mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1063 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1063 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2020-2024 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file DWARF Exception Frames parser
 | |
|  *
 | |
|  * This file performs parsing and execution of DWARF except frames described in
 | |
|  * section `.eh_frame` and `.eh_frame_hdr`. This is currently used on RISC-V
 | |
|  * boards to implement a complete backtracing when a panic occurs.
 | |
|  *
 | |
|  * More information about the sections structure and DWARF instructions can be
 | |
|  * found in the official documentation:
 | |
|  * http://dwarfstd.org/Download.php
 | |
|  */
 | |
| #include "sdkconfig.h"
 | |
| #include <string.h>
 | |
| 
 | |
| #if CONFIG_ESP_SYSTEM_USE_EH_FRAME
 | |
| 
 | |
| #include "libunwind.h"
 | |
| #include "esp_private/panic_internal.h"
 | |
| #include "esp_private/eh_frame_parser.h"
 | |
| 
 | |
| #if UNW_UNKNOWN_TARGET
 | |
| #error "Unsupported architecture for unwinding"
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * @brief Dimension of an array (number of elements)
 | |
|  */
 | |
| #ifndef DIM
 | |
| #define DIM(array) (sizeof(array)/sizeof(*array))
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * @brief DWARF Exception Header Encoding
 | |
|  * This is used to know how the data in .eh_frame and .eh_frame_hdr sections
 | |
|  * are encoded.
 | |
|  */
 | |
| /* DWARF Exception Exception Header value format. */
 | |
| #define DW_EH_PE_omit    0xff /*!< No value is present */
 | |
| #define DW_EH_PE_uleb128 0x01 /*!< Unsigned value encoded in LEB128 (Little Endian Base 128). */
 | |
| #define DW_EH_PE_udata2  0x02 /*!< Unsigned 16-bit value. */
 | |
| #define DW_EH_PE_udata4  0x03 /*!< Unsigned 32-bit value. */
 | |
| #define DW_EH_PE_udata8  0x04 /*!< Unsigned 64-bit value. */
 | |
| #define DW_EH_PE_sleb128 0x09 /*!< Signed value encoded in LEB128 (Little Endian Base 128). */
 | |
| #define DW_EH_PE_sdata2  0x0A /*!< Signed 16-bit value. */
 | |
| #define DW_EH_PE_sdata4  0x0B /*!< Signed 32-bit value. */
 | |
| #define DW_EH_PE_sdata8  0x0C /*!< Signed 64-bit value. */
 | |
| 
 | |
| /* DWARF Exception Exception Header value application.
 | |
|  * These values are in fact represented in the high nibble of a given data.
 | |
|  * For example:
 | |
|  * 0x3A describes the values as signed 16-bit offsets relative to .eh_frame_hdr section.
 | |
|  * 0x11 describes the values as unsigned value encoded in LEB128, relative to their location ion memory. */
 | |
| #define DW_EH_PE_absptr  0x00 /*!< The value itself is a pointer, it is not an offset. */
 | |
| #define DW_EH_PE_pcrel   0x01 /*!< The value is an offset, relative to its location in memory.  */
 | |
| #define DW_EH_PE_datarel 0x03 /*!< The value is an offset, relative to .eh_frame_hdr section. */
 | |
| 
 | |
| /* Macros simplifying testing relative offset data encoding. */
 | |
| #define ESP_ENCODING_PC_REL(ENCODING)        (((ENCODING >> 4) & 0xf) == DW_EH_PE_pcrel)
 | |
| #define ESP_ENCODING_FRAME_HDR_REL(ENCODING) (((ENCODING >> 4) & 0xf) == DW_EH_PE_datarel)
 | |
| 
 | |
| /**
 | |
|  * @brief Call Frame Information (CIE) fields information.
 | |
|  * As the size of CIE is variable, the simplest way to described it is to
 | |
|  * have a pointer at the beginning of CIE structure and access the fields
 | |
|  * thanks to the index macros defined here.
 | |
|  */
 | |
| #define ESP_CIE_VARIABLE_FIELDS_IDX (9)  /*!< Offset, in bytes, where variable length fields start. */
 | |
| 
 | |
| /**
 | |
|  * @brief Frame Description Entry (FDE) fields index.
 | |
|  * For the same reasons as above, we prefer defining these macros rather than
 | |
|  * having a structure.
 | |
|  */
 | |
| #define ESP_FDE_LENGTH_IDX          (0)  /*!< Length, in bytes, of the FDE excluding this field. 4 bytes field. */
 | |
| #define ESP_FDE_CIE_IDX             (1)  /*!< Nearest preceding Common Information Entry (CIE) offset. 4 bytes field. */
 | |
| #define ESP_FDE_INITLOC_IDX         (2)  /*!< Initial location (of the function) the FDE describes. Variable size (encoding in CIE). */
 | |
| #define ESP_FDE_RANGELEN_IDX        (3)  /*!< Size, in bytes, of the function described by this FDE location the FDE describes. Variable size (encoding in CIE). */
 | |
| #define ESP_FDE_AUGMENTATION_IDX    (4)  /*!< Augmentation data length. Unsigned LEB128. */
 | |
| 
 | |
| /**
 | |
|  * @brief Pointers to both .eh_frame_hdr and .eh_frame sections.
 | |
|  */
 | |
| #define EH_FRAME_HDR_ADDR   (&__eh_frame_hdr)
 | |
| #define EH_FRAME_ADDR       (&__eh_frame)
 | |
| 
 | |
| /**
 | |
|  * @brief Structure of .eh_frame_hdr section header.
 | |
|  */
 | |
| typedef struct {
 | |
|     uint8_t version; /*!< Structure version, must be 1.*/
 | |
|     uint8_t eh_frame_ptr_enc; /*!< eh_frame_ptr entry encoding. */
 | |
|     uint8_t fde_count_enc;  /*!< fde_count entry encoding. */
 | |
|     uint8_t table_enc;  /*!< table entries encoding. */
 | |
|     /* The rest of the structure has variable length. Thus, we cannot define
 | |
|      * them here. Here are their names:
 | |
|      * - eh_frame_ptr : encoded pointer to the .eh_frame section.
 | |
|      * - fde_Count : number of entries in the array of table_entry.
 | |
|      * - table_entry array : sorted array of table_entry. */
 | |
| } __attribute__((packed)) fde_header;
 | |
| 
 | |
| /**
 | |
|  * @brief .eh_frame_hdr table's entry format.
 | |
|  * Each entry of the table contains 2 32-bit encoded addresses.
 | |
|  * Encoding is defined in the previous structure. Check table_enc field.
 | |
|  */
 | |
| typedef struct {
 | |
|     uint32_t fun_addr; /*!< Address of the function described. */
 | |
|     uint32_t fde_addr; /*!< Address of the FDE for the function.*/
 | |
| } table_entry;
 | |
| 
 | |
| /**
 | |
|  * @brief DWARF state constant macros.
