mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			958 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			958 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <esp_types.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include "sdkconfig.h"
 | |
| 
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/timers.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_check.h"
 | |
| #include "esp_pm.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "driver/rtc_io.h"
 | |
| #include "sys/lock.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "esp_private/adc_share_hw_ctrl.h"
 | |
| #include "esp_private/sar_periph_ctrl.h"
 | |
| #include "adc1_private.h"
 | |
| #include "hal/adc_types.h"
 | |
| #include "hal/adc_hal.h"
 | |
| #include "hal/adc_ll.h"
 | |
| #include "hal/adc_hal_common.h"
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| #include "driver/adc_types_legacy.h"
 | |
| #include "esp_clk_tree.h"
 | |
| 
 | |
| #if SOC_DAC_SUPPORTED
 | |
| #include "hal/dac_types.h"
 | |
| #include "hal/dac_ll.h"
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S3
 | |
| #include "esp_efuse_rtc_calib.h"
 | |
| #endif
 | |
| 
 | |
| static const char *ADC_TAG = "ADC";
 | |
| 
 | |
| #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
 | |
| 
 | |
| //////////////////////// Locks ///////////////////////////////////////////
 | |
| extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
 | |
| 
 | |
| #define RTC_ENTER_CRITICAL()    portENTER_CRITICAL(&rtc_spinlock)
 | |
| #define RTC_EXIT_CRITICAL()     portEXIT_CRITICAL(&rtc_spinlock)
 | |
| #define DIGI_ENTER_CRITICAL()
 | |
| #define DIGI_EXIT_CRITICAL()
 | |
| 
 | |
| #define ADC_POWER_ENTER()       RTC_ENTER_CRITICAL()
 | |
| #define ADC_POWER_EXIT()        RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL()
 | |
| #define DIGI_CONTROLLER_EXIT()  DIGI_EXIT_CRITICAL()
 | |
| 
 | |
| #define SARADC1_ENTER()         RTC_ENTER_CRITICAL()
 | |
| #define SARADC1_EXIT()          RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #define SARADC2_ENTER()         RTC_ENTER_CRITICAL()
 | |
| #define SARADC2_EXIT()          RTC_EXIT_CRITICAL()
 | |
| 
 | |
| //n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers
 | |
| #define VREF_ENTER(n)           RTC_ENTER_CRITICAL()
 | |
| #define VREF_EXIT(n)            RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #define FSM_ENTER()             RTC_ENTER_CRITICAL()
 | |
| #define FSM_EXIT()              RTC_EXIT_CRITICAL()
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32P4
 | |
| //prevent ADC1 being used by I2S dma and other tasks at the same time.
 | |
| static _lock_t adc1_dma_lock;
 | |
| #define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock )
 | |
| #define SARADC1_RELEASE() _lock_release( &adc1_dma_lock )
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| In ADC2, there're two locks used for different cases:
 | |
| 1. lock shared with app and Wi-Fi:
 | |
|    ESP32:
 | |
|         When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed.
 | |
|    ESP32S2:
 | |
|         The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.
 | |
| 
 | |
| 2. lock shared between tasks:
 | |
|    when several tasks sharing the ADC2, we want to guarantee
 | |
|    all the requests will be handled.
 | |
|    Since conversions are short (about 31us), app returns the lock very soon,
 | |
|    we use a spinlock to stand there waiting to do conversions one by one.
 | |
| 
 | |
| adc2_spinlock should be acquired first, then call `adc_lock_release(ADC_UNIT_2)` or rtc_spinlock.
