mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 04:59:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			392 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			392 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  ESP hardware accelerated SHA1/256/512 implementation
 | |
|  *  based on mbedTLS FIPS-197 compliant version.
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| /*
 | |
|  *  The SHA-1 standard was published by NIST in 1993.
 | |
|  *
 | |
|  *  http://www.itl.nist.gov/fipspubs/fip180-1.htm
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <sys/lock.h>
 | |
| 
 | |
| #include "esp_private/esp_crypto_lock_internal.h"
 | |
| #include "esp_private/esp_cache_private.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_memory_utils.h"
 | |
| #include "esp_crypto_lock.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_crypto_dma.h"
 | |
| #include "esp_cache.h"
 | |
| #include "hal/dma_types.h"
 | |
| #include "soc/ext_mem_defs.h"
 | |
| #include "soc/periph_defs.h"
 | |
| 
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| 
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| #include "sys/param.h"
 | |
| 
 | |
| #include "sha/sha_dma.h"
 | |
| #include "hal/sha_hal.h"
 | |
| #include "hal/sha_ll.h"
 | |
| #include "soc/soc_caps.h"
 | |
| #include "esp_sha_dma_priv.h"
 | |
| #include "sdkconfig.h"
 | |
| 
 | |
| #ifdef SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT
 | |
| #include "esp_flash_encrypt.h"
 | |
| #endif /* SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT */
 | |
| 
 | |
| #if SOC_SHA_GDMA
 | |
| #define SHA_LOCK() esp_crypto_sha_aes_lock_acquire()
 | |
| #define SHA_RELEASE() esp_crypto_sha_aes_lock_release()
 | |
| #elif SOC_SHA_CRYPTO_DMA
 | |
| #define SHA_LOCK() esp_crypto_dma_lock_acquire()
 | |
| #define SHA_RELEASE() esp_crypto_dma_lock_release()
 | |
| #include "hal/crypto_dma_ll.h"
 | |
| #endif
 | |
| 
 | |
| const static char *TAG = "esp-sha";
 | |
| 
 | |
| void esp_sha_write_digest_state(esp_sha_type sha_type, void *digest_state)
 | |
| {
 | |
|     sha_hal_write_digest(sha_type, digest_state);
 | |
| }
 | |
| 
 | |
| void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
 | |
| {
 | |
|     sha_hal_read_digest(sha_type, digest_state);
 | |
| }
 | |
| 
 | |
| /* Return block size (in bytes) for a given SHA type */
 | |
| inline static size_t block_length(esp_sha_type type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case SHA1:
 | |
|     case SHA2_224:
 | |
|     case SHA2_256:
 | |
|         return 64;
 | |
| #if SOC_SHA_SUPPORT_SHA384
 | |
|     case SHA2_384:
 | |
| #endif
 | |
| #if SOC_SHA_SUPPORT_SHA512
 | |
|     case SHA2_512:
 | |
| #endif
 | |
| #if SOC_SHA_SUPPORT_SHA512_T
 | |
|     case SHA2_512224:
 | |
|     case SHA2_512256:
 | |
|     case SHA2_512T:
 | |
| #endif
 | |
|         return 128;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Enable SHA peripheral and then lock it */
 | |
| void esp_sha_acquire_hardware()
 | |
| {
 | |
|     SHA_LOCK(); /* Released when releasing hw with esp_sha_release_hardware() */
 | |
| 
 | |
|     SHA_RCC_ATOMIC() {
 | |
|         sha_ll_enable_bus_clock(true);
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|         crypto_dma_ll_enable_bus_clock(true);
 | |
| #endif
 | |
|         sha_ll_reset_register();
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|         crypto_dma_ll_reset_register();
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Disable SHA peripheral block and then release it */
 | |
| void esp_sha_release_hardware()
 | |
| {
 | |
|     SHA_RCC_ATOMIC() {
 | |
|         sha_ll_enable_bus_clock(false);
 | |
| #if SOC_AES_CRYPTO_DMA
 | |
