mirror of
https://github.com/espressif/esp-idf.git
synced 2025-08-07 20:00:53 +00:00

update example to showcasee the new API of heap task tracking - Add basic heap task traacking example - Add advanced example for task tracking
995 lines
42 KiB
C
995 lines
42 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2018-2025 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/task.h>
|
|
#include <multi_heap.h>
|
|
#include "multi_heap_internal.h"
|
|
#include "heap_private.h"
|
|
#include "esp_heap_task_info.h"
|
|
#include "esp_heap_task_info_internal.h"
|
|
#include "heap_memory_layout.h"
|
|
#include "esp_log.h"
|
|
|
|
#ifdef CONFIG_HEAP_TASK_TRACKING
|
|
|
|
const static char *TAG = "heap_task_tracking";
|
|
|
|
static SemaphoreHandle_t s_task_tracking_mutex = NULL;
|
|
static StaticSemaphore_t s_task_tracking_mutex_buf;
|
|
|
|
|
|
typedef struct alloc_stats {
|
|
heap_task_block_t alloc_stat;
|
|
STAILQ_ENTRY(alloc_stats) next_alloc_stat;
|
|
} alloc_stats_t;
|
|
|
|
/**
|
|
* @brief Internal singly linked list used to gather information of the heap used
|
|
* by a given task.
|
|
*/
|
|
typedef struct heap_stats {
|
|
multi_heap_handle_t heap;
|
|
heap_stat_t heap_stat;
|
|
STAILQ_HEAD(alloc_stats_ll, alloc_stats) allocs_stats;
|
|
STAILQ_ENTRY(heap_stats) next_heap_stat;
|
|
} heap_stats_t;
|
|
|
|
/** @brief Internal singly linked list used to gather information on all created
|
|
* tasks since startup.
|
|
*/
|
|
typedef struct task_stats {
|
|
task_stat_t task_stat;
|
|
STAILQ_HEAD(heap_stats_ll, heap_stats) heaps_stats;
|
|
SLIST_ENTRY(task_stats) next_task_info;
|
|
} task_info_t;
|
|
|
|
|
|
static SLIST_HEAD(task_stats_ll, task_stats) task_stats = SLIST_HEAD_INITIALIZER(task_stats);
|
|
|
|
FORCE_INLINE_ATTR heap_t* find_biggest_heap(void)
|
|
{
|
|
heap_t *heap = NULL;
|
|
heap_t *biggest_heap = NULL;
|
|
SLIST_FOREACH(heap, ®istered_heaps, next) {
|
|
if (biggest_heap == NULL) {
|
|
biggest_heap = heap;
|
|
} else if ((biggest_heap->end - biggest_heap->start) < (heap->end - heap->start)) {
|
|
biggest_heap = heap;
|
|
} else {
|
|
// nothing to do here
|
|
}
|
|
}
|
|
return biggest_heap;
|
|
}
|
|
|
|
/**
|
|
* @brief Create a new alloc stats entry object
|
|
*
|
|
* @param heap_stats The heap statistics of the heap used for the allocation
|
|
* @param task_handle The task handler of the task which performed the allocation
|
|
* @param ptr The address of the allocation
|
|
* @param size The size of the allocation
|
|
*/
|
|
static HEAP_IRAM_ATTR void create_new_alloc_stats_entry(heap_stats_t *heap_stats, alloc_stats_t *alloc_stats, TaskHandle_t task_handle, void *ptr, size_t size)
|
|
{
|
|
// init the list of allocs with a new entry in heap_stats->allocs_stats. No need
|
|
// to memset the memory since all field will be set later in the function.
|
|
if (!alloc_stats) {
|
|
// find the heap with the most available free memory to store the statistics
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
|
|
alloc_stats = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(alloc_stats_t));
|
|
if (!alloc_stats) {
|
|
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
|
|
return;
|
|
}
|
|
}
|
|
|
|
alloc_stats->alloc_stat.task = task_handle;
|
|
alloc_stats->alloc_stat.address = ptr;
|
|
alloc_stats->alloc_stat.size = size;
|
|
|
|
STAILQ_INSERT_TAIL(&heap_stats->allocs_stats, alloc_stats, next_alloc_stat);
|
|
}
|
|
|
|
/**
|
|
* @brief Create a new heap stats entry object
|
|
*
|
|
* @param task_stats The task statistics of the task that triggered the allocation
|
|
* @param used_heap Information about the heap used for the allocation
|
|
* @param caps The caps of the heap used for the allocation
|
|
* @param size The size of the allocation
|
|
*/
|
|
static HEAP_IRAM_ATTR void create_new_heap_stats_entry(task_info_t *task_stats, heap_t *used_heap, void *ptr, uint32_t caps, size_t size)
|
|
{
|
|
// find the heap with the most available free memory to store the statistics
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
|
|
// init the list of heap with a new entry in task_stats->heaps_stats. No need
|
|
// to memset the memory since all field will be set later in the function.