 | |
| */
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
| static esp_pm_lock_handle_t s_adc2_arbiter_lock;
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| #endif  // !CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
| static uint32_t clk_src_freq_hz;
 | |
| 
 | |
| static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw);
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC Common
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
 | |
| 
 | |
|     int io = ADC_GET_IO_NUM(ADC_UNIT_1, channel);
 | |
|     if (io < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     } else {
 | |
|         *gpio_num = (gpio_num_t)io;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if (SOC_ADC_PERIPH_NUM >= 2)
 | |
| esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
 | |
| 
 | |
|     int io = ADC_GET_IO_NUM(ADC_UNIT_2, channel);
 | |
|     if (io < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     } else {
 | |
|         *gpio_num = (gpio_num_t)io;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //------------------------------------------------------------RTC Single Read----------------------------------------------//
 | |
| #if SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| esp_err_t adc_set_clk_div(uint8_t clk_div)
 | |
| {
 | |
|     DIGI_CONTROLLER_ENTER();
 | |
|     adc_ll_digi_set_clk_div(clk_div);
 | |
|     DIGI_CONTROLLER_EXIT();
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void adc_rtc_chan_init(adc_unit_t adc_unit)
 | |
| {
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         /* Workaround: Disable the synchronization operation function of ADC1 and DAC.
 | |
|            If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */
 | |
| #if SOC_DAC_SUPPORTED
 | |
|         dac_ll_rtc_sync_by_adc(false);
 | |
| #endif
 | |
|         adc_oneshot_ll_output_invert(ADC_UNIT_1, ADC_LL_DATA_INVERT_DEFAULT(ADC_UNIT_1));
 | |
|         adc_ll_set_sar_clk_div(ADC_UNIT_1, ADC_LL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_1));
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|         adc_ll_hall_disable(); //Disable other peripherals.
 | |
|         adc_ll_amp_disable();  //Currently the LNA is not open, close it by default.
 | |
| #endif
 | |
|     }
 | |
|     if (adc_unit == ADC_UNIT_2) {
 | |
|         adc_ll_pwdet_set_cct(ADC_LL_PWDET_CCT_DEFAULT);
 | |
|         adc_oneshot_ll_output_invert(ADC_UNIT_2, ADC_LL_DATA_INVERT_DEFAULT(ADC_UNIT_2));
 | |
|         adc_ll_set_sar_clk_div(ADC_UNIT_2, ADC_LL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_2));
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(adc_unit), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
 | |
| #if ADC_LL_RTC_GPIO_SUPPORTED
 | |
|     gpio_num_t gpio_num = 0;
 | |
|     //If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         gpio_num = ADC_GET_IO_NUM(ADC_UNIT_1, channel);
 | |
| 
 | |
|     } else if (adc_unit == ADC_UNIT_2) {
 | |
|         gpio_num = ADC_GET_IO_NUM(ADC_UNIT_2, channel);
 | |
|     } else {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     ESP_RETURN_ON_ERROR(rtc_gpio_init(gpio_num), ADC_TAG, "rtc_gpio_init fail");
 | |
|     ESP_RETURN_ON_ERROR(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED), ADC_TAG, "rtc_gpio_set_direction fail");
 | |
|     ESP_RETURN_ON_ERROR(rtc_gpio_pulldown_dis(gpio_num), ADC_TAG, "rtc_gpio_pulldown_dis fail");
 | |
|     ESP_RETURN_ON_ERROR(rtc_gpio_pullup_dis(gpio_num), ADC_TAG, "rtc_gpio_pullup_dis fail");
 | |
| #endif
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
 | |
| {
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         SARADC1_ENTER();
 | |
|         adc_oneshot_ll_output_invert(ADC_UNIT_1, inv_en);
 | |
|         SARADC1_EXIT();
 | |
|     }
 | |
|     if (adc_unit == ADC_UNIT_2) {
 | |
|         SARADC2_ENTER();
 | |
|         adc_oneshot_ll_output_invert(ADC_UNIT_2, inv_en);
 | |
|         SARADC2_EXIT();
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width");
 | |
|     adc_bitwidth_t bitwidth = 0;
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) {
 | |
|         bitwidth = SOC_ADC_RTC_MAX_BITWIDTH;
 | |
|     } else {
 | |
|         switch (width_bit) {
 | |
|         case ADC_WIDTH_BIT_9:
 | |
|             bitwidth = ADC_BITWIDTH_9;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_10:
 | |
|             bitwidth = ADC_BITWIDTH_10;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_11:
 | |
|             bitwidth = ADC_BITWIDTH_11;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_12:
 | |
|             bitwidth = ADC_BITWIDTH_12;
 | |
|             break;
 | |
|         default:
 | |
|             return ESP_ERR_INVALID_ARG;
 | |
|         }
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     bitwidth = ADC_BITWIDTH_13;
 | |
| #else   //esp32s3
 | |
|     bitwidth = ADC_BITWIDTH_12;
 | |
| #endif
 | |
| 
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         SARADC1_ENTER();
 | |
|         adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth);
 | |
|         SARADC1_EXIT();
 | |
|     }
 | |
|     if (adc_unit == ADC_UNIT_2) {
 | |
|         SARADC2_ENTER();
 | |
|         adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth);
 | |
|         SARADC2_EXIT();
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Reset RTC controller FSM.