|         crypto_dma_ll_enable_bus_clock(false);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     SHA_RELEASE();
 | |
| }
 | |
| 
 | |
| static bool s_check_dma_capable(const void *p)
 | |
| {
 | |
|     bool is_capable = false;
 | |
| #if CONFIG_SPIRAM
 | |
|     is_capable |= esp_ptr_dma_ext_capable(p);
 | |
| #endif
 | |
|     is_capable |= esp_ptr_dma_capable(p);
 | |
| 
 | |
|     return is_capable;
 | |
| }
 | |
| 
 | |
| /* Hash the input block by block, using non-DMA mode */
 | |
| static void esp_sha_block_mode(esp_sha_type sha_type, const uint8_t *input, uint32_t ilen,
 | |
|                                const uint8_t *buf, uint32_t buf_len, bool is_first_block)
 | |
| {
 | |
|     size_t blk_len = 0;
 | |
|     size_t blk_word_len = 0;
 | |
|     int num_block = 0;
 | |
| 
 | |
|     blk_len = block_length(sha_type);
 | |
|     blk_word_len =  blk_len / 4;
 | |
|     num_block = ilen / blk_len;
 | |
| 
 | |
|     if (buf_len != 0) {
 | |
|         sha_hal_hash_block(sha_type, buf, blk_word_len, is_first_block);
 | |
|         is_first_block = false;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < num_block; i++) {
 | |
|         sha_hal_hash_block(sha_type, input + blk_len * i, blk_word_len, is_first_block);
 | |
|         is_first_block = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static DRAM_ATTR crypto_dma_desc_t s_dma_descr_input;
 | |
| static DRAM_ATTR crypto_dma_desc_t s_dma_descr_buf;
 | |
| 
 | |
| static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
 | |
|                                      const void *buf, uint32_t buf_len, bool is_first_block);
 | |
| 
 | |
| #ifdef SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT
 | |
| static esp_err_t esp_sha_dma_process_ext(esp_sha_type sha_type, const void *input, uint32_t ilen,
 | |
|                                         const void *buf, uint32_t buf_len, bool is_first_block,
 | |
|                                         bool realloc_input, bool realloc_buf)
 | |
| {
 | |
|     int ret = ESP_FAIL;
 | |
|     void *input_copy = NULL;
 | |
|     void *buf_copy = NULL;
 | |
| 
 | |
|     const void *dma_input = NULL;
 | |
|     const void *dma_buf = NULL;
 | |
| 
 | |
|     uint32_t heap_caps = 0;
 | |
| 
 | |
|     if (realloc_input) {
 | |
|         heap_caps = MALLOC_CAP_8BIT | (esp_ptr_external_ram(input) ? MALLOC_CAP_SPIRAM : MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
 | |
|         input_copy = heap_caps_aligned_alloc(SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT, ilen, heap_caps);
 | |
|         if (input_copy == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate aligned SPIRAM memory");
 | |
|             return ret;
 | |
|         }
 | |
|         memcpy(input_copy, input, ilen);
 | |
|         dma_input = input_copy;
 | |
|     } else {
 | |
|         dma_input = input;
 | |
|     }
 | |
| 
 | |
|     if (realloc_buf) {
 | |
|         heap_caps = MALLOC_CAP_8BIT | (esp_ptr_external_ram(buf) ? MALLOC_CAP_SPIRAM : MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
 | |
|         buf_copy = heap_caps_aligned_alloc(SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT, buf_len, heap_caps);
 | |
|         if (buf_copy == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate aligned internal memory");
 | |
|             return ret;
 | |
|         }
 | |
|         memcpy(buf_copy, buf, buf_len);
 | |
|         dma_buf = buf_copy;
 | |
|     } else {
 | |
|         dma_buf = buf;
 | |
|     }
 | |
| 
 | |
|     ret = esp_sha_dma_process(sha_type, dma_input, ilen, dma_buf, buf_len, is_first_block);
 | |
| 
 | |
|     if (realloc_input) {
 | |
|         free(input_copy);
 | |
|     }
