 | |
|         tx_buf[0] = (i & 0xff);
 | |
|         tx_buf[1023] = ((~i) & 0xff);
 | |
|         uart_write_bytes(uart_num, (const char*)tx_buf, 1024);
 | |
|         uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
 | |
|     }
 | |
|     free(tx_buf);
 | |
|     vTaskDelete(NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The following tests use loop back
 | |
|  *
 | |
|  * NOTE: In the following tests, because the internal loopback is enabled, the CTS signal is connected to
 | |
|  * the RTS signal internally. However, On ESP32S3, they are not, and the CTS keeps the default level (which
 | |
|  * is a high level). So the workaround is to map the CTS in_signal to a GPIO pin (here IO13 is used) and connect
 | |
|  * the RTS output_signal to this IO.
 | |
|  */
 | |
| 
 | |
| TEST_CASE("uart read write test", "[uart]")
 | |
| {
 | |
|     const int uart_num = UART_NUM1;
 | |
|     uint8_t *rd_data = (uint8_t *)malloc(1024);
 | |
|     if(rd_data == NULL) {
 | |
|         TEST_FAIL_MESSAGE("rx buffer malloc fail");
 | |
|     }
 | |
|     uart_config_t uart_config = {
 | |
|         .baud_rate = 2000000,
 | |
|         .data_bits = UART_DATA_8_BITS,
 | |
|         .parity = UART_PARITY_DISABLE,
 | |
|         .stop_bits = UART_STOP_BITS_1,
 | |
|         .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
 | |
|         .source_clk = TEST_DEFAULT_CLK,
 | |
|         .rx_flow_ctrl_thresh = 120
 | |
|     };
 | |
|     TEST_ESP_OK(uart_driver_install(uart_num, BUF_SIZE * 2, 0, 20, NULL, 0));
 | |
|     TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
 | |
|     TEST_ESP_OK(uart_set_loop_back(uart_num, true));
 | |
|     TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
 | |
|     //Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
 | |
|     esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0);
 | |
| 
 | |
|     TEST_ESP_OK(uart_wait_tx_done(uart_num, portMAX_DELAY));
 | |
|     vTaskDelay(1 / portTICK_PERIOD_MS); // make sure last byte has flushed from TX FIFO
 | |
|     TEST_ESP_OK(uart_flush_input(uart_num));
 | |
| 
 | |
|     xTaskCreate(uart_write_task, "uart_write_task", 2048 * 4, (void *)uart_num, UNITY_FREERTOS_PRIORITY - 1, NULL);
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         int bytes_remaining = 1024;
 | |
|         memset(rd_data, 0, 1024);
 | |
|         while (bytes_remaining) {
 | |
|             int bytes_received = uart_read_bytes(uart_num, rd_data + 1024 - bytes_remaining, bytes_remaining, (TickType_t)1000);
 | |
|             if (bytes_received < 0) {
 | |
|                 TEST_FAIL_MESSAGE("read timeout, uart read write test fail");
 | |
|             }
 | |
|             bytes_remaining -= bytes_received;
 | |
|         }
 | |
|         int check_fail_cnt = 0;
 | |
|         if (rd_data[0] != (i & 0xff)) {
 | |
|             printf("packet %d index check error at offset 0, expected 0x%02x\n", i, i);
 | |
|             ++check_fail_cnt;
 | |
|         }
 | |
|         if (rd_data[1023] != ((~i) & 0xff)) {
 | |
|             printf("packet %d index check error at offset 1023, expected 0x%02x\n", i, ((~i) & 0xff));
 | |
|             ++check_fail_cnt;
 | |
|         }
 | |
|         for (int j = 1; j < 1023; j++) {
 | |
|             if (rd_data[j] != (j & 0xff)) {
 | |