|
|
heap_stats_t *heap_stats = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(heap_stats_t));
|
|
if (!heap_stats) {
|
|
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
|
|
return;
|
|
}
|
|
|
|
// create the alloc stats for the new heap entry
|
|
STAILQ_INIT(&heap_stats->allocs_stats);
|
|
|
|
task_stats->task_stat.heap_count += 1;
|
|
|
|
heap_stats->heap = used_heap->heap;
|
|
heap_stats->heap_stat.name = used_heap->name;
|
|
heap_stats->heap_stat.size = used_heap->end - used_heap->start;
|
|
heap_stats->heap_stat.caps = caps;
|
|
heap_stats->heap_stat.current_usage = size;
|
|
heap_stats->heap_stat.peak_usage = size;
|
|
heap_stats->heap_stat.alloc_count = 1;
|
|
heap_stats->heap_stat.alloc_stat = NULL; // this will be used to point at the user defined array of alloc_stat
|
|
|
|
STAILQ_INSERT_TAIL(&task_stats->heaps_stats, heap_stats, next_heap_stat);
|
|
|
|
create_new_alloc_stats_entry(heap_stats, NULL, task_stats->task_stat.handle, ptr, size);
|
|
}
|
|
|
|
/**
|
|
* @brief Create a new task info entry in task_stats if the tasks allocating memory is not in task_stats already.
|
|
*
|
|
* @param heap The heap by the task to allocate memory
|
|
* @param task_handle The task handle of the task allocating memory
|
|
* @param task_stats The task entry in task_stats. If NULL, the task allocating memory is allocating for the first time
|
|
* @param ptr The address of the allocation
|
|
* @param size The size of the allocation
|
|
* @param caps The ORED caps of the heap used for the allocation
|
|
*/
|
|
static HEAP_IRAM_ATTR void create_new_task_stats_entry(heap_t *used_heap, TaskHandle_t task_handle, task_info_t *task_info, void *ptr, size_t size, uint32_t caps)
|
|
{
|
|
// If task_info passed as parameter is NULL, it means the this task is doing
|
|
// its first allocation. Add the task entry to task_info and add heap_stats
|
|
// to this new task_info entry.
|
|
// If task_info is not NULL, it means that the task already allocated memory
|
|
// but now it is allocating in a new heap for the first time. Don't add a new
|
|
// task entry to task_info but add a new heap_stats to the task_info
|
|
if (!task_info) {
|
|
// find the heap with the most available free memory to store the statistics
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
|
|
// create the task_stats entry. No need to memset since all fields are set later
|
|
task_info = multi_heap_malloc(heap_used_for_alloc->heap, sizeof(task_info_t));
|
|
if (!task_info) {
|
|
ESP_LOGE(TAG, "Could not allocate memory to add new task statistics");
|
|
return;
|
|
}
|
|
|
|
// create the heap stats for the new task entry
|
|
STAILQ_INIT(&task_info->heaps_stats);
|
|
|
|
task_info->task_stat.handle = task_handle;
|
|
task_info->task_stat.is_alive = true;
|
|
task_info->task_stat.overall_peak_usage = size;
|
|
task_info->task_stat.overall_current_usage = size;
|
|
task_info->task_stat.heap_count = 0;
|
|
task_info->task_stat.heap_stat = NULL; // this will be used to point at the user defined array of heap_stat
|
|
if (task_handle == 0x00) {
|
|
char task_name[] = "Pre-scheduler";
|
|
strcpy(task_info->task_stat.name, task_name);
|
|
} else {
|
|
strcpy(task_info->task_stat.name, pcTaskGetName(task_handle));
|
|
}
|
|
|
|
// Add the new / first task_info in the list (sorted by decreasing address).
|
|
// The decreasing order is chosen because the task_handle 0x00000000 is used for pre-scheduler
|
|
// operations and therefore need to appear last so it is not parsed when trying to find a suitable
|
|
// task to update the stats from.
|
|
if (SLIST_EMPTY(&task_stats) || task_info->task_stat.handle >= SLIST_FIRST(&task_stats)->task_stat.handle) {
|
|
// the list is empty, or the new task handler is at a higher address than the one from the first item
|
|
SLIST_INSERT_HEAD(&task_stats, task_info, next_task_info);
|
|
} else {
|
|
// the new task handle is at a lower address than the first item in the list, go through the list to
|
|
// properly insert the new item
|
|
task_info_t *cur_task_info = NULL;
|
|
task_info_t *prev_task_info = NULL;
|
|
SLIST_FOREACH(cur_task_info, &task_stats, next_task_info) {
|
|
if (cur_task_info->task_stat.handle < task_info->task_stat.handle) {
|
|
SLIST_INSERT_AFTER(prev_task_info, task_info, next_task_info);
|
|
break;
|
|
} else {
|
|
prev_task_info = cur_task_info;
|
|
}
|
|
}
|
|
// here should be a last case handling: new task info as a task handle address smaller than all existing
|
|
// items in the list. But this is case is impossible given that the pre-scheduler allocations always
|
|
// happen first and the task handle defaults to 0x00000000 for the pre-scheduler so it will always be
|
|
// last in the list.