 | |
|  */
 | |
| #define ESP_EH_FRAME_STACK_SIZE (2) /*!< DWARF virtual machine can save the push the current on a virtual
 | |
|                                          stack. we mimic the stack with an array. While testing, a stack
 | |
|                                          size of 2 was enough. */
 | |
| 
 | |
| /**
 | |
|  * @brief
 | |
|  * Structure representing the state of the DWARF virtual machine.
 | |
|  */
 | |
| typedef struct {
 | |
|     /* Stack for DWARF state registers.
 | |
|      * For caller saved registers, save their CFA address (value in previous call frame).
 | |
|      * As these registers will be used to define offset in the CFA, they will always be
 | |
|      * multiple of CPU word (4-bytes in our case). Thus, it will save the offset in word-size, not
 | |
|      * in bytes. Plus, the highest bit will be used to mark that this register is NOY
 | |
|      * ESP_EH_FRAME_REG_SAME. (0x80000000 is a valid value then, meaning that the register value
 | |
|      * is CFA + 0 offset) */
 | |
|     uint32_t regs_offset[ESP_EH_FRAME_STACK_SIZE][EXECUTION_FRAME_MAX_REGS];
 | |
|     /* reg_offset represents the state of registers when PC reaches the following location. */
 | |
|     uint32_t location;
 | |
|     /* Index of the registers offset to use (1 for saved offset, 0 else). */
 | |
|     uint8_t offset_idx;
 | |
| } dwarf_regs;
 | |
| 
 | |
| /**
 | |
|  * @brief DWARF's register state.
 | |
|  * When a DWARF register is set to ESP_EH_FRAME_REG_SAME, the CPU register corresponding to this
 | |
|  * virtual register will be unchanged after executing DWARF instructions.
 | |
|  * Please see esp_eh_frame_restore_caller_state() for more details.
 | |
|  */
 | |
| #define ESP_EH_FRAME_REG_SAME (0)
 | |
| 
 | |
| /**
 | |
|  * @brief Set a register's offset (relative to CFA).
 | |
|  * The highest bit is set to 1 to mark that this register needs to be retrived because it has been
 | |
|  * altered.
 | |
|  */
 | |
| #define ESP_EH_FRAME_SET_REG_OFFSET(offset)     (0x80000000 | offset)
 | |
| 
 | |
| /**
 | |
|  * @brief Get a register's offset (relative to CFA).
 | |
|  */
 | |
| #define ESP_EH_FRAME_GET_REG_OFFSET(offset)     (0x7fffffff & offset)
 | |
| 
 | |
| /**
 | |
|  * @brief Get a register's CFA offset.
 | |
|  */
 | |
| #define ESP_EH_FRAME_IS_CFA_RELATIVE(reg)       ((reg >> 31) == 1)
 | |
| 
 | |
| /**
 | |
|  * @brief Test whether an offset is small enough to be stored
 | |
|  * in our 32-bit register.
 | |
|  * Note: the highest bit is used.
 | |
|  */
 | |
| #define ESP_EH_FRAME_CFA_OFFSET_VALID(offset)   (offset < 0x80000000)
 | |
| 
 | |
| /**
 | |
|  * @brief Index of Call Frame Address (CFA) in DWARF registers array.
 | |
|  */
 | |
| #define ESP_ESH_FRAME_CFA_IDX                   (EXECUTION_FRAME_SP_REG)
 | |
| 
 | |
| /**
 | |
|  * @brief Macros to get and set CFA's relative register and offset.
 | |
|  * Indeed, CFA is defined by two values: register and offset. CFA is then
 | |
|  * calculated by adding the offset to the register value.
 | |
|  * `register` will be stored in the lowest 8 bits.
 | |
|  * `offset` will be stored in the highest 24 bits.
 | |
|  *
 | |
|  * NOTE: with this implementation, CFA will be affected by
 | |
|  * DW_CFA_REMEMBER_STATE and DW_CFA_RESTORE_STATE instructions.
 | |
|  */
 | |
| #if EXECUTION_FRAME_MAX_REGS > 255
 | |
| #error "Too many registers defined for the target ExecutionFrame"
 | |
| #endif
 | |
| #define ESP_EH_FRAME_CFA_REG_VALID(reg)         (reg < EXECUTION_FRAME_MAX_REGS)
 | |
| #define ESP_EH_FRAME_CFA_OFF_VALID(off)         (((off) >> 24) == 0)
 | |
| #define ESP_EH_FRAME_CFA(state)                 ((state)->regs_offset[(state)->offset_idx][ESP_ESH_FRAME_CFA_IDX])
 | |
| 
 | |
| #define ESP_EH_FRAME_NEW_CFA(reg, off)          (((off) << 8) | ((reg) & 0xff))
 | |
| #define ESP_EH_FRAME_SET_CFA_REG(value, reg)    (((value) & ~0xff) | ((reg) & 0xff))
 | |
| #define ESP_EH_FRAME_SET_CFA_OFF(value, off)    (((value) & 0xff) | ((off) << 8))
 | |
| #define ESP_EH_FRAME_GET_CFA_REG(value)         ((value) & 0xff)
 | |
| #define ESP_EH_FRAME_GET_CFA_OFF(value)         ((value) >> 8)
 | |
| 
 | |
| /**
 | |
|  * @brief Unsupported opcode value to return when exeucting 0-opcode type instructions.
 | |
|  */
 | |
| #define ESP_EH_FRAME_UNSUPPORTED_OPCODE ((uint32_t) -1)
 | |
| 
 | |
| /**
 | |
|  * @brief Macros defining the DWARF instructions code.
 | |
|  */
 | |
| #define DW_GET_OPCODE(OP)       ((OP) >> 6)
 | |
| #define DW_GET_PARAM(OP)        ((OP) & 0b111111)
 | |
| #define DW_CFA_ADVANCE_LOC      (1)
 | |
| #define DW_CFA_OFFSET           (2)
 | |
| #define DW_CFA_RESTORE          (3)
 | |
| /**
 | |
|  * @brief Constant for DWARF instructions code when high 2 bits are 0.