 | |
|  *
 | |
|  * @return
 | |
|  *      - ESP_OK Success
 | |
|  */
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
| esp_err_t adc_rtc_reset(void)
 | |
| {
 | |
|     FSM_ENTER();
 | |
|     adc_ll_rtc_reset();
 | |
|     FSM_EXIT();
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*-------------------------------------------------------------------------------------
 | |
|  *                      ADC1
 | |
|  *------------------------------------------------------------------------------------*/
 | |
| esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
 | |
|     ESP_RETURN_ON_FALSE(atten < SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");
 | |
| 
 | |
| #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
|     if (!clk_src_freq_hz) {
 | |
|         //should never fail
 | |
|         esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
 | |
|     }
 | |
| #endif  //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| 
 | |
|     adc_common_gpio_init(ADC_UNIT_1, channel);
 | |
|     SARADC1_ENTER();
 | |
|     adc_rtc_chan_init(ADC_UNIT_1);
 | |
|     adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_hal_calibration_init(ADC_UNIT_1);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_width(adc_bits_width_t width_bit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width");
 | |
|     adc_bitwidth_t bitwidth = 0;
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) {
 | |
|         bitwidth = SOC_ADC_RTC_MAX_BITWIDTH;
 | |
|     } else {
 | |
|         switch (width_bit) {
 | |
|         case ADC_WIDTH_BIT_9:
 | |
|             bitwidth = ADC_BITWIDTH_9;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_10:
 | |
|             bitwidth = ADC_BITWIDTH_10;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_11:
 | |
|             bitwidth = ADC_BITWIDTH_11;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_12:
 | |
|             bitwidth = ADC_BITWIDTH_12;
 | |
|             break;
 | |
|         default:
 | |
|             return ESP_ERR_INVALID_ARG;
 | |
|         }
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     bitwidth = ADC_BITWIDTH_13;
 | |
| #else   //esp32s3
 | |
|     bitwidth = ADC_BITWIDTH_12;
 | |
| #endif
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_dma_mode_acquire(void)
 | |
| {
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts.
 | |
|        for adc1, block until acquire the lock. */
 | |
|     SARADC1_ACQUIRE();
 | |
|     ESP_LOGD(ADC_TAG, "dma mode takes adc1 lock.");
 | |
| 
 | |
|     sar_periph_ctrl_adc_continuous_power_acquire();
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     /* switch SARADC into DIG channel */
 | |
|     adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_rtc_mode_acquire(void)
 | |
| {
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts.