|
|
}
|
|
}
|
|
|
|
create_new_heap_stats_entry(task_info, used_heap, ptr, caps, size);
|
|
}
|
|
|
|
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
/**
|
|
* @brief Delete an entry from the list of task statistics
|
|
*
|
|
* @param task_info The task statistics to delete from the list of task statistics
|
|
*/
|
|
static HEAP_IRAM_ATTR void delete_task_info_entry(task_info_t *task_info)
|
|
{
|
|
if (task_info == NULL) {
|
|
return;
|
|
}
|
|
|
|
heap_stats_t *current_heap_stat = STAILQ_FIRST(&task_info->heaps_stats);
|
|
heap_stats_t *prev_heap_stat = NULL;
|
|
|
|
// pointer used to free the memory of the statistics
|
|
heap_t *containing_heap = NULL;
|
|
|
|
// remove all entries from task_info->heaps_stats and free the memory
|
|
while(current_heap_stat != NULL) {
|
|
prev_heap_stat = current_heap_stat;
|
|
current_heap_stat = STAILQ_NEXT(current_heap_stat, next_heap_stat);
|
|
|
|
/* remove all entries from heap_stats->allocs_stats */
|
|
alloc_stats_t *alloc_stat = NULL;
|
|
while ((alloc_stat = STAILQ_FIRST( &prev_heap_stat->allocs_stats)) != NULL) {
|
|
STAILQ_REMOVE(&prev_heap_stat->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
|
|
containing_heap = find_containing_heap(alloc_stat);
|
|
// prev_heap_stat must be allocated somewhere
|
|
if (containing_heap != NULL) {
|
|
multi_heap_free(containing_heap->heap, alloc_stat);
|
|
}
|
|
}
|
|
if (STAILQ_EMPTY(&prev_heap_stat->allocs_stats)) {
|
|
STAILQ_REMOVE(&task_info->heaps_stats, prev_heap_stat, heap_stats, next_heap_stat);
|
|
containing_heap = find_containing_heap(prev_heap_stat);
|
|
// prev_heap_stat must be allocated somewhere
|
|
if (containing_heap != NULL) {
|
|
multi_heap_free(containing_heap->heap, prev_heap_stat);
|
|
}
|
|
}
|
|
}
|
|
if (STAILQ_EMPTY(&task_info->heaps_stats)) {
|
|
// remove task_info from task_stats (and free the memory)
|
|
SLIST_REMOVE(&task_stats, task_info, task_stats, next_task_info);
|
|
containing_heap = find_containing_heap(task_info);
|
|
if (containing_heap != NULL) {
|
|
multi_heap_free(containing_heap->heap, task_info);
|
|
}
|
|
}
|
|
}
|
|
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
|
|
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_alloc(heap_t *heap, void *ptr, size_t size, uint32_t caps)
|
|
{
|
|
if (s_task_tracking_mutex == NULL) {
|
|
s_task_tracking_mutex = xSemaphoreCreateMutexStatic(&s_task_tracking_mutex_buf);
|
|
assert(s_task_tracking_mutex);
|
|
}
|
|
|
|
TaskHandle_t task_handle = xTaskGetCurrentTaskHandle();
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
/* find the task in the list and update the overall stats */
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
if (task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
|
|
task_info->task_stat.overall_current_usage += size;
|
|
if (task_info->task_stat.overall_current_usage > task_info->task_stat.overall_peak_usage) {
|
|
task_info->task_stat.overall_peak_usage = task_info->task_stat.overall_current_usage;
|
|
}
|
|
|
|
heap_stats_t *heap_stats = NULL;
|
|
/* find the heap in the list and update the overall stats */
|
|
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
|
if (heap_stats->heap == heap->heap) {
|
|
heap_stats->heap_stat.current_usage += size;
|
|
heap_stats->heap_stat.alloc_count++;
|
|
if (heap_stats->heap_stat.current_usage > heap_stats->heap_stat.peak_usage) {
|
|
heap_stats->heap_stat.peak_usage = heap_stats->heap_stat.current_usage;
|
|
}
|
|
|
|
/* add the alloc info to the list */
|
|
create_new_alloc_stats_entry(heap_stats, NULL, task_handle, ptr, size);
|
|
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// since the list of task info is sorted by decreasing size, if the current task info
|
|
// has a smaller task handle address than the one we are checking against, we can be sure
|
|
// the task handle will not be found in the list, and we can break the loop.
|
|
if (task_info->task_stat.handle < task_handle) {
|
|
task_info = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// No task entry was found OR no heap in the task entry was found.