 | |
|  */
 | |
| #define DW_CFA_0_OPCODE             (0)
 | |
| #define DW_CFA_NOP                  (0x0)
 | |
| #define DW_CFA_SET_LOC              (0x1)
 | |
| #define DW_CFA_ADVANCE_LOC1         (0x2)
 | |
| #define DW_CFA_ADVANCE_LOC2         (0x3)
 | |
| #define DW_CFA_ADVANCE_LOC4         (0x4)
 | |
| #define DW_CFA_OFFSET_EXTENDED      (0x5)
 | |
| #define DW_CFA_RESTORE_EXTENDED     (0x6)
 | |
| #define DW_CFA_UNDEFINED            (0x7)
 | |
| #define DW_CFA_SAME_VALUE           (0x8)
 | |
| #define DW_CFA_REGISTER             (0x9)
 | |
| #define DW_CFA_REMEMBER_STATE       (0xA)
 | |
| #define DW_CFA_RESTORE_STATE        (0xB)
 | |
| #define DW_CFA_DEF_CFA              (0xC)
 | |
| #define DW_CFA_DEF_CFA_REGISTER     (0xD)
 | |
| #define DW_CFA_DEF_CFA_OFFSET       (0xE)
 | |
| #define DW_CFA_DEF_CFA_EXPRESSION   (0xF)
 | |
| #define DW_CFA_EXPRESSION           (0x10)
 | |
| #define DW_CFA_OFFSET_EXTENDED_SF   (0x11)
 | |
| #define DW_CFA_DEF_CFA_SF           (0x12)
 | |
| #define DW_CFA_DEF_CFA_OFFSET_SF    (0x13)
 | |
| #define DW_CFA_VAL_OFFSET           (0x14)
 | |
| #define DW_CFA_VAL_OFFSET_SF        (0x15)
 | |
| #define DW_CFA_VAL_EXPRESSION       (0x16)
 | |
| #define DW_CFA_LO_USER              (0x1C)
 | |
| 
 | |
| /**
 | |
|  * @brief Constants used for decoding (U)LEB128 integers.
 | |
|  */
 | |
| #define DW_LEB128_HIGHEST_BIT(byte) (((byte) >> 7) & 1)
 | |
| #define DW_LEB128_SIGN_BIT(byte)    (((byte) >> 6) & 1)
 | |
| #define DW_LEB128_MAX_SHIFT         (31)
 | |
| 
 | |
| /**
 | |
|  * @brief Symbols defined by the linker.
 | |
|  * Retrieve the addresses of both .eh_frame_hdr and .eh_frame sections.
 | |
|  */
 | |
| extern void *__eh_frame_hdr;
 | |
| extern void *__eh_frame;
 | |
| 
 | |
| /**
 | |
|  * @brief Decode multiple bytes encoded in LEB128.
 | |
|  *
 | |
|  * @param bytes bytes encoded in LEB128. They will not be modified.
 | |
|  * @param is_signed true if bytes represent a signed value, false else.
 | |
|  * @param size Size in bytes of the encoded value.
 | |
|  *
 | |
|  * @return Decoded bytes.
 | |
|  */
 | |
| static uint32_t decode_leb128(const uint8_t* bytes, bool is_signed, uint32_t* lebsize)
 | |
| {
 | |
|     uint32_t res = 0;
 | |
|     uint32_t shf = 0;
 | |
|     uint32_t size = 0;
 | |
|     uint8_t byte = 0;
 | |
| 
 | |
|     while (1) {
 | |
|         byte = bytes[size++];
 | |
|         res |= (byte & 0x7f) << shf;
 | |
|         shf += 7;
 | |
|         if (DW_LEB128_HIGHEST_BIT(byte) == 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (is_signed && shf <= DW_LEB128_MAX_SHIFT && DW_LEB128_SIGN_BIT(byte)) {
 | |
|         res |= ((uint32_t) ~0 << shf);
 | |
|     }
 | |
| 
 | |
|     if (lebsize) {
 | |
|         *lebsize = size;
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Get the value of data encoded.
 | |
|  *
 | |
|  * @param data Pointer to the encoded data.
 | |
|  * @param encoding Encoding for the data to read.
 | |
|  * @param psize Reference to be filled with data size, in bytes.
 | |
|  *
 | |
|  * @return Decoded data read from the pointer.
 | |
|  */
 | |
| static uint32_t esp_eh_frame_get_encoded(void* data, uint8_t encoding, uint32_t* psize)
 | |
| {
 | |
|     int32_t  svalue = 0;
 | |
|     uint32_t uvalue = 0;
 | |
|     uint32_t fvalue = 0;
 | |
|     uint32_t size = 0;
 | |
|     const uint32_t high = encoding >> 4;
 | |
|     const uint32_t low  = encoding & 0xf;
 | |
| 
 | |
|     assert(psize != NULL);
 | |
| 
 | |
|     if (encoding == DW_EH_PE_omit) {
 | |
|         *psize = size;
 | |
|         return uvalue;
 | |
|     }
 | |
| 
 | |
|     switch (low) {
 | |
|     case DW_EH_PE_udata2:
 | |
|         size = 2;
 | |
|         uvalue = *((uint16_t*) data);
 | |
|         break;
 | |
|     case DW_EH_PE_udata4:
 | |
|         size = 4;
 | |
|         uvalue = *((uint32_t*) data);
 | |
|         break;
 | |
|     case DW_EH_PE_sdata2:
 | |
|         size = 2;
 | |
|         svalue = *((int16_t*) data);
 | |
|         break;
 | |
|     case DW_EH_PE_sdata4:
 | |
|         size = 4;
 | |
|         svalue = *((int32_t*) data);
 | |
|         break;
 | |
|     default:
 | |
|         /* Unsupported yet. */
 | |
|         assert(false);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (high) {
 | |
|     case DW_EH_PE_absptr:
 | |
|         /* Do not change the values, as one of them will be 0, fvalue will
 | |
|          * contain the data no matter whether it is signed or unsigned. */
 | |
|         fvalue = svalue + uvalue;
 | |
|         break;
 | |
|     case DW_EH_PE_pcrel:
 | |
|         /* Relative to the address of the data.
 | |
|          * svalue has been casted to an 32-bit value, so even if it was a
 | |
|          * 2-byte signed value, fvalue will be calculated correctly here. */
 | |
|         fvalue = (uint32_t) data + svalue + uvalue;
 | |
|         break;
 | |
|     case DW_EH_PE_datarel:
 | |
|         fvalue = (uint32_t) EH_FRAME_HDR_ADDR + svalue + uvalue;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     *psize = size;
 | |
|     return fvalue;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Find entry in the table for the given return_address.
 | |
|  *
 | |
|  * @param sorted_table Pointer to the sorted table of entries.
 | |
|  * @param length Number of entries in the table.
 | |
|  * @param encoding Encoding for the addresses in the table
 | |
|  *                 (Check DWARF documentation for more info about encoding).
 | |
|  * @param return_address The address to find in the table. This address can be
 | |
|  * part of one in the function listed.
 | |
|  *
 | |
|  * @note The table is structured like this (after decoding the addresses):
 | |
|  *  Function address    FDE address   Index
 | |
|  * +-------------------------------+
 | |
|  * |0x403805a4           0x4038d014|    0
 | |
|  * +-------------------------------+
 | |
|  * |0x403805be           0x4038d034|    1
 | |
|  * +-------------------------------+
 | |
|  * |0x403805d8           0x4038d070|    2
 | |
|  * +-------------------------------+
 | |
|  * |..........           ..........|   ...
