mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			673 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			673 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Multi-precision integer library
 | |
|  * ESP-IDF hardware accelerated parts based on mbedTLS implementation
 | |
|  *
 | |
|  * SPDX-FileCopyrightText: The Mbed TLS Contributors
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * SPDX-FileContributor: 2016-2023 Espressif Systems (Shanghai) CO LTD
 | |
|  */
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <malloc.h>
 | |
| #include <limits.h>
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <sys/param.h>
 | |
| 
 | |
| #include "esp_system.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #if CONFIG_PM_ENABLE
 | |
| #include "esp_pm.h"
 | |
| #endif
 | |
| 
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| 
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| 
 | |
| #include "bignum_impl.h"
 | |
| 
 | |
| #include "mbedtls/bignum.h"
 | |
| 
 | |
| #include "hal/mpi_hal.h"
 | |
| 
 | |
| /* Some implementation notes:
 | |
|  *
 | |
|  * - Naming convention x_words, y_words, z_words for number of words (limbs) used in a particular
 | |
|  *   bignum. This number may be less than the size of the bignum
 | |
|  *
 | |
|  * - Naming convention hw_words for the hardware length of the operation. This number maybe be rounded up
 | |
|  *   for targets that requres this (e.g. ESP32), and may be larger than any of the numbers
 | |
|  *   involved in the calculation.
 | |
|  *
 | |
|  * - Timing behaviour of these functions will depend on the length of the inputs. This is fundamentally
 | |
|  *   the same constraint as the software mbedTLS implementations, and relies on the same
 | |
|  *   countermeasures (exponent blinding, etc) which are used in mbedTLS.
 | |
|  */
 | |
| 
 | |
| static const __attribute__((unused)) char *TAG = "bignum";
 | |
| 
 | |
| #define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
 | |
| #define biL    (ciL << 3)                         /* bits  in limb  */
 | |
| 
 | |
| #if defined(CONFIG_MBEDTLS_MPI_USE_INTERRUPT)
 | |
| static SemaphoreHandle_t op_complete_sem;
 | |
| #if defined(CONFIG_PM_ENABLE)
 | |
| static esp_pm_lock_handle_t s_pm_cpu_lock;
 | |
| static esp_pm_lock_handle_t s_pm_sleep_lock;
 | |
| #endif
 | |
| 
 | |
| static IRAM_ATTR void esp_mpi_complete_isr(void *arg)
 | |
| {
 | |
|     BaseType_t higher_woken;
 | |
|     mpi_hal_clear_interrupt();
 | |
| 
 | |
|     xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
 | |
|     if (higher_woken) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static esp_err_t esp_mpi_isr_initialise(void)
 | |
| {
 | |
|     mpi_hal_clear_interrupt();
 | |
|     mpi_hal_interrupt_enable(true);
 | |
|     if (op_complete_sem == NULL) {
 | |
|         static StaticSemaphore_t op_sem_buf;
 | |
|         op_complete_sem = xSemaphoreCreateBinaryStatic(&op_sem_buf);
 | |
|         if (op_complete_sem == NULL) {
 | |
|             ESP_LOGE(TAG, "Failed to create intr semaphore");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
| 
 | |
|         const int isr_flags = esp_intr_level_to_flags(CONFIG_MBEDTLS_MPI_INTERRUPT_LEVEL);
 | |
| 
 | |
|         esp_err_t ret;
 | |
|         ret = esp_intr_alloc(ETS_RSA_INTR_SOURCE, isr_flags, esp_mpi_complete_isr, NULL, NULL);
 | |
|         if (ret != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "Failed to allocate RSA interrupt %d", ret);
 | |
| 
 | |
|             // This should be treated as fatal error as this API would mostly
 | |
|             // be invoked within mbedTLS interface. There is no way for the system
 | |
|             // to proceed if the MPI interrupt allocation fails here.