 | |
| 
 | |
|     if (realloc_buf) {
 | |
|         free(buf_copy);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| #endif /* SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT */
 | |
| 
 | |
| /* Performs SHA on multiple blocks at a time */
 | |
| static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
 | |
|                                      const void *buf, uint32_t buf_len, bool is_first_block)
 | |
| {
 | |
|     int ret = 0;
 | |
|     crypto_dma_desc_t *dma_descr_head = NULL;
 | |
|     size_t num_blks = (ilen + buf_len) / block_length(sha_type);
 | |
| 
 | |
|     memset(&s_dma_descr_input, 0, sizeof(crypto_dma_desc_t));
 | |
|     memset(&s_dma_descr_buf, 0, sizeof(crypto_dma_desc_t));
 | |
| 
 | |
| /* When SHA-DMA operations are carried out using external memory with external memory encryption enabled,
 | |
|    we need to make sure that the addresses and the sizes of the buffers on which the DMA operates are 16 byte-aligned. */
 | |
| #ifdef SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT
 | |
|     if (esp_flash_encryption_enabled()) {
 | |
|         if (esp_ptr_external_ram(input) || esp_ptr_external_ram(buf) || esp_ptr_in_drom(input) || esp_ptr_in_drom(buf)) {
 | |
|             bool input_needs_realloc = false;
 | |
|             bool buf_needs_realloc = false;
 | |
| 
 | |
|             if (ilen && ((intptr_t)(input) & (SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT - 1)) != 0) {
 | |
|                 input_needs_realloc = true;
 | |
|             }
 | |
| 
 | |
|             if (buf_len && ((intptr_t)(buf) & (SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT - 1)) != 0) {
 | |
|                 buf_needs_realloc = true;
 | |
|             }
 | |
| 
 | |
|             if (input_needs_realloc || buf_needs_realloc) {
 | |
|                 return esp_sha_dma_process_ext(sha_type, input, ilen, buf, buf_len, is_first_block, input_needs_realloc, buf_needs_realloc);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif /* SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT */
 | |
| 
 | |
|     /* DMA descriptor for Memory to DMA-SHA transfer */
 | |
|     if (ilen) {
 | |
|         s_dma_descr_input.dw0.length = ilen;
 | |
|         s_dma_descr_input.dw0.size = ilen;
 | |
|         s_dma_descr_input.dw0.owner = 1;
 | |
|         s_dma_descr_input.dw0.suc_eof = 1;
 | |
|         s_dma_descr_input.buffer = (void *) input;
 | |
|         dma_descr_head = &s_dma_descr_input;
 | |
|     }
 | |
|     /* Check after input to override head if there is any buf*/
 | |
|     if (buf_len) {
 | |
|         s_dma_descr_buf.dw0.length = buf_len;
 | |
|         s_dma_descr_buf.dw0.size = buf_len;
 | |
|         s_dma_descr_buf.dw0.owner = 1;
 | |
|         s_dma_descr_buf.dw0.suc_eof = 1;
 | |
|         s_dma_descr_buf.buffer = (void *) buf;
 | |
|         dma_descr_head = &s_dma_descr_buf;
 | |
|     }
 | |
| 
 | |
|     /* Link DMA lists */
 | |
|     if (buf_len && ilen) {
 | |
|         s_dma_descr_buf.dw0.suc_eof = 0;
 | |
|         s_dma_descr_buf.next = (&s_dma_descr_input);
 | |
|     }
 | |
| 
 | |
| #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
 | |
|     if (ilen) {
 | |
|         ESP_ERROR_CHECK(esp_cache_msync(&s_dma_descr_input, sizeof(crypto_dma_desc_t), ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED));
 | |
|         ESP_ERROR_CHECK(esp_cache_msync(s_dma_descr_input.buffer, s_dma_descr_input.dw0.length, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED));
 | |
|     }
 | |
| 
 | |
|     if (buf_len) {
 | |
|         ESP_ERROR_CHECK(esp_cache_msync(&s_dma_descr_buf, sizeof(crypto_dma_desc_t), ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED));