 | |
|  * +-------------------------------+
 | |
|  * |0x42020c48           0x4038ddb4| length-3
 | |
|  * +-------------------------------+
 | |
|  * |0x42020dca           0x4038dde4| length-2
 | |
|   *+-------------------------------+
 | |
|  * |0x42020f92           0x4038debc| length-1
 | |
|  * +-------------------------------+
 | |
|  *
 | |
|  * For example, if return_address passed is 0x403805b4, this function will
 | |
|  * return a pointer to the entry (0x403805a4, 0x4038d014).
 | |
|  *
 | |
|  * @return Pointer to the entry found, NULL if not found.
 | |
|  */
 | |
| static const table_entry* esp_eh_frame_find_entry(const table_entry* sorted_table,
 | |
|                                                   const uint32_t length,
 | |
|                                                   const uint32_t encoding,
 | |
|                                                   const uint32_t return_address)
 | |
| {
 | |
|     int32_t ra = 0;
 | |
| 
 | |
|     /* Used for decoding addresses in the table. */
 | |
|     uint32_t is_signed = (encoding & 0xf) >= 0x9;
 | |
|     uint32_t pc_relative = true;
 | |
| 
 | |
|     /* The following local variables are used for dichotomic search. */
 | |
|     uint32_t found = false;
 | |
|     uint32_t begin = 0;
 | |
|     uint32_t end = length;
 | |
|     uint32_t middle = (end + begin) / 2;
 | |
| 
 | |
|     /* If the addresses in the table are offsets relative to the eh_frame section,
 | |
|     * instead of decoding each of them, we can simply encode the return_address
 | |
|     * we have to find. If addresses are offsets relative to the programe counter,
 | |
|     * then we have no other choice than decoding each of them to compare them
 | |
|     * with return_address. */
 | |
|     if (ESP_ENCODING_FRAME_HDR_REL(encoding)) {
 | |
|         ra = return_address - (uint32_t) EH_FRAME_HDR_ADDR;
 | |
|         pc_relative = false;
 | |
|     }
 | |
| 
 | |
|     /* Perform dichotomic search. */
 | |
|     while (end != 0 && middle != (length - 1) && !found) {
 | |
|         const uint32_t fun_addr = sorted_table[middle].fun_addr;
 | |
|         const uint32_t nxt_addr = sorted_table[middle + 1].fun_addr;
 | |
| 
 | |
|         if (pc_relative) {
 | |
|             ra = return_address - (uint32_t)(sorted_table + middle);
 | |
|         }
 | |
| 
 | |
|         if (is_signed) {
 | |
|             /* Signed comparisons. */
 | |
|             const int32_t sfun_addr = (int32_t) fun_addr;
 | |
|             const int32_t snxt_addr = (int32_t) nxt_addr;
 | |
|             if (sfun_addr <= ra && snxt_addr > ra) {
 | |
|                 found = true;
 | |
|             } else if (snxt_addr <= ra) {
 | |
|                 begin = middle + 1;
 | |
|             } else {
 | |
|                 end = middle;
 | |
|             }
 | |
| 
 | |
|         } else {
 | |
|             /* Unsigned comparisons. */
 | |
|             const uint32_t ura = (uint32_t) ra;
 | |
|             if (fun_addr <= ura && nxt_addr > ura) {
 | |
|                 found = true;
 | |
|             } else if (nxt_addr <= ura) {
 | |
|                 begin = middle + 1;
 | |
|             } else {
 | |
|                 end = middle;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         middle = (end + begin) / 2;
 | |
|     }
 | |
| 
 | |
|     /* If 'end' reached the beginning of the array, it means the return_address
 | |
|      * passed was below the first address of the array, thus, it was wrong.
 | |
|      * Else, return the address found. */
 | |
|     return (end == 0) ? 0 : sorted_table + middle;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Decode an address according to the encoding passed.
 | |
|  *
 | |
|  * @param addr Pointer to the address to decode.
 | |
|  *             This pointer's value MUST be an address in .eh_frame_hdr section.
 | |
|  * @param encoding DWARF encoding byte.
 | |
|  *
 | |
|  * @return address dedoded (e.g. absolute address)
 | |
|  */
 | |
| static inline uint32_t* esp_eh_frame_decode_address(const uint32_t* addr,
 | |
|                                                     const uint32_t encoding)
 | |
| {
 | |
|     uint32_t* decoded = 0;
 | |
| 
 | |
|     if (ESP_ENCODING_FRAME_HDR_REL(encoding)) {
 | |
|         decoded = (uint32_t*)(*addr + (uint32_t) EH_FRAME_HDR_ADDR);
 | |
|     } else if (ESP_ENCODING_PC_REL(encoding)) {
 | |
|         decoded = (uint32_t*)(*addr + (uint32_t) addr);
 | |
|     } else {
 | |
|         decoded = (uint32_t*)(*addr);
 | |
|     }
 | |
| 
 | |
|     return decoded;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Execute the DWARF instruction which high 2 bits are 0.
 | |
|  *
 | |
|  * @param opcode low 6 bits of the instruction code.
 | |
|  * @param operands pointer to the possible operands.
 | |
|  * @param state state of the DWARF machine. Its registers may be modified.
 | |
|  *
 | |
|  * @return Number of operands used for executing the instruction.
 | |
|  */
 | |
| static inline uint32_t esp_eh_frame_execute_opcode_0(const uint32_t opcode, const uint8_t* operands,
 | |
|                                                      dwarf_regs* state)
 | |
| {
 | |
|     uint32_t operand1 = 0;
 | |
|     uint32_t used_operands = 0;
 | |
|     uint32_t operand2 = 0;
 | |
|     uint32_t used_operands2 = 0;
 | |
| 
 | |
|     switch (opcode) {
 | |
|     case DW_CFA_NOP:
 | |
|         break;
 | |
|     case DW_CFA_ADVANCE_LOC1:
 | |
|         /* Advance location with a 1-byte delta. */
 | |
|         used_operands = 1;
 | |
|         state->location += *operands;
 | |
|         break;
 | |
|     case DW_CFA_ADVANCE_LOC2:
 | |
|         /* Advance location with a 2-byte delta. */
 | |
|         used_operands = 2;
 | |
|         state->location += *((const uint16_t*) operands);
 | |
|         break;
 | |
|     case DW_CFA_ADVANCE_LOC4:
 | |
|         /* Advance location with a 4-byte delta. */
 | |
|         used_operands = 4;
 | |
|         state->location += *((const uint32_t*) operands);
 | |
|         break;
 | |
|     case DW_CFA_REMEMBER_STATE:
 | |
|         assert(state->offset_idx == 0);
 | |
|         memcpy(state->regs_offset[1], state->regs_offset[0],
 | |
|                EXECUTION_FRAME_MAX_REGS * sizeof(uint32_t));
 | |
|         state->offset_idx++;
 | |
|         break;
 | |
|     case DW_CFA_RESTORE_STATE:
 | |
|         assert(state->offset_idx == 1);
 | |
|         /* Drop the saved state. */
 | |
|         state->offset_idx--;
 | |
|         break;
 | |
|     case DW_CFA_DEF_CFA:
 | |
|         /* CFA changes according to a register and an offset.