|
|
// Add the info to the list (either new task stats or new heap stat if task_info not NULL)
|
|
create_new_task_stats_entry(heap, task_handle, task_info, ptr, size, caps);
|
|
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
}
|
|
|
|
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_realloc(heap_t *heap, void *old_ptr, void *new_ptr,
|
|
size_t old_size, TaskHandle_t old_task,
|
|
size_t new_size, uint32_t caps)
|
|
{
|
|
TaskHandle_t task_handle = xTaskGetCurrentTaskHandle();
|
|
bool task_in_list = false;
|
|
task_info_t *task_info = NULL;
|
|
alloc_stats_t *alloc_stat = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
if (task_info->task_stat.handle == old_task) {
|
|
heap_stats_t *heap_stats = NULL;
|
|
task_info->task_stat.overall_current_usage -= old_size;
|
|
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
|
if (heap_stats->heap == heap->heap) {
|
|
heap_stats->heap_stat.current_usage -= old_size;
|
|
heap_stats->heap_stat.alloc_count--;
|
|
|
|
/* remove the alloc from the list. The updated alloc stats are added later
|
|
* in the function */
|
|
STAILQ_FOREACH(alloc_stat, &heap_stats->allocs_stats, next_alloc_stat) {
|
|
if (alloc_stat->alloc_stat.address == old_ptr) {
|
|
STAILQ_REMOVE(&heap_stats->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
|
|
/* keep the memory used to store alloc_stat since we will fill it with new alloc
|
|
* info later in the function */
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
|
|
heap_stats_t *heap_stats = NULL;
|
|
task_info->task_stat.overall_current_usage += new_size;
|
|
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
|
if (heap_stats->heap == heap->heap) {
|
|
heap_stats->heap_stat.current_usage += new_size;
|
|
heap_stats->heap_stat.alloc_count++;
|
|
if (heap_stats->heap_stat.current_usage > heap_stats->heap_stat.peak_usage) {
|
|
heap_stats->heap_stat.peak_usage = heap_stats->heap_stat.current_usage;
|
|
}
|
|
|
|
create_new_alloc_stats_entry(heap_stats, alloc_stat, task_handle, new_ptr, new_size);
|
|
break;
|
|
}
|
|
}
|
|
task_in_list = true;
|
|
}
|
|
|
|
if (task_info->task_stat.overall_current_usage > task_info->task_stat.overall_peak_usage) {
|
|
task_info->task_stat.overall_peak_usage = task_info->task_stat.overall_current_usage;
|
|
}
|
|
}
|
|
|
|
if (!task_in_list) {
|
|
// No task entry was found OR no heap in the task entry was found.
|
|
// Add the info to the list (either new task stats or new heap stat if task_info not NULL)
|
|
create_new_task_stats_entry(heap, task_handle, task_info, new_ptr, new_size, caps);
|
|
}
|
|
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
}
|
|
|
|
HEAP_IRAM_ATTR void heap_caps_update_per_task_info_free(heap_t *heap, void *ptr)
|
|
{
|
|
void *block_owner_ptr = MULTI_HEAP_REMOVE_BLOCK_OWNER_OFFSET(ptr);
|
|
TaskHandle_t task_handle = MULTI_HEAP_GET_BLOCK_OWNER(block_owner_ptr);
|
|
if (!task_handle) {
|
|
return;
|
|
}
|
|
|
|
task_info_t *task_info = NULL;
|
|
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
task_info_t *task_info_to_delete = NULL;
|
|
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
/* find the matching task */
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
/* check all tasks (alive and deleted) since the free can come from any tasks,
|
|
* not necessarily the one which allocated the memory. */
|
|
if (task_info->task_stat.handle == task_handle) {
|
|
heap_stats_t *heap_stats = NULL;
|
|
alloc_stats_t *alloc_stat = NULL;
|
|
/* find the matching heap */
|
|
STAILQ_FOREACH(heap_stats, &task_info->heaps_stats, next_heap_stat) {
|
|
if(heap_stats->heap == heap->heap) {
|
|
/* find the matching allocation and remove it from the list*/
|
|
STAILQ_FOREACH(alloc_stat, &heap_stats->allocs_stats, next_alloc_stat) {
|
|
if (alloc_stat->alloc_stat.address == ptr) {
|
|
STAILQ_REMOVE(&heap_stats->allocs_stats, alloc_stat, alloc_stats, next_alloc_stat);
|
|
/* keep the memory used to store alloc_stat since we will fill it with new alloc
|
|
* info later in the function */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (alloc_stat != NULL) {
|
|
heap_stats->heap_stat.alloc_count--;
|
|
heap_stats->heap_stat.current_usage -= alloc_stat->alloc_stat.size;
|
|
task_info->task_stat.overall_current_usage -= alloc_stat->alloc_stat.size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* free the memory used to store alloc_stat */
|
|
heap_t *containing_heap = find_containing_heap(alloc_stat);
|
|
// task_stats must be allocated somewhere
|
|
if (containing_heap != NULL) {
|
|
multi_heap_free(containing_heap->heap, alloc_stat);
|
|
}
|
|
}
|
|
|
|
// when a task is deleted, esp_caps_free is called to delete the TCB of the task from vTaskDelete.
|
|
// Try to make a TaskHandle out of ptr and compare it to the list of tasks in task_stats.
|
|
// If one task_info contains the newly made TaskHandle from ptr it means that esp_caps_free
|
|
// was indeed called from vTaskDelete. We can then update the task_stats by marking the corresponding
|
|
// task as deleted.
|
|
if (task_info->task_stat.handle == ptr) {
|
|
// we found the task info from the task that is being deleted.
|
|
task_info->task_stat.is_alive = false;
|
|
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
task_info_to_delete = task_info;
|
|
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
// remove the entry related to the task that was just deleted.
|
|
if (task_info_to_delete != NULL) {
|
|
delete_task_info_entry(task_info_to_delete);
|
|
}
|
|
#endif // !CONFIG_HEAP_TRACK_DELETED_TASKS
|
|
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
}
|
|
|
|
esp_err_t heap_caps_get_all_task_stat(heap_all_tasks_stat_t *tasks_stat)
|
|
{
|
|
if (tasks_stat == NULL ||
|
|
(tasks_stat->stat_arr == NULL && tasks_stat->task_count != 0) ||
|
|
(tasks_stat->heap_stat_start == NULL && tasks_stat->heap_count != 0) ||
|
|
(tasks_stat->alloc_stat_start == NULL && tasks_stat->alloc_count != 0)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
size_t task_index = 0;
|
|
size_t heap_index = 0;
|
|
size_t alloc_index = 0;
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
// If there is no more task stat entries available in tasks_stat->stat_arr
|
|
// break the loop and return the function.
