mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 04:59:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			549 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			549 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \brief AES block cipher, ESP DMA hardware accelerated version
 | |
|  * Based on mbedTLS FIPS-197 compliant version.
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| /*
 | |
|  *  The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
 | |
|  *
 | |
|  *  http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
 | |
|  *  http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include "mbedtls/aes.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_crypto_lock.h"
 | |
| #include "hal/aes_hal.h"
 | |
| #include "hal/aes_ll.h"
 | |
| #include "esp_aes_internal.h"
 | |
| #include "esp_private/esp_crypto_lock_internal.h"
 | |
| 
 | |
| #if SOC_AES_GDMA
 | |
| #define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
 | |
| #define AES_RELEASE() esp_crypto_sha_aes_lock_release()
 | |
| #elif SOC_AES_CRYPTO_DMA
 | |
| #define AES_LOCK() esp_crypto_dma_lock_acquire()
 | |
| #define AES_RELEASE() esp_crypto_dma_lock_release()
 | |
| #include "hal/crypto_dma_ll.h"
 | |
| #endif
 | |
| 
 | |
| static const char *TAG = "esp-aes";
 | |
| 
 | |
| void esp_aes_acquire_hardware( void )
 | |
| {
 | |
|     /* Released by esp_aes_release_hardware()*/
 | |
|     AES_LOCK();
 | |
| 
 | |
|     AES_RCC_ATOMIC() {
 | |
|         aes_ll_enable_bus_clock(true);
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|         crypto_dma_ll_enable_bus_clock(true);
 | |
| #endif
 | |
|         aes_ll_reset_register();
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|         crypto_dma_ll_reset_register();
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Function to disable AES and Crypto DMA clocks and release locks */
 | |
| void esp_aes_release_hardware( void )
 | |
| {
 | |
|     AES_RCC_ATOMIC() {
 | |
|         aes_ll_enable_bus_clock(false);
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|         crypto_dma_ll_enable_bus_clock(false);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     AES_RELEASE();
 | |
| }
 | |
| 
 | |
| static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
 | |
|                                   unsigned char *output )
 | |
| {
 | |
|     if (!ctx) {
 | |
|         ESP_LOGE(TAG, "No AES context supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!input) {
 | |
|         ESP_LOGE(TAG, "No input supplied");
 | |
|         return -1;
 | |
|     }
 | |
|     if (!output) {
 | |
|         ESP_LOGE(TAG, "No output supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES-ECB single block encryption
 | |
|  */
 | |
| int esp_internal_aes_encrypt(esp_aes_context *ctx,
 | |
|                              const unsigned char input[16],
 | |
|                              unsigned char output[16] )
 | |
| {
 | |
|     int r = -1;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_encrypt(esp_aes_context *ctx,
 | |
|                      const unsigned char input[16],
 | |
|                      unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_encrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-ECB single block decryption
 | |
|  */
 | |
| int esp_internal_aes_decrypt(esp_aes_context *ctx,
 | |
|                              const unsigned char input[16],
 | |
|                              unsigned char output[16] )
 | |
| {
 | |
|     int r = -1;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_decrypt(esp_aes_context *ctx,
 | |
|                      const unsigned char input[16],
 | |
|                      unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_decrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES-ECB block encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ecb(esp_aes_context *ctx,
 | |
|                       int mode,
 | |
|                       const unsigned char input[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     int r = -1;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
|     r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CBC buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cbc(esp_aes_context *ctx,
 | |
|                       int mode,
 | |
|                       size_t length,
 | |
|                       unsigned char iv[16],
 | |
|                       const unsigned char *input,
 | |
|                       unsigned char *output )
 | |
| {
 | |
|     int r = -1;
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     /* For CBC input length should be multiple of
 | |
|      * AES BLOCK BYTES
 | |
|      * */
 | |