 | |
|          * This instruction appears when the assembly code saves the
 | |
|          * SP in the middle of a routine, before modifying it.
 | |
|          * For example (on RISC-V):
 | |
|          * addi s0, sp, 80
 | |
|          * addi sp, sp, -10
 | |
|          * ... */
 | |
|         /* Operand1 is the register containing the CFA value. */
 | |
|         operand1 = decode_leb128(operands, false, &used_operands);
 | |
|         /* Offset for the register's value. */
 | |
|         operand2 = decode_leb128(operands + used_operands, false, &used_operands2);
 | |
|         /* Calculate the number of bytes  */
 | |
|         used_operands += used_operands2;
 | |
|         /* Assert that the register and the offset are valid. */
 | |
|         assert(ESP_EH_FRAME_CFA_REG_VALID(operand1));
 | |
|         assert(ESP_EH_FRAME_CFA_OFF_VALID(operand2));
 | |
|         ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_NEW_CFA(operand1, operand2);
 | |
|         break;
 | |
|     case DW_CFA_DEF_CFA_REGISTER:
 | |
|         /* Define the register of the current frame address (CFA).
 | |
|          * Its operand is in the next bytes, its type is ULEB128. */
 | |
|         operand1 = decode_leb128(operands, false, &used_operands);
 | |
|         /* Check whether the value is valid or not. */
 | |
|         assert(ESP_EH_FRAME_CFA_OFF_VALID(operand1));
 | |
|         /* Offset will be unchanged, only register changes. */
 | |
|         ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_SET_CFA_REG(ESP_EH_FRAME_CFA(state), operand1);
 | |
|         break;
 | |
|     case DW_CFA_DEF_CFA_OFFSET:
 | |
|         /* Same as above but for the offset. The register of CFA remains unchanged. */
 | |
|         operand1 = decode_leb128(operands, false, &used_operands);
 | |
|         assert(ESP_EH_FRAME_CFA_OFF_VALID(operand1));
 | |
|         ESP_EH_FRAME_CFA(state) = ESP_EH_FRAME_SET_CFA_OFF(ESP_EH_FRAME_CFA(state), operand1);
 | |
|         break;
 | |
|     default:
 | |
|         panic_print_str("\r\nUnsupported DWARF opcode 0: 0x");
 | |
|         panic_print_hex(opcode);
 | |
|         panic_print_str("\r\n");
 | |
|         used_operands = ESP_EH_FRAME_UNSUPPORTED_OPCODE;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return used_operands;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Execute DWARF instructions.
 | |
|  *
 | |
|  * @param instructions Array of instructions to execute.
 | |
|  * @param instructions_length Length of the array of instructions.
 | |
|  * @param frame Execution frame of the crashed task. This will only be used to
 | |
|  *              get the PC where the task crashed.
 | |
|  * @param state DWARF machine state. The registers contained in the state will
 | |
|  *              modified accordingly to the instructions.
 | |
|  *
 | |
|  * @return true if the execution went fine, false if an unsupported instruction was met.
 | |
|  */
 | |
| static bool esp_eh_frame_execute(const uint8_t* instructions, const uint32_t instructions_length,
 | |
|                                  const ExecutionFrame* frame, dwarf_regs* state)
 | |
| {
 | |
|     for (uint32_t i = 0; i < instructions_length; i++) {
 | |
|         const uint8_t instr = instructions[i];
 | |
|         const uint8_t param = DW_GET_PARAM(instr);
 | |
|         uint32_t operand1 = 0;
 | |
|         uint32_t size = 0;
 | |
|         uint32_t used_operands = 0;
 | |
| 
 | |
|         /* Decode the instructions. According to DWARF documentation, there are three
 | |
|          * types of Call Frame Instructions. The upper 2 bits defines the type. */
 | |
|         switch (DW_GET_OPCODE(instr)) {
 | |
|         case DW_CFA_0_OPCODE:
 | |
|             used_operands = esp_eh_frame_execute_opcode_0(param, &instructions[i + 1], state);
 | |
|             /* Exit the function if an unsupported opcode was met. */
 | |
|             if (used_operands == ESP_EH_FRAME_UNSUPPORTED_OPCODE) {
 | |
|                 return false;
 | |
|             }
 | |
|             i += used_operands;
 | |
|             break;
 | |
|         case DW_CFA_ADVANCE_LOC:
 | |
|             /* Move the location forward. This instruction will mark when to stop:
 | |
|              * once we reach the instruction where the PC left, we can break out of the loop
 | |
|              * The delta is part of the lowest 6 bits.
 | |
|              */
 | |
|             state->location += param;
 | |
|             break;
 | |
|         case DW_CFA_OFFSET:
 | |
|             operand1 = decode_leb128(&instructions[i + 1], false, &size);
 | |
|             assert(ESP_EH_FRAME_CFA_OFFSET_VALID(operand1));
 | |
|             state->regs_offset[state->offset_idx][param] = ESP_EH_FRAME_SET_REG_OFFSET(operand1);
 | |
|             i += size;
 | |
|             break;
 | |
| 
 | |
|         case DW_CFA_RESTORE:
 | |
|             state->regs_offset[state->offset_idx][param] = ESP_EH_FRAME_REG_SAME;
 | |
|             break;
 | |
|         default:
 | |
|             /* Illegal opcode */
 | |
|             assert(false);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* As the state->location can also be modified by 0-opcode instructions (in the function)
 | |
|          * and also because we need to break the loop (and not only the switch), let's put this
 | |
|          * check here, after the execution of the instruction, outside of the switch block. */
 | |
|         if (state->location >= EXECUTION_FRAME_PC(*frame)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Everything went fine, no unsupported opcode was met, return true. */
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Initialize the DWARF registers state by parsing and executing CIE instructions.
 | |
|  *
 | |
|  * @param cie Pointer to the CIE data.
 | |
|  * @param frame Pointer to the execution frame.
 | |
|  * @param state DWARF machine state (DWARF registers).
 | |
|  *
 | |
|  * @return index of the DWARF register containing the return address.