 | |
|        for adc1, block until acquire the lock. */
 | |
|     SARADC1_ACQUIRE();
 | |
|     sar_periph_ctrl_adc_oneshot_power_acquire();
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     /* switch SARADC into RTC channel. */
 | |
|     adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC);
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_lock_release(void)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uint32_t *)adc1_dma_lock != NULL, ESP_ERR_INVALID_STATE, ADC_TAG, "adc1 lock release called before acquire");
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */
 | |
| 
 | |
|     sar_periph_ctrl_adc_oneshot_power_release();
 | |
|     SARADC1_RELEASE();
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| int adc1_get_raw(adc1_channel_t channel)
 | |
| {
 | |
|     int adc_value;
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
 | |
|     adc1_rtc_mode_acquire();
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_1, channel);
 | |
|     adc_set_hw_calibration_code(ADC_UNIT_1, atten);
 | |
| #endif  //SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     adc_ll_hall_disable(); //Disable other peripherals.
 | |
|     adc_ll_amp_disable();  //Currently the LNA is not open, close it by default.
 | |
| #endif
 | |
|     adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC);    //Set controller
 | |
|     adc_oneshot_ll_set_channel(ADC_UNIT_1, channel);
 | |
|     adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &adc_value);   //Start conversion, For ADC1, the data always valid.
 | |
| #if !CONFIG_IDF_TARGET_ESP32
 | |
|     adc_ll_rtc_reset();    //Reset FSM of rtc controller
 | |
| #endif
 | |
|     SARADC1_EXIT();
 | |
| 
 | |
|     adc1_lock_release();
 | |
|     return adc_value;
 | |
| }
 | |
| 
 | |
| int adc1_get_voltage(adc1_channel_t channel)    //Deprecated. Use adc1_get_raw() instead
 | |
| {
 | |
|     return adc1_get_raw(channel);
 | |
| }
 | |
| 
 | |
| #if SOC_ULP_SUPPORTED
 | |
| void adc1_ulp_enable(void)
 | |
| {
 | |
|     sar_periph_ctrl_adc_oneshot_power_acquire();
 | |
| 
 | |
|     SARADC1_ENTER();
 | |
|     adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_ULP);
 | |
|     /* since most users do not need LNA and HALL with uLP, we disable them here
 | |
|        open them in the uLP if needed. */
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     /* disable other peripherals. */
 | |
|     adc_ll_hall_disable();
 | |
|     adc_ll_amp_disable();
 | |
| #endif
 | |
|     SARADC1_EXIT();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if (SOC_ADC_PERIPH_NUM >= 2)
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC2
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
 | |
|     ESP_RETURN_ON_FALSE(atten <= SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");
 | |
| #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
|     if (!clk_src_freq_hz) {
 | |
|         //should never fail
 | |
|         esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
 | |
|     }
 | |
| #endif  //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| 
 | |
|     adc_common_gpio_init(ADC_UNIT_2, channel);
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     /** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
 | |
|     if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) {
 | |
|         //try the lock, return if failed (wifi using).
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     //avoid collision with other tasks
 | |
|     SARADC2_ENTER();
 | |
|     adc_rtc_chan_init(ADC_UNIT_2);
 | |
|     adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten);
 | |
|     SARADC2_EXIT();
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     adc_lock_release(ADC_UNIT_2);
 | |
| #endif
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_hal_calibration_init(ADC_UNIT_2);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline void adc2_init(void)
 | |
| {
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     /* Lock APB clock. */
 | |
|     if (s_adc2_arbiter_lock == NULL) {
 | |
|         esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| #endif  //CONFIG_IDF_TARGET_ESP32S2
 | |
| }
 | |
| 
 | |
| static inline void adc2_dac_disable(adc2_channel_t channel)
 | |
| {
 | |
| #if SOC_DAC_SUPPORTED
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     if (channel == ADC2_CHANNEL_8) {   // the same as DAC channel 0
 | |
|         dac_ll_power_down(DAC_CHAN_0);
 | |
|     } else if (channel == ADC2_CHANNEL_9) {
 | |
|         dac_ll_power_down(DAC_CHAN_1);
 | |
|     }
 | |
| #else
 | |
|     if (channel == ADC2_CHANNEL_6) {   // the same as DAC channel 0
 | |
|         dac_ll_power_down(DAC_CHAN_0);
 | |
|     } else if (channel == ADC2_CHANNEL_7) {
 | |
|         dac_ll_power_down(DAC_CHAN_1);
 | |
|     }
 | |
| #endif
 | |
| #endif // SOC_DAC_SUPPORTED
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @note For ESP32S2:
 | |
|  *       The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
 | |
|  *       Or, the RTC controller will fail when get raw data.