|                 printf("data mismatch in packet %d offset %d, expected 0x%02x got 0x%02x\n", i, j, (j & 0xff), rd_data[j]);
 | |
|                 ++check_fail_cnt;
 | |
|             }
 | |
|             if (check_fail_cnt > 10) {
 | |
|                 printf("(further checks skipped)\n");
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (check_fail_cnt > 0) {
 | |
|             ESP_LOG_BUFFER_HEX("rd_data", rd_data, 1024);
 | |
|             TEST_FAIL();
 | |
|         }
 | |
|     }
 | |
|     uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
 | |
|     uart_driver_delete(uart_num);
 | |
|     free(rd_data);
 | |
| }
 | |
| 
 | |
| TEST_CASE("uart tx with ringbuffer test", "[uart]")
 | |
| {
 | |
|     const int uart_num = UART_NUM1;
 | |
|     uint8_t *rd_data = (uint8_t *)malloc(1024);
 | |
|     uint8_t *wr_data = (uint8_t *)malloc(1024);
 | |
|     if(rd_data == NULL || wr_data == NULL) {
 | |
|         TEST_FAIL_MESSAGE("buffer malloc fail");
 | |
|     }
 | |
|     uart_config_t uart_config = {
 | |
|         .baud_rate = 2000000,
 | |
|         .data_bits = UART_DATA_8_BITS,
 | |
|         .parity = UART_PARITY_DISABLE,
 | |
|         .stop_bits = UART_STOP_BITS_1,
 | |
|         .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
 | |
|         .rx_flow_ctrl_thresh = 120,
 | |
|         .source_clk = TEST_DEFAULT_CLK,
 | |
|     };
 | |
|     uart_wait_tx_idle_polling(uart_num);
 | |
|     TEST_ESP_OK(uart_param_config(uart_num, &uart_config));
 | |
|     TEST_ESP_OK(uart_driver_install(uart_num, 1024 * 2, 1024 *2, 20, NULL, 0));
 | |
|     TEST_ESP_OK(uart_set_loop_back(uart_num, true));
 | |
|     TEST_ESP_OK(uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART1_CTS_PIN));
 | |
|     //Connect the RTS out_signal to the CTS pin (which is mapped to CTS in_signal)
 | |
|     esp_rom_gpio_connect_out_signal(UART1_CTS_PIN, uart_periph_signal[uart_num].rts_sig, 0, 0);
 | |
| 
 | |
|     for (int i = 0; i < 1024; i++) {
 | |
|         wr_data[i] = i;
 | |
|         rd_data[i] = 0;
 | |
|     }
 | |
|     uart_write_bytes(uart_num, (const char*)wr_data, 1024);
 | |
|     uart_wait_tx_done(uart_num, (TickType_t)portMAX_DELAY);
 | |
|     uart_read_bytes(uart_num, rd_data, 1024, (TickType_t)1000);
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(wr_data, rd_data, 1024);
 | |
|     TEST_ESP_OK(uart_driver_delete(uart_num));
 | |
|     free(rd_data);
 | |
|     free(wr_data);
 | |
| }
 | |
| 
 | |
| TEST_CASE("uart int state restored after flush", "[uart]")
 | |
| {
 | |
|     /**
 | |
|      * The first goal of this test is to make sure that when our RX FIFO is full,
 | |
|      * we can continue receiving back data after flushing
 | |
|      * For more details, check IDF-4374
 | |
|      */
 | |
|     uart_config_t uart_config = {
 | |
|         .baud_rate = 115200,
 | |
|         .data_bits = UART_DATA_8_BITS,
 | |
|         .parity    = UART_PARITY_DISABLE,
 | |
|         .stop_bits = UART_STOP_BITS_1,
 | |
|         .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
 | |
|         .source_clk = UART_SCLK_APB,
 | |
|     };
 | |
| 
 | |
|     const uart_port_t uart_echo = UART_NUM_1;
 | |
|     const int uart_tx_signal = U1TXD_OUT_IDX;
 | |
|     const int uart_tx = 4;
 | |
|     const int uart_rx = 5;
 | |
|     const int buf_size = 256;
 | |
|     const int intr_alloc_flags = 0;
 | |
| 
 | |