 | |
|  */
 | |
| static uint32_t esp_eh_frame_initialize_state(const uint8_t* cie, ExecutionFrame* frame, dwarf_regs* state)
 | |
| {
 | |
|     char c = 0;
 | |
|     uint32_t size = 0;
 | |
| 
 | |
|     /* The first word in the CIE structure is the length of the structure,
 | |
|      * excluding this field itself. */
 | |
|     const uint32_t length = ((uint32_t*) cie)[0];
 | |
| 
 | |
|     /* ID of the CIE, should be 0 for .eh_frame (which is our case) */
 | |
|     const uint32_t id = ((uint32_t*) cie)[1];
 | |
|     assert(id == 0);
 | |
| 
 | |
|     /* Ignore CIE version (1 byte). */
 | |
| 
 | |
|     /* The following data in the structure have variable length as they are
 | |
|      * encoded in (U)LEB128. Thus, let's use a byte pointer to parse them. */
 | |
|     uint8_t* cie_data = (uint8_t*) cie + ESP_CIE_VARIABLE_FIELDS_IDX;
 | |
| 
 | |
|     /* Next field is a null-terminated UTF-8 string. Ignore it, look for the end. */
 | |
|     while ((c = *cie_data++) != 0);
 | |
| 
 | |
|     /* Field alignment factor shall be 1. It is encoded in ULEB128. */
 | |
|     const uint32_t code_align = decode_leb128(cie_data, false, &size);
 | |
|     assert(code_align == 1);
 | |
|     /* Jump to the next field */
 | |
|     cie_data += size;
 | |
| 
 | |
|     /* Same goes for data alignment factor. Shall be equal to -4. */
 | |
|     const int32_t data_align = decode_leb128(cie_data, true, &size);
 | |
|     cie_data += size;
 | |
|     assert(data_align == -4);
 | |
| 
 | |
|     /* Field describing the index of the DWARF register which will contain
 | |
|      * the return address. */
 | |
|     const uint32_t ra_reg = decode_leb128(cie_data, false, &size);
 | |
|     cie_data += size;
 | |
| 
 | |
|     /* Augmentation data length is encoded in ULEB128. It represents the,
 | |
|      * length of the augmentation data. Jump after it to retrieve the
 | |
|      * instructions to execute. */
 | |
|     const uint32_t augmentation_len = decode_leb128(cie_data, false, &size);
 | |
|     cie_data += size + augmentation_len;
 | |
| 
 | |
|     /* Calculate the instructions length in order to prevent any out of bounds
 | |
|      * bug. Subtract the offset of this field (minus sizeof(uint32_t) because
 | |
|      * `length` field is not part of the structure length) to the total length
 | |
|      * of the structure. */
 | |
|     const uint32_t instructions_length = length - (cie_data - sizeof(uint32_t) - cie);
 | |
| 
 | |
|     /* Execute the instructions contained in CIE structure. Their goal is to
 | |
|      * initialize the DWARF registers. Usually it binds the CFA (virtual stack
 | |
|      * pointer), to its hardware equivalent. It will also bind a hardware
 | |
|      * register to the virtual return address register. For example, x86
 | |
|      * doesn't have a return address register, the address to return to
 | |
|      * it stored on the stack when `call` instruction is used. DWARF will
 | |
|      * use `eip` (instruction pointer, a.k.a. program counter) as a
 | |
|      * register containing the return address register. */
 | |
|     esp_eh_frame_execute(cie_data, instructions_length, frame, state);
 | |
| 
 | |
|     return ra_reg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Modify the execution frame and DWARF VM state for restoring caller's context.
 | |
|  *
 | |
|  * @param fde Pointer to the Frame Description Entry for the current program counter (defined by frame's MEPC register)
 | |
|  * @param frame Snapshot of the CPU registers when the CPU stopped its normal execution.
 | |
|  * @param state DWARF VM registers.
 | |
|  *
 | |
|  * @return Return Address of the current context. Frame has been restored to the previous context
 | |
|  * (before calling the function program counter is currently going throught).
 | |
|  */
 | |
| static uint32_t esp_eh_frame_restore_caller_state(const uint32_t* fde,
 | |
|                                                   ExecutionFrame* frame,
 | |
|                                                   dwarf_regs* state)
 | |
| {
 | |
|     /* Length of the whole Frame Description Entry (FDE), excluding this field. */
 | |
|     const uint32_t length = fde[ESP_FDE_LENGTH_IDX];
 | |
| 
 | |
|     /* The addresses in FDE are relative to the location of each field.
 | |
|      * Thus, to get the absolute address of the function it is pointing to,
 | |
|      * we have to compute:
 | |
|      * fun_addr = &fde[IDX] +/- fde[IDX]
 | |
|      */
 | |
|     const uint8_t* cie = (uint8_t*)((uint32_t) &fde[ESP_FDE_CIE_IDX] - fde[ESP_FDE_CIE_IDX]);
 | |
|     const uint32_t initial_location = ((uint32_t) &fde[ESP_FDE_INITLOC_IDX] + fde[ESP_FDE_INITLOC_IDX]);
 | |
|     const uint32_t range_length = fde[ESP_FDE_RANGELEN_IDX];
 | |
|     const uint8_t augmentation = *((uint8_t*)(fde + ESP_FDE_AUGMENTATION_IDX));
 | |
| 
 | |
|     /* The length, in byte, of the instructions is the size of the FDE header minus
 | |
|      * the above fields' length. */
 | |
|     const uint32_t instructions_length = length - 3 * sizeof(uint32_t) - sizeof(uint8_t);
 | |
|     const uint8_t* instructions = ((uint8_t*)(fde + ESP_FDE_AUGMENTATION_IDX)) + 1;
 | |
| 
 | |
|     /* Make sure this FDE is the correct one for the PC given. */
 | |
|     assert(initial_location <= EXECUTION_FRAME_PC(*frame) &&
 | |
|            EXECUTION_FRAME_PC(*frame) < initial_location + range_length);
 | |
| 
 | |
|     /* Augmentation not supported. */
 | |
|     assert(augmentation == 0);
 | |
| 
 | |
|     /* Initialize the DWARF state by executing the CIE's instructions. */
 | |
|     const uint32_t ra_reg = esp_eh_frame_initialize_state(cie, frame, state);
 | |
|     state->location = initial_location;
 | |
| 
 | |
|     /**
 | |
|      * Execute the DWARf instructions is order to create rules that will be executed later to retrieve
 | |
|      * the registers former value.
 | |
|      */
 | |
|     bool success = esp_eh_frame_execute(instructions, instructions_length, frame, state);
 | |
|     if (!success) {
 | |
|         /* An error occured (unsupported opcode), return PC as the return address.
 | |
|          * This will be tested by the caller, and the backtrace will be finished. */
 | |
|         return EXECUTION_FRAME_PC(*frame);
 | |
|     }
 | |
| 
 | |
|     /* Execute the rules calculated previously. Start with the CFA. */
 | |
|     const uint32_t cfa_val = ESP_EH_FRAME_CFA(state);
 | |
|     const uint32_t cfa_reg = ESP_EH_FRAME_GET_CFA_REG(cfa_val);
 | |
|     const uint32_t cfa_off = ESP_EH_FRAME_GET_CFA_OFF(cfa_val);
 | |
|     const uint32_t cfa_addr = EXECUTION_FRAME_REG(frame, cfa_reg) + cfa_off;
 | |
| 
 | |
|     /* Restore the registers that need to be restored. */
 | |
|     for (uint32_t i = 0; i < DIM(state->regs_offset[0]); i++) {
 | |
|         uint32_t value_addr = state->regs_offset[state->offset_idx][i];
 | |
|         /* Check that the value changed and that we are not treating the CFA register (if it is part of the array). */
 | |
|         if (i != ESP_ESH_FRAME_CFA_IDX && value_addr != ESP_EH_FRAME_REG_SAME) {
 | |
|             /* value_addr contains a description of how to find its address:
 | |
|              * it has an offset relative to the CFA, which will point to the actual former value.