 | |
|  *       This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors.
 | |
|  */
 | |
| esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     int adc_value = 0;
 | |
|     adc_bitwidth_t bitwidth = 0;
 | |
| 
 | |
|     ESP_RETURN_ON_FALSE(raw_out != NULL, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC out value err");
 | |
|     ESP_RETURN_ON_FALSE(channel < ADC2_CHANNEL_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Channel Err");
 | |
|     ESP_RETURN_ON_FALSE(width_bit < ADC_WIDTH_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "unsupported bit width");
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) {
 | |
|         bitwidth = SOC_ADC_RTC_MAX_BITWIDTH;
 | |
|     } else {
 | |
|         switch (width_bit) {
 | |
|         case ADC_WIDTH_BIT_9:
 | |
|             bitwidth = ADC_BITWIDTH_9;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_10:
 | |
|             bitwidth = ADC_BITWIDTH_10;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_11:
 | |
|             bitwidth = ADC_BITWIDTH_11;
 | |
|             break;
 | |
|         case ADC_WIDTH_BIT_12:
 | |
|             bitwidth = ADC_BITWIDTH_12;
 | |
|             break;
 | |
|         default:
 | |
|             return ESP_ERR_INVALID_ARG;
 | |
|         }
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     bitwidth = ADC_BITWIDTH_13;
 | |
| #else   //esp32s3
 | |
|     bitwidth = ADC_BITWIDTH_12;
 | |
| #endif
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_2, channel);
 | |
|     adc_set_hw_calibration_code(ADC_UNIT_2, atten);
 | |
| #endif  //SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     /** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
 | |
|     if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) {
 | |
|         //try the lock, return if failed (wifi using).
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| #endif
 | |
|     sar_periph_ctrl_adc_oneshot_power_acquire();         //in critical section with whole rtc module
 | |
| 
 | |
|     //avoid collision with other tasks
 | |
|     adc2_init();   // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
 | |
|     SARADC2_ENTER();
 | |
| 
 | |
| #if SOC_ADC_ARBITER_SUPPORTED
 | |
|     adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
 | |
|     adc_hal_arbiter_config(&config);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ADC_DISABLE_DAC
 | |
|     adc2_dac_disable(channel);      //disable other peripherals
 | |
| #endif
 | |
|     adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth);
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32P4
 | |
|     adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_RTC);// set controller
 | |
| #else
 | |
|     adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_ARB);// set controller
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     if (s_adc2_arbiter_lock) {
 | |
|         esp_pm_lock_acquire(s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
| #endif //CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
|     adc_oneshot_ll_set_channel(ADC_UNIT_2, channel);
 | |
|     ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, &adc_value);
 | |
|     if (ret != ESP_OK) {
 | |
|         adc_value = -1;
 | |
|     }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     /* Release APB clock. */
 | |
|     if (s_adc2_arbiter_lock) {
 | |
|         esp_pm_lock_release(s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
| #endif //CONFIG_IDF_TARGET_ESP32
 | |
|     SARADC2_EXIT();
 | |
| 
 | |
|     sar_periph_ctrl_adc_oneshot_power_release();
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     adc_lock_release(ADC_UNIT_2);
 | |
| #endif
 | |
| 
 | |
|     *raw_out = adc_value;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| #endif
 | |
|     adc2_channel_t ch = ADC2_CHANNEL_MAX;
 | |
|     /* Check if the GPIO supported. */
 | |
|     for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
 | |
|         if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) {
 | |
|             ch = i;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (ch == ADC2_CHANNEL_MAX) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     sar_periph_ctrl_adc_oneshot_power_acquire();
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         VREF_ENTER(1);
 | |
|         adc_ll_vref_output(ADC_UNIT_1, ch, true);
 | |
|         VREF_EXIT(1);
 | |
|     } else if (adc_unit == ADC_UNIT_2) {
 | |
|         VREF_ENTER(2);
 | |
|         adc_ll_vref_output(ADC_UNIT_2, ch, true);
 | |
|         VREF_EXIT(2);
 | |
|     }
 | |
| 
 | |
|     //Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage.