 | |
|         ESP_ERROR_CHECK(esp_cache_msync(s_dma_descr_buf.buffer, s_dma_descr_buf.dw0.length, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED));
 | |
|     }
 | |
| #endif /* SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE */
 | |
| 
 | |
|     if (esp_sha_dma_start(dma_descr_head) != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "esp_sha_dma_start failed, no DMA channel available");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     sha_hal_hash_dma(sha_type, num_blks, is_first_block);
 | |
| 
 | |
|     sha_hal_wait_idle();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Performs SHA on multiple blocks at a time using DMA
 | |
|    splits up into smaller operations for inputs that exceed a single DMA list
 | |
|  */
 | |
| int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen,
 | |
|                 const void *buf, uint32_t buf_len, bool is_first_block)
 | |
| {
 | |
|     int ret = 0;
 | |
|     unsigned char *dma_cap_buf = NULL;
 | |
| 
 | |
|     if (buf_len > block_length(sha_type)) {
 | |
|         ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* DMA cannot access memory in flash, hash block by block instead of using DMA */
 | |
|     if (!s_check_dma_capable(input) && (ilen != 0)) {
 | |
|         esp_sha_block_mode(sha_type, input, ilen, buf, buf_len, is_first_block);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
| #if (CONFIG_SPIRAM && SOC_PSRAM_DMA_CAPABLE)
 | |
|     if (esp_ptr_external_ram(input)) {
 | |
|         esp_cache_msync((void *)input, ilen, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED);
 | |
|     }
 | |
|     if (esp_ptr_external_ram(buf)) {
 | |
|         esp_cache_msync((void *)buf, buf_len, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Copy to internal buf if buf is in non DMA capable memory */
 | |
|     if (!s_check_dma_capable(buf) && (buf_len != 0)) {
 | |
|         dma_cap_buf = heap_caps_malloc(sizeof(unsigned char) * buf_len, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
 | |
|         if (dma_cap_buf == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate buf memory");
 | |
|             ret = -1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|         memcpy(dma_cap_buf, buf, buf_len);
 | |
|         buf = dma_cap_buf;
 | |
|     }
 | |
| 
 | |
|     uint32_t dma_op_num;
 | |
| 
 | |
|     if (ilen > 0) {
 | |
|         /* Number of DMA operations based on maximum chunk size in single operation */
 | |
|         dma_op_num = (ilen + SOC_SHA_DMA_MAX_BUFFER_SIZE - 1) / SOC_SHA_DMA_MAX_BUFFER_SIZE;
 | |
|     } else {
 | |
|         /* For zero input length, we must allow at-least 1 DMA operation to see
 | |
|          * if there is any pending data that is yet to be copied out */
 | |
|         dma_op_num = 1;
 | |
|     }
 | |
| 
 | |
|     /* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63
 | |
|        Thus we only do a single DMA input list + dma buf list,
 | |
|        which is max 3968/64 + 64/64 = 63 blocks */
 | |
|     for (int i = 0; i < dma_op_num; i++) {
 | |
| 
 | |
|         int dma_chunk_len = MIN(ilen, SOC_SHA_DMA_MAX_BUFFER_SIZE);
 | |
| 
 | |
|         ret = esp_sha_dma_process(sha_type, input, dma_chunk_len, buf, buf_len, is_first_block);
 | |
| 
 | |
|         if (ret != 0) {
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         ilen -= dma_chunk_len;
 | |
|         input = (uint8_t *)input + dma_chunk_len;
 | |
| 
 | |
|         // Only append buf to the first operation
 | |
|         buf_len = 0;
 | |
|         is_first_block = false;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     free(dma_cap_buf);
 | |
|     return ret;
 | |
| }
 | 