 | |
|              * In fact, the register's previous value (in the context of the caller) is on the stack,
 | |
|              * this is what value_addr will point to. */
 | |
|             value_addr = cfa_addr - ESP_EH_FRAME_GET_REG_OFFSET(value_addr) * sizeof(uint32_t);
 | |
|             EXECUTION_FRAME_REG(frame, i) = *((uint32_t*) value_addr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Restore the stack pointer according to DWARF CFA register. */
 | |
|     EXECUTION_FRAME_SP(*frame) = cfa_addr;
 | |
| 
 | |
|     /* If the frame was not available, it would be possible to retrieve the return address
 | |
|      * register thanks to CIE structure.
 | |
|      * The return address points to the address the PC needs to jump to. It
 | |
|      * does NOT point to the instruction where the routine call occured.
 | |
|      * This can cause problems with functions without epilogue (i.e. function
 | |
|      * which last instruction is a function call). This happens when compiler
 | |
|      * optimization are ON or when a function is marked as "noreturn".
 | |
|      *
 | |
|      * Thus, in order to point to the call/jal instruction, we need to
 | |
|      * subtract at least 1 byte but not more than an instruction size.
 | |
|      */
 | |
|     return EXECUTION_FRAME_REG(frame, ra_reg) - 2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Test whether the DWARF information for the given PC are missing or not.
 | |
|  *
 | |
|  * @param fde FDE associated to this PC. This FDE is the one found thanks to
 | |
|  *            `esp_eh_frame_find_entry()`.
 | |
|  * @param pc PC to get information from.
 | |
|  *
 | |
|  * @return true is DWARF information are missing, false else.
 | |
|  */
 | |
| static bool esp_eh_frame_missing_info(const uint32_t* fde, uint32_t pc)
 | |
| {
 | |
|     if (fde == NULL) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     /* Get the range of this FDE entry. It is possible that there are some
 | |
|      * gaps between DWARF entries, in that case, the FDE entry found has
 | |
|      * indeed an initial_location very close to PC but doesn't reach it.
 | |
|      * For example, if FDE initial_location is 0x40300000 and its length is
 | |
|      * 0x100, but PC value is 0x40300200, then some DWARF information
 | |
|      * are missing as there is a gap.
 | |
|      * End the backtrace. */
 | |
|     const uint32_t initial_location = ((uint32_t) &fde[ESP_FDE_INITLOC_IDX] + fde[ESP_FDE_INITLOC_IDX]);
 | |
|     const uint32_t range_length = fde[ESP_FDE_RANGELEN_IDX];
 | |
| 
 | |
|     return (initial_location + range_length) <= pc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief When one step of the backtrace is generated, output it to the serial.
 | |
|  * This function can be overriden as it is defined as weak.
 | |
|  *
 | |
|  * @param pc Program counter of the backtrace step.
 | |
|  * @param sp Stack pointer of the backtrace step.
 | |
|  */
 | |
| void __attribute__((weak)) esp_eh_frame_generated_step(uint32_t pc, uint32_t sp)
 | |
| {
 | |
|     panic_print_str(" 0x");
 | |
|     panic_print_hex(pc);
 | |
|     panic_print_str(":0x");
 | |
|     panic_print_hex(sp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Print backtrace for the given execution frame.
 | |
|  *
 | |
|  * @param frame_or Snapshot of the CPU registers when the CPU stopped its normal execution.
 | |
|  */
 | |
| void esp_eh_frame_print_backtrace(const void *frame_or)
 | |
| {
 | |
|     assert(frame_or != NULL);
 | |
| 
 | |
|     static dwarf_regs state = { 0 };
 | |
|     ExecutionFrame frame = *((ExecutionFrame*) frame_or);
 | |
|     uint32_t size = 0;
 | |
|     uint8_t* enc_values = NULL;
 | |
|     bool end_of_backtrace = false;
 | |
| 
 | |
|     /* Start parsing the .eh_frame_hdr section. */
 | |
|     fde_header* header = (fde_header*) EH_FRAME_HDR_ADDR;
 | |
|     assert(header->version == 1);
 | |
| 
 | |
|     /* Make enc_values point to the end of the structure, where the encoded
 | |
|      * values start. */
 | |
|     enc_values = (uint8_t*)(header + 1);
 | |
| 
 | |
|     /* Retrieve the encoded value eh_frame_ptr. Get the size of the data also. */
 | |
|     const uint32_t eh_frame_ptr = esp_eh_frame_get_encoded(enc_values, header->eh_frame_ptr_enc, &size);
 | |
|     assert(eh_frame_ptr == (uint32_t) EH_FRAME_ADDR);
 | |
|     enc_values += size;
 | |
| 
 | |
|     /* Same for the number of entries in the sorted table. */
 | |
|     const uint32_t fde_count = esp_eh_frame_get_encoded(enc_values, header->fde_count_enc, &size);
 | |
|     enc_values += size;
 | |
| 
 | |
|     /* enc_values points now at the beginning of the sorted table. */
 | |
|     /* Only support 4-byte entries. */
 | |
|     const uint32_t table_enc = header->table_enc;
 | |
|     assert(((table_enc >> 4) == 0x3) || ((table_enc >> 4) == 0xB));
 | |
| 
 | |
|     const table_entry* sorted_table = (const table_entry*) enc_values;
 | |
| 
 | |
|     panic_print_str("Backtrace:");
 | |
|     while (!end_of_backtrace) {
 | |
| 
 | |
|         /* Output one step of the backtrace. */
 | |
|         esp_eh_frame_generated_step(EXECUTION_FRAME_PC(frame), EXECUTION_FRAME_SP(frame));
 | |
| 
 | |
|         const table_entry* from_fun = esp_eh_frame_find_entry(sorted_table, fde_count,
 | |
|                                                               table_enc, EXECUTION_FRAME_PC(frame));
 | |
| 
 | |
|         /* Get absolute address of FDE entry describing the function where PC left of. */
 | |
|         uint32_t* fde = NULL;
 | |
| 
 | |
|         if (from_fun != NULL) {
 | |
|             fde = esp_eh_frame_decode_address(&from_fun->fde_addr, table_enc);
 | |
|         }
 | |
| 
 | |
|         if (esp_eh_frame_missing_info(fde, EXECUTION_FRAME_PC(frame))) {
 | |
|             /* Address was not found in the list. */
 | |
|             panic_print_str("\r\nBacktrace ended abruptly: cannot find DWARF information for"
 | |
|                             " instruction at address 0x");
 | |
|             panic_print_hex(EXECUTION_FRAME_PC(frame));
 | |
|             panic_print_str("\r\n");
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* Clean and set the DWARF register structure. */
 | |
|         memset(&state, 0, sizeof(dwarf_regs));
 | |
| 
 | |
|         const uint32_t prev_sp = EXECUTION_FRAME_SP(frame);
 | |
| 
 | |
|         /* Retrieve the return address of the frame. The frame's registers will be modified.