 | |
|     adc_common_gpio_init(ADC_UNIT_2, ch);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #endif //SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| #endif  //#if (SOC_ADC_PERIPH_NUM >= 2)
 | |
| 
 | |
| #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| /*---------------------------------------------------------------
 | |
|             Legacy ADC Single Read Mode
 | |
|             when RTC controller isn't supported
 | |
| ---------------------------------------------------------------*/
 | |
| #include "esp_check.h"
 | |
| 
 | |
| portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED;
 | |
| #define ADC_REG_LOCK_ENTER()       portENTER_CRITICAL(&adc_reg_lock)
 | |
| #define ADC_REG_LOCK_EXIT()        portEXIT_CRITICAL(&adc_reg_lock)
 | |
| 
 | |
| static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX];    //Array saving attenuate of each channel of ADC1, used by single read API
 | |
| #if (SOC_ADC_PERIPH_NUM >= 2)
 | |
| static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX];    //Array saving attenuate of each channel of ADC2, used by single read API
 | |
| #endif
 | |
| 
 | |
| static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel)
 | |
| {
 | |
|     assert(adc_unit < SOC_ADC_PERIPH_NUM);
 | |
|     uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1;
 | |
|     return adc_channel_io_map[adc_n][adc_channel];
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     uint64_t gpio_mask = 0;
 | |
|     uint32_t n = 0;
 | |
|     int8_t io = 0;
 | |
| 
 | |
|     while (channel_mask) {
 | |
|         if (channel_mask & 0x1) {
 | |
|             io = adc_digi_get_io_num(adc_unit, n);
 | |
|             if (io < 0) {
 | |
|                 return ESP_ERR_INVALID_ARG;
 | |
|             }
 | |
|             gpio_mask |= BIT64(io);
 | |
|         }
 | |
|         channel_mask = channel_mask >> 1;
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     gpio_config_t cfg = {
 | |
|         .pin_bit_mask = gpio_mask,
 | |
|         .mode = GPIO_MODE_DISABLE,
 | |
|     };
 | |
|     ret = gpio_config(&cfg);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32C3
 | |
| esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
 | |
| {
 | |
|     esp_err_t ret;
 | |
|     uint32_t channel = ADC2_CHANNEL_MAX;
 | |
|     if (adc_unit == ADC_UNIT_2) {
 | |
|         for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
 | |
|             if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) {
 | |
|                 channel = i;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (channel == ADC2_CHANNEL_MAX) {
 | |
|             return ESP_ERR_INVALID_ARG;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sar_periph_ctrl_adc_oneshot_power_acquire();
 | |
|     if (adc_unit == ADC_UNIT_1) {
 | |
|         RTC_ENTER_CRITICAL();
 | |
|         adc_ll_vref_output(ADC_UNIT_1, channel, true);
 | |
|         RTC_EXIT_CRITICAL();
 | |
|     } else {    //ADC_UNIT_2
 | |
|         RTC_ENTER_CRITICAL();
 | |
|         adc_ll_vref_output(ADC_UNIT_2, channel, true);
 | |
|         RTC_EXIT_CRITICAL();
 | |
|     }
 | |
| 
 | |
|     ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| esp_err_t adc1_config_width(adc_bits_width_t width_bit)
 | |
| {
 | |
|     //On ESP32C3, the data width is always 12-bits.