|
|
if (task_index >= tasks_stat->task_count) {
|
|
break;
|
|
}
|
|
memcpy(tasks_stat->stat_arr + task_index, &task_info->task_stat, sizeof(task_stat_t));
|
|
task_stat_t *current_task_stat = tasks_stat->stat_arr + task_index;
|
|
task_index++;
|
|
|
|
// If no more heap stat entries in the array are available, just proceed
|
|
// with filling task stats but skip filling info on heap stat and alloc stat.
|
|
if (heap_index + task_info->task_stat.heap_count > tasks_stat->heap_count) {
|
|
current_task_stat->heap_stat = NULL;
|
|
continue;
|
|
}
|
|
|
|
// set the pointer where the heap info for the given task will
|
|
// be in the user array
|
|
current_task_stat->heap_stat = tasks_stat->heap_stat_start + heap_index;
|
|
heap_index += task_info->task_stat.heap_count;
|
|
|
|
|
|
// copy the stats of the different heaps the task has used and the different allocs
|
|
// allocated in those heaps. If the number of entries remaining for alloc stats is
|
|
// inferior to the number of allocs allocated on the current heap no alloc stat will
|
|
// be copied at all.
|
|
size_t h_index = 0;
|
|
heap_stats_t *heap_info = STAILQ_FIRST(&task_info->heaps_stats);
|
|
while(h_index < task_info->task_stat.heap_count || heap_info != NULL) {
|
|
// increase alloc_index before filling the alloc info of the given heap
|
|
// to avoid running out of alloc stat entry while doing it.
|
|
if (alloc_index + heap_info->heap_stat.alloc_count > tasks_stat->alloc_count) {
|
|
heap_info->heap_stat.alloc_stat = NULL;
|
|
} else {
|
|
// set the pointer where the alloc info for the given heap will
|
|
// be in the user array
|
|
heap_info->heap_stat.alloc_stat = tasks_stat->alloc_stat_start + alloc_index;
|
|
// fill the alloc array in heap_info by running through all blocks of a given heap
|
|
// and storing info about the blocks allocated by the given task
|
|
alloc_stats_t *alloc_stats = NULL;
|
|
size_t a_index = 0;
|
|
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
|
|
heap_info->heap_stat.alloc_stat[a_index] = alloc_stats->alloc_stat;
|
|
a_index++;
|
|
}
|
|
|
|
alloc_index += heap_info->heap_stat.alloc_count;
|
|
}
|
|
|
|
memcpy(current_task_stat->heap_stat + h_index, &heap_info->heap_stat, sizeof(heap_stat_t));
|
|
h_index++;
|
|
heap_info = STAILQ_NEXT(heap_info, next_heap_stat);
|
|
}
|
|
}
|
|
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
|
|
tasks_stat->task_count = task_index;
|
|
tasks_stat->heap_count = heap_index;
|
|
tasks_stat->alloc_count = alloc_index;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t heap_caps_get_single_task_stat(heap_single_task_stat_t *task_stat, TaskHandle_t task_handle)
|
|
{
|
|
if (task_stat == NULL ||
|
|
(task_stat->heap_stat_start == NULL && task_stat->heap_count != 0) ||
|
|
(task_stat->alloc_stat_start == NULL && task_stat->alloc_count != 0)) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
if (task_handle == NULL) {
|
|
task_handle = xTaskGetCurrentTaskHandle();
|
|
}
|
|
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
if(task_info->task_stat.handle == task_handle) {
|
|
// copy the task_stat of the task itself
|
|
memcpy(&task_stat->stat, &task_info->task_stat, sizeof(task_stat_t));
|
|
break;
|
|
}
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
|
|
if (task_info == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
|
|
task_stat->stat.heap_stat = task_stat->heap_stat_start;
|
|
|
|
// copy the stats of the different heaps the task has used and the different blocks
|
|
// allocated in those heaps. If the number of entries remaining for block stats is
|
|
// inferior to the number of blocks allocated on the current heap no block stat will
|
|
// be copied at all.
|
|
size_t heap_index = 0;
|
|
size_t alloc_index = 0;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
heap_stats_t *heap_info = STAILQ_FIRST(&task_info->heaps_stats);
|
|
while(heap_index < task_info->task_stat.heap_count || heap_info != NULL) {
|
|
// check that there is enough heap_stat entry left to add another one to the user defined
|
|
// array of heap_stat
|
|
if (heap_index >= task_stat->heap_count) {
|
|
break;
|
|
}
|
|
|
|
// increase alloc_index before filling the block info of the given heap
|
|
// to avoid running out of block stat entry while doing it.