|     if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
 | |
|         return ERR_ESP_AES_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|     aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
 | |
|     aes_hal_set_iv(iv);
 | |
| 
 | |
|     r = esp_aes_process_dma(ctx, input, output, length, NULL);
 | |
|     if (r != 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     aes_hal_read_iv(iv);
 | |
| 
 | |
| cleanup:
 | |
|     esp_aes_release_hardware();
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB8 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb8(esp_aes_context *ctx,
 | |
|                        int mode,
 | |
|                        size_t length,
 | |
|                        unsigned char iv[16],
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     int r = -1;
 | |
|     unsigned char c;
 | |
|     unsigned char ov[17];
 | |
|     size_t block_bytes = length - (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* The DMA engine will only output correct IV if it runs
 | |
|        full blocks of input in CFB8 mode
 | |
|     */
 | |
|     esp_aes_acquire_hardware();
 | |
| 
 | |
|     if (block_bytes > 0) {
 | |
| 
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
 | |
|         aes_hal_set_iv(iv);
 | |
|         r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
 | |
|         if (r != 0) {
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         aes_hal_read_iv(iv);
 | |
| 
 | |
|         length -= block_bytes;
 | |
|         input += block_bytes;
 | |
|         output += block_bytes;
 | |
|     }
 | |
| 
 | |
|     // Process remaining bytes block-at-a-time in ECB mode
 | |
|     if (length > 0) {
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, MBEDTLS_AES_ENCRYPT);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
 | |
| 
 | |
|         while ( length-- ) {
 | |
|             memcpy( ov, iv, 16 );
 | |
| 
 | |
|             r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
 | |
|             if (r != 0) {
 | |
|                 goto cleanup;
 | |
|             }
 | |
| 
 | |
|             if ( mode == MBEDTLS_AES_DECRYPT ) {
 | |
|                 ov[16] = *input;
 | |
|             }
 | |
| 
 | |
|             c = *output++ = ( iv[0] ^ *input++ );
 | |
| 
 | |
|             if ( mode == MBEDTLS_AES_ENCRYPT ) {
 | |
|                 ov[16] = c;
 | |
|             }
 | |
|             memcpy( iv, ov + 1, 16 );
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     r = 0;
 | |
| 
 | |
| cleanup:
 | |
|     esp_aes_release_hardware();
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB128 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb128(esp_aes_context *ctx,
 | |
|                          int mode,
 | |
|                          size_t length,
 | |
|                          size_t *iv_off,
 | |
|                          unsigned char iv[16],
 | |
|                          const unsigned char *input,
 | |
|                          unsigned char *output )
 | |
| 
 | |
| {
 | |
|     uint8_t c;
 | |
|     size_t stream_bytes = 0;
 | |
|     size_t n;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!iv_off) {
 | |
|         ESP_LOGE(TAG, "No IV offset supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     n = *iv_off;
 | |
| 
 | |
|     /* First process the *iv_off bytes
 | |
|      * which are pending from the previous call to this API
 | |
|      */
 | |
|     while (n > 0 && length > 0) {
 | |
|         if (mode == MBEDTLS_AES_ENCRYPT) {
 | |
|             iv[n] = *output++ = *input++ ^ iv[n];
 | |
|         } else {
 | |
|             c = *input++;
 | |
|             *output++ = c ^ iv[n];
 | |
|             iv[n] = c;
 | |
|         }
 | |
|         n = (n + 1) % AES_BLOCK_BYTES;
 | |
|         length--;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (length > 0) {
 | |
|         stream_bytes = length % AES_BLOCK_BYTES;
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
 | |
|         aes_hal_set_iv(iv);
 | |
| 
 | |
|         int r = esp_aes_process_dma(ctx, input, output, length, iv);
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         if (stream_bytes == 0) {
 | |
|             // if we didn't need the partial 'stream block' then the new IV is in the IV register
 | |
|             aes_hal_read_iv(iv);
 | |
|         } else {
 | |
|             // if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
 | |
|             // In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
 | |
|             // block uses ciphertext as its IV input)
 | |
|             //
 | |
|             // Note: It may be more efficient to not process the partial block via DMA in this case.