 | |
|     if (width_bit != ADC_WIDTH_BIT_12) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error");
 | |
|     ESP_RETURN_ON_FALSE((atten < SOC_ADC_ATTEN_NUM), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");
 | |
| #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
|     if (!clk_src_freq_hz) {
 | |
|         //should never fail
 | |
|         esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
 | |
|     }
 | |
| #endif  //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| 
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     s_atten1_single[channel] = atten;
 | |
|     ret = adc_digi_gpio_init(ADC_UNIT_1, BIT(channel));
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_hal_calibration_init(ADC_UNIT_1);
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int adc1_get_raw(adc1_channel_t channel)
 | |
| {
 | |
|     int raw_out = 0;
 | |
| 
 | |
|     if (adc_lock_try_acquire(ADC_UNIT_1) != ESP_OK) {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| 
 | |
|     adc_apb_periph_claim();
 | |
|     sar_periph_ctrl_adc_oneshot_power_acquire();
 | |
|     adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
 | |
| 
 | |
|     adc_atten_t atten = s_atten1_single[channel];
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_set_hw_calibration_code(ADC_UNIT_1, atten);
 | |
| #endif
 | |
| 
 | |
|     ADC_REG_LOCK_ENTER();
 | |
|     adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten);
 | |
|     adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &raw_out);
 | |
|     ADC_REG_LOCK_EXIT();
 | |
| 
 | |
|     sar_periph_ctrl_adc_oneshot_power_release();
 | |
|     adc_apb_periph_free();
 | |
|     adc_lock_release(ADC_UNIT_1);
 | |
| 
 | |
|     return raw_out;
 | |
| }
 | |
| 
 | |
| #if (SOC_ADC_PERIPH_NUM >= 2)
 | |
| esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error");
 | |
|     ESP_RETURN_ON_FALSE((atten <= ADC_ATTEN_DB_12), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");
 | |
| 
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     s_atten2_single[channel] = atten;
 | |
|     ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel));
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_hal_calibration_init(ADC_UNIT_2);
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
 | |
| {
 | |
|     //On ESP32C3, the data width is always 12-bits.
 | |
|     if (width_bit != ADC_WIDTH_BIT_12) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
|     if (!clk_src_freq_hz) {
 | |
|         //should never fail
 | |
|         esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
 | |
|     }
 | |
| #endif  //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| 
 | |
|     esp_err_t ret = ESP_OK;
 | |
| 
 | |
|     if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| 
 | |
|     adc_apb_periph_claim();
 | |
|     sar_periph_ctrl_adc_oneshot_power_acquire();
 | |
|     adc_ll_digi_clk_sel(ADC_DIGI_CLK_SRC_DEFAULT);
 | |
| 
 | |
|     adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
 | |
|     adc_hal_arbiter_config(&config);
 | |
| 
 | |
|     adc_atten_t atten = s_atten2_single[channel];
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_set_hw_calibration_code(ADC_UNIT_2, atten);
 | |
| #endif
 | |
| 
 | |
|     ADC_REG_LOCK_ENTER();
 | |
|     adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten);
 | |
|     ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, raw_out);
 | |
|     ADC_REG_LOCK_EXIT();
 | |
| 
 | |
|     sar_periph_ctrl_adc_oneshot_power_release();
 | |
|     adc_apb_periph_free();
 | |
|     adc_lock_release(ADC_UNIT_2);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif //#if (SOC_ADC_PERIPH_NUM >= 2)
 | |
| #endif  //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
| 
 | |
| static void adc_hal_onetime_start(adc_unit_t adc_n, uint32_t clk_src_freq_hz)
 | |
| {
 | |
| #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
 | |
|     (void)adc_n;
 | |
|     /**
 | |
|      * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
 | |
|      * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
 | |
|      * clock cycle.