|
|
if (alloc_index + heap_info->heap_stat.alloc_count > task_stat->alloc_count) {
|
|
heap_info->heap_stat.alloc_stat = NULL;
|
|
} else {
|
|
// set the pointer where the block info for the given heap will
|
|
// be in the user array
|
|
heap_info->heap_stat.alloc_stat = task_stat->alloc_stat_start + alloc_index;
|
|
|
|
// fill the alloc array in heap_info by running through all blocks of a given heap
|
|
// and storing info about the blocks allocated by the given task
|
|
alloc_stats_t *alloc_stats = NULL;
|
|
size_t a_index = 0;
|
|
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
|
|
heap_info->heap_stat.alloc_stat[a_index] = alloc_stats->alloc_stat;
|
|
a_index++;
|
|
}
|
|
|
|
alloc_index += heap_info->heap_stat.alloc_count;
|
|
}
|
|
|
|
memcpy(task_stat->stat.heap_stat + heap_index, &heap_info->heap_stat, sizeof(heap_stat_t));
|
|
heap_index++;
|
|
heap_info = STAILQ_NEXT(heap_info, next_heap_stat);
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
|
|
task_stat->heap_count = heap_index;
|
|
task_stat->alloc_count = alloc_index;
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void heap_caps_print_task_info(FILE *stream, task_info_t *task_info, bool is_last_task_info)
|
|
{
|
|
if (stream == NULL) {
|
|
stream = stdout;
|
|
}
|
|
|
|
const char *task_info_visual = is_last_task_info ? " " : "│";
|
|
const char *task_info_visual_start = is_last_task_info ? "└" : "├";
|
|
fprintf(stream, "%s %s: %s, CURRENT MEMORY USAGE %d, PEAK MEMORY USAGE %d, TOTAL HEAP USED %d:\n", task_info_visual_start,
|
|
task_info->task_stat.is_alive ? "ALIVE" : "DELETED",
|
|
task_info->task_stat.name,
|
|
task_info->task_stat.overall_current_usage,
|
|
task_info->task_stat.overall_peak_usage,
|
|
task_info->task_stat.heap_count);
|
|
|
|
heap_stats_t *heap_info = NULL;
|
|
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
|
|
char *next_heap_visual = !STAILQ_NEXT(heap_info, next_heap_stat) ? " " : "│";
|
|
char *next_heap_visual_start = !STAILQ_NEXT(heap_info, next_heap_stat) ? "└" : "├";
|
|
fprintf(stream, "%s %s HEAP: %s, CAPS: 0x%08lx, SIZE: %d, USAGE: CURRENT %d (%d%%), PEAK %d (%d%%), ALLOC COUNT: %d\n",
|
|
task_info_visual,
|
|
next_heap_visual_start,
|
|
heap_info->heap_stat.name,
|
|
heap_info->heap_stat.caps,
|
|
heap_info->heap_stat.size,
|
|
heap_info->heap_stat.current_usage,
|
|
(heap_info->heap_stat.current_usage * 100) / heap_info->heap_stat.size,
|
|
heap_info->heap_stat.peak_usage,
|
|
(heap_info->heap_stat.peak_usage * 100) / heap_info->heap_stat.size,
|
|
heap_info->heap_stat.alloc_count);
|
|
|
|
alloc_stats_t *alloc_stats = NULL;
|
|
STAILQ_FOREACH(alloc_stats, &heap_info->allocs_stats, next_alloc_stat) {
|
|
fprintf(stream, "%s %s ├ ALLOC %p, SIZE %" PRIu32 "\n", task_info_visual,
|
|
next_heap_visual,
|
|
alloc_stats->alloc_stat.address,
|
|
alloc_stats->alloc_stat.size);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void heap_caps_print_task_overview(FILE *stream, task_info_t *task_info, bool is_first_task_info, bool is_last_task_info)
|
|
{
|
|
if (stream == NULL) {
|
|
stream = stdout;
|
|
}
|
|
|
|
if (is_first_task_info) {
|
|
fprintf(stream, "┌────────────────────┬─────────┬──────────────────────┬───────────────────┬─────────────────┐\n");
|
|
fprintf(stream, "│ TASK │ STATUS │ CURRENT MEMORY USAGE │ PEAK MEMORY USAGE │ TOTAL HEAP USED │\n");
|
|
fprintf(stream, "├────────────────────┼─────────┼──────────────────────┼───────────────────┼─────────────────┤\n");
|
|
}
|
|
|
|
task_stat_t task_stat = task_info->task_stat;
|
|
fprintf(stream, "│ %18s │ %7s │ %20d │ %17d │ %15d │\n",
|
|
task_stat.name,
|
|
task_stat.is_alive ? "ALIVE " : "DELETED",
|
|
task_stat.overall_current_usage,
|
|
task_stat.overall_peak_usage,
|
|
task_stat.heap_count);
|
|
|
|
if (is_last_task_info) {
|
|
fprintf(stream, "└────────────────────┴─────────┴──────────────────────┴───────────────────┴─────────────────┘\n");
|
|
}
|
|
}
|
|
|
|
void heap_caps_print_single_task_stat(FILE *stream, TaskHandle_t task_handle)
|
|
{
|
|
if (task_handle == NULL) {
|
|
task_handle = xTaskGetCurrentTaskHandle();
|
|
}
|
|
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
if (task_info->task_stat.handle == task_handle) {
|
|
heap_caps_print_task_info(stream, task_info, true);
|
|
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
return;
|
|
}
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
}
|
|
|
|
void heap_caps_print_all_task_stat(FILE *stream)
|
|
{
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
const bool last_task_info = (SLIST_NEXT(task_info, next_task_info) == NULL);