 | |
|             if (mode == MBEDTLS_AES_DECRYPT) {
 | |
|                 memcpy(iv, input + length - stream_bytes, stream_bytes);
 | |
|             }
 | |
|         }
 | |
|         esp_aes_release_hardware();
 | |
|     }
 | |
| 
 | |
|     *iv_off = n + stream_bytes;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-OFB (Output Feedback Mode) buffer encryption/decryption
 | |
|  */
 | |
| 
 | |
| int esp_aes_crypt_ofb(esp_aes_context *ctx,
 | |
|                       size_t length,
 | |
|                       size_t *iv_off,
 | |
|                       unsigned char iv[16],
 | |
|                       const unsigned char *input,
 | |
|                       unsigned char *output )
 | |
| {
 | |
|     size_t n;
 | |
|     size_t stream_bytes = 0;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!iv) {
 | |
|         ESP_LOGE(TAG, "No IV supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!iv_off) {
 | |
|         ESP_LOGE(TAG, "No IV offset supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     n = *iv_off;
 | |
| 
 | |
|     /* If there is an offset then use the output of the previous AES block
 | |
|         (the updated IV) to calculate the new output */
 | |
|     while (n > 0 && length > 0) {
 | |
|         *output++ = (*input++ ^ iv[n]);
 | |
|         n = (n + 1) & 0xF;
 | |
|         length--;
 | |
|     }
 | |
|     if (length > 0) {
 | |
|         stream_bytes = (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
 | |
|         aes_hal_set_iv(iv);
 | |
| 
 | |
|         int r = esp_aes_process_dma(ctx, input, output, length, iv);
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         aes_hal_read_iv(iv);
 | |
|         esp_aes_release_hardware();
 | |
|     }
 | |
| 
 | |
|     *iv_off = n + stream_bytes;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CTR buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ctr(esp_aes_context *ctx,
 | |
|                       size_t length,
 | |
|                       size_t *nc_off,
 | |
|                       unsigned char nonce_counter[16],
 | |
|                       unsigned char stream_block[16],
 | |
|                       const unsigned char *input,
 | |
|                       unsigned char *output )
 | |
| {
 | |
|     size_t n;
 | |
| 
 | |
|     if (esp_aes_validate_input(ctx, input, output)) {
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!stream_block) {
 | |
|         ESP_LOGE(TAG, "No stream supplied");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!nonce_counter) {
 | |
|         ESP_LOGE(TAG, "No nonce supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (!nc_off) {
 | |
|         ESP_LOGE(TAG, "No nonce offset supplied");
 | |
|         return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     n = *nc_off;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* Process any unprocessed bytes left in stream block from
 | |
|        last operation */
 | |
|     while (n > 0 && length > 0) {
 | |
|         *output++ = (unsigned char)(*input++ ^ stream_block[n]);
 | |
|         n = (n + 1) & 0xF;
 | |
|         length--;
 | |
|     }
 | |
| 
 | |
|     if (length > 0) {
 | |
| 
 | |
|         esp_aes_acquire_hardware();
 | |
|         ctx->key_in_hardware = 0;
 | |
|         ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
 | |
| 
 | |
|         aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
 | |
|         aes_hal_set_iv(nonce_counter);
 | |
| 
 | |
|         int r = esp_aes_process_dma(ctx, input, output, length, stream_block);
 | |
| 
 | |
|         if (r != 0) {
 | |
|             esp_aes_release_hardware();
 | |
|             return r;
 | |
|         }
 | |
| 
 | |
|         aes_hal_read_iv(nonce_counter);
 | |
| 
 | |
|         esp_aes_release_hardware();
 | |
| 
 | |
|     }
 | |
|     *nc_off = n + (length % AES_BLOCK_BYTES);
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