|     TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags));
 | |
|     TEST_ESP_OK(uart_param_config(uart_echo, &uart_config));
 | |
|     TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
 | |
| 
 | |
|     /* Make sure UART1's RX signal is connected to TX pin
 | |
|      * This creates a loop that lets us receive anything we send on the UART */
 | |
|     esp_rom_gpio_connect_out_signal(uart_rx, uart_tx_signal, false, false);
 | |
| 
 | |
|     uint8_t *data = (uint8_t *) malloc(buf_size);
 | |
|     TEST_ASSERT_NOT_NULL(data);
 | |
|     uart_write_bytes(uart_echo, (const char *) data, buf_size);
 | |
| 
 | |
|     /* As we set up a loopback, we can read them back on RX */
 | |
|     int len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
 | |
|     TEST_ASSERT_EQUAL(len, buf_size);
 | |
| 
 | |
|     /* Fill the RX buffer, this should disable the RX interrupts */
 | |
|     int written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
 | |
|     TEST_ASSERT_NOT_EQUAL(-1, written);
 | |
|     written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
 | |
|     TEST_ASSERT_NOT_EQUAL(-1, written);
 | |
|     written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
 | |
|     TEST_ASSERT_NOT_EQUAL(-1, written);
 | |
| 
 | |
|     /* Flush the input buffer, RX interrupts should be re-enabled */
 | |
|     uart_flush_input(uart_echo);
 | |
|     written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
 | |
|     TEST_ASSERT_NOT_EQUAL(-1, written);
 | |
|     len = uart_read_bytes(uart_echo, data, buf_size, 1000 / portTICK_RATE_MS);
 | |
|     /* len equals buf_size bytes if interrupts were indeed re-enabled */
 | |
|     TEST_ASSERT_EQUAL(len, buf_size);
 | |
| 
 | |
|     /**
 | |
|      * Second test, make sure that if we explicitly disable the RX interrupts,
 | |
|      * they are NOT re-enabled after flushing
 | |
|      * To do so, start by cleaning the RX FIFO, disable the RX interrupts,
 | |
|      * flush again, send data to the UART and check that we haven't received
 | |
|      * any of the bytes */
 | |
|     uart_flush_input(uart_echo);
 | |
|     uart_disable_rx_intr(uart_echo);
 | |
|     uart_flush_input(uart_echo);
 | |
|     written = uart_write_bytes(uart_echo, (const char *) data, buf_size);
 | |
|     TEST_ASSERT_NOT_EQUAL(-1, written);
 | |
|     len = uart_read_bytes(uart_echo, data, buf_size, 250 / portTICK_RATE_MS);
 | |
|     TEST_ASSERT_EQUAL(len, 0);
 | |
| 
 | |
|     TEST_ESP_OK(uart_driver_delete(uart_echo));
 | |
|     free(data);
 | |
| }
 | |
| 
 | |
| /* Global variable shared between the ISR and the test function */
 | |
| volatile uint32_t uart_isr_happened = 0;
 | |
| 
 | |
| static void uart_custom_isr(void* arg) {
 | |
|     (void) arg;
 | |
| 
 | |
|     /* Clear interrupt status and disable TX interrupt here in order to
 | |
|      * prevent an infinite call loop. Use the LL function to prevent
 | |
|      * entering a critical section from an interrupt. */
 | |
|     uart_ll_disable_intr_mask(UART_LL_GET_HW(1), UART_INTR_TXFIFO_EMPTY);
 | |
|     uart_clear_intr_status(UART_NUM_1, UART_INTR_TXFIFO_EMPTY);
 | |
| 
 | |
|     /* Mark the interrupt as serviced */
 | |
|     uart_isr_happened = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * This function shall always be executed by core 0.
 | |
|  * This is required by `uart_isr_free`.