|
|
heap_caps_print_task_info(stream, task_info, last_task_info);
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
}
|
|
|
|
void heap_caps_print_single_task_stat_overview(FILE *stream, TaskHandle_t task_handle)
|
|
{
|
|
if (task_handle == NULL) {
|
|
task_handle = xTaskGetCurrentTaskHandle();
|
|
}
|
|
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
if (task_info->task_stat.handle == task_handle) {
|
|
heap_caps_print_task_overview(stream, task_info, true, true);
|
|
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
return;
|
|
}
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
}
|
|
|
|
void heap_caps_print_all_task_stat_overview(FILE *stream)
|
|
{
|
|
task_info_t *task_info = NULL;
|
|
bool is_first_task_info = true;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
const bool last_task_info = (SLIST_NEXT(task_info, next_task_info) == NULL);
|
|
heap_caps_print_task_overview(stream, task_info, is_first_task_info, last_task_info);
|
|
is_first_task_info = false;
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
}
|
|
|
|
esp_err_t heap_caps_alloc_single_task_stat_arrays(heap_single_task_stat_t *task_stat, TaskHandle_t task_handle)
|
|
{
|
|
if (task_handle == NULL) {
|
|
task_handle = xTaskGetCurrentTaskHandle();
|
|
}
|
|
|
|
task_stat->heap_stat_start = NULL;
|
|
task_stat->alloc_stat_start = NULL;
|
|
task_stat->heap_count = 0;
|
|
task_stat->alloc_count = 0;
|
|
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
if(task_info->task_stat.handle == task_handle && task_info->task_stat.is_alive) {
|
|
task_stat->heap_count = task_info->task_stat.heap_count;
|
|
heap_stats_t *heap_info = NULL;
|
|
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
|
|
task_stat->alloc_count += heap_info->heap_stat.alloc_count;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
|
|
// allocate the memory used to store the statistics of allocs, heaps
|
|
if (task_stat->heap_count != 0) {
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
task_stat->heap_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, task_stat->heap_count * sizeof(heap_stat_t));
|
|
if (task_stat->heap_stat_start == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
if (task_stat->alloc_count != 0) {
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
task_stat->alloc_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, task_stat->alloc_count * sizeof(heap_task_block_t));
|
|
if (task_stat->alloc_stat_start == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
void heap_caps_free_single_task_stat_arrays(heap_single_task_stat_t *task_stat)
|
|
{
|
|
if (task_stat->heap_stat_start != NULL) {
|
|
heap_t *heap_used_for_alloc = find_containing_heap(task_stat->heap_stat_start);
|
|
assert(heap_used_for_alloc != NULL);
|
|
multi_heap_free(heap_used_for_alloc->heap, task_stat->heap_stat_start);
|
|
task_stat->heap_stat_start = NULL;
|
|
task_stat->heap_count = 0;
|
|
}
|
|
if (task_stat->alloc_stat_start != NULL) {
|
|
heap_t *heap_used_for_alloc = find_containing_heap(task_stat->alloc_stat_start);
|
|
assert(heap_used_for_alloc != NULL);
|
|
multi_heap_free(heap_used_for_alloc->heap, task_stat->alloc_stat_start);
|
|
task_stat->alloc_stat_start = NULL;
|
|
task_stat->alloc_count = 0;
|
|
}
|
|
}
|
|
|
|
esp_err_t heap_caps_alloc_all_task_stat_arrays(heap_all_tasks_stat_t *tasks_stat)
|
|
{
|
|
tasks_stat->stat_arr = NULL;
|
|
tasks_stat->heap_stat_start = NULL;
|
|
tasks_stat->alloc_stat_start = NULL;
|
|
tasks_stat->task_count = 0;
|
|
tasks_stat->heap_count = 0;
|
|
tasks_stat->alloc_count = 0;
|
|
|
|
task_info_t *task_info = NULL;
|
|
|
|
xSemaphoreTake(s_task_tracking_mutex, portMAX_DELAY);
|
|
SLIST_FOREACH(task_info, &task_stats, next_task_info) {
|
|
tasks_stat->task_count += 1;
|
|
|
|
tasks_stat->heap_count += task_info->task_stat.heap_count;
|
|
heap_stats_t *heap_info = NULL;
|
|
STAILQ_FOREACH(heap_info, &task_info->heaps_stats, next_heap_stat) {
|
|
tasks_stat->alloc_count += heap_info->heap_stat.alloc_count;
|
|
}
|
|
}
|
|
xSemaphoreGive(s_task_tracking_mutex);
|
|
|
|
// allocate the memory used to store the statistics of allocs, heaps and tasks
|
|
if (tasks_stat->task_count != 0) {
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
tasks_stat->stat_arr = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->task_count * sizeof(task_stat_t));
|
|
if (tasks_stat->stat_arr == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
if (tasks_stat->heap_count != 0) {
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
tasks_stat->heap_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->heap_count * sizeof(heap_stat_t));