 | |
|          * The frame we get then is the caller's one. */
 | |
|         uint32_t ra = esp_eh_frame_restore_caller_state(fde, &frame, &state);
 | |
| 
 | |
|         /* End of backtrace is reached if the stack and the PC don't change anymore. */
 | |
|         end_of_backtrace = (EXECUTION_FRAME_SP(frame) == prev_sp) && (EXECUTION_FRAME_PC(frame) == ra);
 | |
| 
 | |
|         /* Go back to the caller: update stack pointer and program counter. */
 | |
|         EXECUTION_FRAME_PC(frame) = ra;
 | |
|     }
 | |
| 
 | |
|     panic_print_str("\r\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * The following functions are the implementation of libunwind API
 | |
|  * Check the header libunwind.h for more information
 | |
|  */
 | |
| 
 | |
| int unw_init_local(unw_cursor_t* c, unw_context_t* ctxt)
 | |
| {
 | |
|     /* In our implementation, a context and a cursor is the same, so we simply need
 | |
|      * to copy a structure inside another one */
 | |
|     _Static_assert(sizeof(unw_cursor_t) >= sizeof(unw_context_t), "unw_cursor_t size must be greater or equal to unw_context_t's");
 | |
|     int ret = -UNW_EUNSPEC;
 | |
|     if (c != NULL && ctxt != NULL) {
 | |
|         memcpy(c, ctxt, sizeof(unw_context_t));
 | |
|         ret = UNW_ESUCCESS;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int unw_step(unw_cursor_t* cp)
 | |
| {
 | |
|     static dwarf_regs state = { 0 };
 | |
|     ExecutionFrame* frame = (ExecutionFrame*) cp;
 | |
|     uint32_t size = 0;
 | |
|     uint8_t* enc_values = NULL;
 | |
| 
 | |
|     /* Start parsing the .eh_frame_hdr section. */
 | |
|     fde_header* header = (fde_header*) EH_FRAME_HDR_ADDR;
 | |
|     if (header->version != 1) {
 | |
|         goto badversion;
 | |
|     }
 | |
| 
 | |
|     /* Make enc_values point to the end of the structure, where the encoded
 | |
|      * values start. */
 | |
|     enc_values = (uint8_t*)(header + 1);
 | |
| 
 | |
|     /* Retrieve the encoded value eh_frame_ptr. Get the size of the data also. */
 | |
|     const uint32_t eh_frame_ptr = esp_eh_frame_get_encoded(enc_values, header->eh_frame_ptr_enc, &size);
 | |
|     assert(eh_frame_ptr == (uint32_t) EH_FRAME_ADDR);
 | |
|     enc_values += size;
 | |
| 
 | |
|     /* Same for the number of entries in the sorted table. */
 | |
|     const uint32_t fde_count = esp_eh_frame_get_encoded(enc_values, header->fde_count_enc, &size);
 | |
|     enc_values += size;
 | |
| 
 | |
|     /* enc_values points now at the beginning of the sorted table. */
 | |
|     /* Only support 4-byte entries. */
 | |
|     const uint32_t table_enc = header->table_enc;
 | |
|     if (((table_enc >> 4) != 0x3) && ((table_enc >> 4) != 0xB)) {
 | |
|         goto badversion;
 | |
|     }
 | |
| 
 | |
|     const table_entry* sorted_table = (const table_entry*) enc_values;
 | |
| 
 | |
|     const table_entry* from_fun = esp_eh_frame_find_entry(sorted_table, fde_count,
 | |
|                                                           table_enc, EXECUTION_FRAME_PC(*frame));
 | |
| 
 | |
|     /* Get absolute address of FDE entry describing the function where PC left of. */
 | |
|     uint32_t* fde = NULL;
 | |
|     if (from_fun != NULL) {
 | |
|         fde = esp_eh_frame_decode_address(&from_fun->fde_addr, table_enc);
 | |
|     }
 | |
| 
 | |
|     if (esp_eh_frame_missing_info(fde, EXECUTION_FRAME_PC(*frame))) {
 | |
|         goto missinginfo;
 | |
|     }
 | |
| 
 | |
|     const uint32_t prev_sp = EXECUTION_FRAME_SP(*frame);
 | |
| 
 | |
|     /* Retrieve the return address of the frame. The frame's registers will be modified.
 | |
|      * The frame we get then is the caller's one. */
 | |
|     uint32_t ra = esp_eh_frame_restore_caller_state(fde, frame, &state);
 | |
| 
 | |
|     /* End of backtrace is reached if the stack and the PC don't change anymore. */
 | |
|     if ((EXECUTION_FRAME_SP(*frame) == prev_sp) && (EXECUTION_FRAME_PC(*frame) == ra)) {
 | |
|         goto stopunwind;
 | |
|     }
 | |
| 
 | |
|     /* Go back to the caller: update stack pointer and program counter. */
 | |
|     EXECUTION_FRAME_PC(*frame) = ra;
 | |
| 
 | |
|     return 1;
 | |
| badversion:
 | |
|     return -UNW_EBADVERSION;
 | |
| missinginfo:
 | |
|     return -UNW_ENOINFO;
 | |
| stopunwind:
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int unw_get_reg(unw_cursor_t* cp, unw_regnum_t reg, unw_word_t* valp)
 | |
| {
 | |
|     if (cp == NULL || valp == NULL) {
 | |
|         goto invalid;
 | |
|     }
 | |
|     if (reg >= EXECUTION_FRAME_MAX_REGS) {
 | |
|         goto badreg;
 | |
|     }
 | |
| 
 | |
|     *valp = EXECUTION_FRAME_REG(cp, reg);
 | |
|     return UNW_ESUCCESS;
 | |
| invalid:
 | |
|     return -UNW_EUNSPEC;
 | |
| badreg:
 | |
|     return -UNW_EBADREG;
 | |
| }
 | |
| 
 | |
| int unw_set_reg(unw_cursor_t* cp, unw_regnum_t reg, unw_word_t val)
 | |
| {
 | |
|     if (cp == NULL) {
 | |
|         goto invalid;
 | |
|     }
 | |
|     if (reg >= EXECUTION_FRAME_MAX_REGS) {
 | |
|         goto badreg;
 | |
|     }
 | |
| 
 | |
|     EXECUTION_FRAME_REG(cp, reg) = val;
 | |
|     return UNW_ESUCCESS;
 | |
| invalid:
 | |
|     return -UNW_EUNSPEC;
 | |
| badreg:
 | |
|     return -UNW_EBADREG;
 | |
| }
 | |
| 
 | |
| #endif //ESP_SYSTEM_USE_EH_FRAME
 | 