 | |
|  */
 | |
| static void uart_test_custom_isr_core0(void* param) {
 | |
|     /**
 | |
|      * Setup the UART1 and make sure we can register and free a custom ISR
 | |
|      */
 | |
|     uart_config_t uart_config = {
 | |
|         .baud_rate = 115200,
 | |
|         .data_bits = UART_DATA_8_BITS,
 | |
|         .parity    = UART_PARITY_DISABLE,
 | |
|         .stop_bits = UART_STOP_BITS_1,
 | |
|         .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
 | |
|         .source_clk = UART_SCLK_APB,
 | |
|     };
 | |
| 
 | |
|     const uart_port_t uart_echo = UART_NUM_1;
 | |
|     const int uart_tx = 4;
 | |
|     const int uart_rx = 5;
 | |
|     const int buf_size = 256;
 | |
|     const int intr_alloc_flags = 0;
 | |
|     const char msg[] = "hello world\n";
 | |
|     uart_isr_handle_t handle = NULL;
 | |
| 
 | |
|     TEST_ESP_OK(uart_driver_install(uart_echo, buf_size * 2, 0, 0, NULL, intr_alloc_flags));
 | |
|     TEST_ESP_OK(uart_param_config(uart_echo, &uart_config));
 | |
|     TEST_ESP_OK(uart_set_pin(uart_echo, uart_tx, uart_rx, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
 | |
| 
 | |
|     /* Prevent the custom ISR handler from being called if UART_INTR_BRK_DET interrupt occurs.
 | |
|      * It shall only be called for TX interrupts. */
 | |
|     uart_disable_intr_mask(uart_echo, UART_INTR_BRK_DET);
 | |
| 
 | |
|     /* Unregister the default ISR setup by the function call above */
 | |
|     TEST_ESP_OK(uart_isr_free(uart_echo));
 | |
|     TEST_ESP_OK(uart_isr_register(uart_echo, uart_custom_isr, NULL, intr_alloc_flags, &handle));
 | |
|     /* Set the TX FIFO empty threshold to the size of the message we are sending,
 | |
|      * make sure it is never 0 in any case */
 | |
|     TEST_ESP_OK(uart_enable_tx_intr(uart_echo, true, MAX(sizeof(msg), 1)));
 | |
|     uart_write_bytes(uart_echo, msg, sizeof(msg));
 | |
| 
 | |
|     /* 10ms will be enough to receive the interrupt */
 | |
|     vTaskDelay(10 / portTICK_PERIOD_MS);
 | |
| 
 | |
|     /* Make sure the ISR occured */
 | |
|     TEST_ASSERT_EQUAL(uart_isr_happened, 1);
 | |
|     esp_rom_printf("ISR happened: %d\n", uart_isr_happened);
 | |
|     TEST_ESP_OK(uart_isr_free(uart_echo));
 | |
|     TEST_ESP_OK(uart_driver_delete(uart_echo));
 | |
| 
 | |
| #if !CONFIG_FREERTOS_UNICORE
 | |
|     TaskHandle_t* parent_task = (TaskHandle_t*) param;
 | |
|     esp_rom_printf("Notifying caller\n");
 | |
|     TEST_ASSERT(xTaskNotify(*parent_task, 0, eNoAction));
 | |
|     vTaskDelete(NULL);
 | |
| #else
 | |
|     (void) param;
 | |
| #endif //!CONFIG_FREERTOS_UNICORE
 | |
| }
 | |
| 
 | |
| 
 | |
| TEST_CASE("uart can register and free custom ISRs", "[uart]")
 | |
| {
 | |
| #if !CONFIG_FREERTOS_UNICORE
 | |
|     TaskHandle_t task_handle;
 | |
|     TaskHandle_t current_handler = xTaskGetCurrentTaskHandle();
 | |
|     /* Run the test on a determianted core, do not allow the core to be changed
 | |
|      * as we will manipulate ISRs. */
 | |
|     BaseType_t ret = xTaskCreatePinnedToCore(uart_test_custom_isr_core0,
 | |
|                                              "uart_test_custom_isr_core0_task",
 | |
|                                              2048,
 | |
|                                              ¤t_handler,
 | |
|                                              5,
 | |
|                                              &task_handle,
 | |
|                                              0);
 | |
|     TEST_ASSERT(ret);
 | |
|     TEST_ASSERT(xTaskNotifyWait(0, 0, NULL, 1000 / portTICK_PERIOD_MS));
 | |
|     (void) task_handle;
 | |
| #else
 | |
|     uart_test_custom_isr_core0(NULL);
 | |
| #endif //!CONFIG_FREERTOS_UNICORE
 | |
| }
 |