|
|
if (tasks_stat->heap_stat_start == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
if (tasks_stat->alloc_count != 0) {
|
|
heap_t *heap_used_for_alloc = find_biggest_heap();
|
|
tasks_stat->alloc_stat_start = multi_heap_malloc(heap_used_for_alloc->heap, tasks_stat->alloc_count * sizeof(heap_task_block_t));
|
|
if (tasks_stat->alloc_stat_start == NULL) {
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
void heap_caps_free_all_task_stat_arrays(heap_all_tasks_stat_t *tasks_stat)
|
|
{
|
|
if (tasks_stat->stat_arr != NULL) {
|
|
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->stat_arr);
|
|
assert(heap_used_for_alloc != NULL);
|
|
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->stat_arr);
|
|
tasks_stat->stat_arr = NULL;
|
|
tasks_stat->task_count = 0;
|
|
}
|
|
if (tasks_stat->heap_stat_start != NULL) {
|
|
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->heap_stat_start);
|
|
assert(heap_used_for_alloc != NULL);
|
|
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->heap_stat_start);
|
|
tasks_stat->heap_stat_start = NULL;
|
|
tasks_stat->heap_count = 0;
|
|
}
|
|
if (tasks_stat->alloc_stat_start != NULL) {
|
|
heap_t *heap_used_for_alloc = find_containing_heap(tasks_stat->alloc_stat_start);
|
|
assert(heap_used_for_alloc != NULL);
|
|
multi_heap_free(heap_used_for_alloc->heap, tasks_stat->alloc_stat_start);
|
|
tasks_stat->alloc_stat_start = NULL;
|
|
tasks_stat->alloc_count = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return per-task heap allocation totals and lists of blocks.
|
|
*
|
|
* For each task that has allocated memory from the heap, return totals for
|
|
* allocations within regions matching one or more sets of capabilities.
|
|
*
|
|
* Optionally also return an array of structs providing details about each
|
|
* block allocated by one or more requested tasks, or by all tasks.
|
|
*
|
|
* Returns the number of block detail structs returned.
|
|
*/
|
|
size_t heap_caps_get_per_task_info(heap_task_info_params_t *params)
|
|
{
|
|
heap_t *reg;
|
|
heap_task_block_t *blocks = params->blocks;
|
|
size_t count = *params->num_totals;
|
|
size_t remaining = params->max_blocks;
|
|
|
|
// Clear out totals for any prepopulated tasks.
|
|
if (params->totals) {
|
|
for (size_t i = 0; i < count; ++i) {
|
|
for (size_t type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
|
|
params->totals[i].size[type] = 0;
|
|
params->totals[i].count[type] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
SLIST_FOREACH(reg, ®istered_heaps, next) {
|
|
multi_heap_handle_t heap = reg->heap;
|
|
if (heap == NULL) {
|
|
continue;
|
|
}
|
|
|
|
// Find if the capabilities of this heap region match on of the desired
|
|
// sets of capabilities.
|
|
uint32_t caps = get_all_caps(reg);
|
|
uint32_t type;
|
|
for (type = 0; type < NUM_HEAP_TASK_CAPS; ++type) {
|
|
if ((caps & params->mask[type]) == params->caps[type]) {
|
|
break;
|
|
}
|
|
}
|
|
if (type == NUM_HEAP_TASK_CAPS) {
|
|
continue;
|
|
}
|
|
|
|
multi_heap_block_handle_t b = multi_heap_get_first_block(heap);
|
|
multi_heap_internal_lock(heap);
|
|
for ( ; b ; b = multi_heap_get_next_block(heap, b)) {
|
|
if (multi_heap_is_free(b)) {
|
|
continue;
|
|
}
|
|
void *p = multi_heap_get_block_address(b); // Safe, only arithmetic
|
|
size_t bsize = multi_heap_get_allocated_size(heap, p); // Validates
|
|
TaskHandle_t btask = MULTI_HEAP_GET_BLOCK_OWNER(p);
|
|
// Accumulate per-task allocation totals.
|
|
if (params->totals) {
|
|
size_t i;
|
|
for (i = 0; i < count; ++i) {
|
|
if (params->totals[i].task == btask) {
|
|
break;
|
|
}
|
|
}
|
|
if (i < count) {
|
|
params->totals[i].size[type] += bsize;
|
|
params->totals[i].count[type] += 1;
|
|
} else {
|
|
if (count < params->max_totals) {
|
|
params->totals[count].task = btask;
|
|
params->totals[count].size[type] = bsize;
|
|
params->totals[i].count[type] = 1;
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return details about allocated blocks for selected tasks.
|
|
if (blocks && remaining > 0) {
|
|
if (params->tasks) {
|
|
size_t i;
|
|
for (i = 0; i < params->num_tasks; ++i) {
|
|
if (btask == params->tasks[i]) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == params->num_tasks) {
|
|
continue;
|
|
}
|
|
}
|
|
blocks->task = btask;
|
|
blocks->address = p;
|
|
blocks->size = bsize;
|
|
++blocks;
|
|
--remaining;
|
|
}
|
|
}
|
|
multi_heap_internal_unlock(heap);
|
|
}
|
|
*params->num_totals = count;
|
|
return params->max_blocks - remaining;
|
|
}
|
|
|
|
#endif // CONFIG_HEAP_TASK_TRACKING
|