 | |
|      */
 | |
|     uint32_t digi_clk = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
 | |
|     //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
 | |
|     uint32_t delay = (1000 * 1000) / digi_clk + 1;
 | |
|     //3 ADC digital controller clock cycle
 | |
|     delay = delay * 3;
 | |
|     //This coefficient (8) is got from test, and verified from DT. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
 | |
|     if (digi_clk >= APB_CLK_FREQ / 8) {
 | |
|         delay = 0;
 | |
|     }
 | |
| 
 | |
|     adc_oneshot_ll_start(false);
 | |
|     esp_rom_delay_us(delay);
 | |
|     adc_oneshot_ll_start(true);
 | |
| 
 | |
|     //No need to delay here. Because if the start signal is not seen, there won't be a done intr.
 | |
| #else
 | |
|     (void)clk_src_freq_hz;
 | |
|     adc_oneshot_ll_start(adc_n);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw)
 | |
| {
 | |
| 
 | |
|     uint32_t event = (adc_n == ADC_UNIT_1) ? ADC_LL_EVENT_ADC1_ONESHOT_DONE : ADC_LL_EVENT_ADC2_ONESHOT_DONE;
 | |
|     adc_oneshot_ll_clear_event(event);
 | |
|     adc_oneshot_ll_disable_all_unit();
 | |
|     adc_oneshot_ll_enable(adc_n);
 | |
|     adc_oneshot_ll_set_channel(adc_n, channel);
 | |
| 
 | |
|     adc_hal_onetime_start(adc_n, clk_src_freq_hz);
 | |
| 
 | |
|     while (adc_oneshot_ll_get_event(event) != true) {
 | |
|         ;
 | |
|     }
 | |
| 
 | |
|     *out_raw = adc_oneshot_ll_get_raw_result(adc_n);
 | |
|     if (adc_oneshot_ll_raw_check_valid(adc_n, *out_raw) == false) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     //HW workaround: when enabling periph clock, this should be false
 | |
|     adc_oneshot_ll_disable_all_unit();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if !CONFIG_ADC_SKIP_LEGACY_CONFLICT_CHECK
 | |
| /**
 | |
|  * @brief This function will be called during start up, to check that adc_oneshot driver is not running along with the legacy adc oneshot driver
 | |
|  */
 | |
| __attribute__((constructor))
 | |
| static void check_adc_oneshot_driver_conflict(void)
 | |
| {
 | |
|     // This function was declared as weak here. adc_oneshot driver has one implementation.
 | |
|     // So if adc_oneshot driver is not linked in, then `adc_oneshot_new_unit` should be NULL at runtime.
 | |
|     extern __attribute__((weak)) esp_err_t adc_oneshot_new_unit(const void *init_config, void **ret_unit);
 | |
|     if ((void *)adc_oneshot_new_unit != NULL) {
 | |
|         ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
 | |
|         abort();
 | |
|     }
 | |
|     ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_oneshot.h`");
 | |
| }
 | |
| #endif //CONFIG_ADC_SKIP_LEGACY_CONFLICT_CHECK
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
| /*---------------------------------------------------------------
 | |
|             ADC Hardware Calibration
 | |
| ---------------------------------------------------------------*/
 | |
| static __attribute__((constructor)) void adc_hw_calibration(void)
 | |
| {
 | |
|     //Calculate all ICode
 | |
|     for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
 | |
|         adc_hal_calibration_init(i);
 | |
|         for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
 | |
|             /**
 | |
|              * This may get wrong when attenuations are NOT consecutive on some chips,
 | |
|              * update this when bringing up the calibration on that chip
 | |
|              */
 | |
|             adc_calc_hw_calibration_code(i, j);
 | |
| #if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED
 | |
|             /* Load the channel compensation from efuse */
 | |
|             for (int k = 0; k < SOC_ADC_CHANNEL_NUM(i); k++) {
 | |
|                 adc_load_hw_calibration_chan_compens(i, k, j);
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif  //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | 