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* MPI is clocked proportionally to CPU clock, take power management lock */
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     if (s_pm_cpu_lock == NULL) {
 | |
|         if (esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "mpi_sleep", &s_pm_sleep_lock) != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "Failed to create PM sleep lock");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         if (esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "mpi_cpu", &s_pm_cpu_lock) != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "Failed to create PM CPU lock");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|     }
 | |
|     esp_pm_lock_acquire(s_pm_cpu_lock);
 | |
|     esp_pm_lock_acquire(s_pm_sleep_lock);
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static int esp_mpi_wait_intr(void)
 | |
| {
 | |
|     if (!xSemaphoreTake(op_complete_sem, 2000 / portTICK_PERIOD_MS)) {
 | |
|         ESP_LOGE("MPI", "Timed out waiting for completion of MPI Interrupt");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     esp_pm_lock_release(s_pm_cpu_lock);
 | |
|     esp_pm_lock_release(s_pm_sleep_lock);
 | |
| #endif  // CONFIG_PM_ENABLE
 | |
| 
 | |
|     mpi_hal_interrupt_enable(false);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif // CONFIG_MBEDTLS_MPI_USE_INTERRUPT
 | |
| 
 | |
| /* Convert bit count to word count
 | |
|  */
 | |
| static inline size_t bits_to_words(size_t bits)
 | |
| {
 | |
|     return (bits + 31) / 32;
 | |
| }
 | |
| 
 | |
| /* Return the number of words actually used to represent an mpi
 | |
|    number.
 | |
| */
 | |
| #if defined(MBEDTLS_MPI_EXP_MOD_ALT) || defined(MBEDTLS_MPI_EXP_MOD_ALT_FALLBACK)
 | |
| static size_t mpi_words(const mbedtls_mpi *mpi)
 | |
| {
 | |
|     for (size_t i = mpi->MBEDTLS_PRIVATE(n); i > 0; i--) {
 | |
|         if (mpi->MBEDTLS_PRIVATE(p[i - 1]) != 0) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif //(MBEDTLS_MPI_EXP_MOD_ALT || MBEDTLS_MPI_EXP_MOD_ALT_FALLBACK)
 | |
| 
 | |
| /**
 | |
|  *
 | |
|  * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
 | |
|  * where B^-1(B-1) mod N=1. Actually, only the least significant part of
 | |
|  * N' is needed, hence the definition N0'=N' mod b. We reproduce below the
 | |
|  * simple algorithm from an article by Dusse and Kaliski to efficiently
 | |
|  * find N0' from N0 and b
 | |
|  */
 | |
| static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t t = 1;
 | |
|     uint64_t two_2_i_minus_1 = 2;   /* 2^(i-1) */
 | |
|     uint64_t two_2_i = 4;           /* 2^i */
 | |
|     uint64_t N = M->MBEDTLS_PRIVATE(p[0]);
 | |
| 
 | |
|     for (i = 2; i <= 32; i++) {
 | |
|         if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
 | |
|             t += two_2_i_minus_1;
 | |
|         }
 | |
| 
 | |
|         two_2_i_minus_1 <<= 1;
 | |
|         two_2_i <<= 1;
 | |
|     }
 | |
| 
 | |
|     return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
 | |
| }
 | |
| 
 | |
| /* Calculate Rinv = RR^2 mod M, where:
 | |
|  *
 | |
|  *  R = b^n where b = 2^32, n=num_words,
 | |
|  *  R = 2^N (where N=num_bits)
 | |
|  *  RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
 | |
|  *
 | |
|  * This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
 | |
|  * so caller should cache the result where possible.
 | |
|  *
 | |
|  * DO NOT call this function while holding esp_mpi_enable_hardware_hw_op().
 | |
|  *
 | |
|  */
 | |
| static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
 | |
| {
 | |
|     int ret;
 | |
|     size_t num_bits = num_words * 32;
 | |
|     mbedtls_mpi RR;
 | |
|     mbedtls_mpi_init(&RR);
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&RR);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Z = (X * Y) mod M
 | |
| 
 | |
|    Not an mbedTLS function
 | |
| */
 | |
| int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     size_t x_bits = mbedtls_mpi_bitlen(X);
 | |
|     size_t y_bits = mbedtls_mpi_bitlen(Y);
 | |
|     size_t m_bits = mbedtls_mpi_bitlen(M);
 | |
|     size_t z_bits = MIN(m_bits, x_bits + y_bits);
 | |
|     size_t x_words = bits_to_words(x_bits);
 | |
|     size_t y_words = bits_to_words(y_bits);
 | |
|     size_t m_words = bits_to_words(m_bits);
 | |
|     size_t z_words = bits_to_words(z_bits);
 | |
|     size_t hw_words = mpi_hal_calc_hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
 | |
|     mbedtls_mpi Rinv;
 | |
|     mbedtls_mpi_uint Mprime;
 | |
| 
 | |
|     /* Calculate and load the first stage montgomery multiplication */
 | |
|     mbedtls_mpi_init(&Rinv);
 | |
|     MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, hw_words));
 | |
|     Mprime = modular_inverse(M);
 | |
| 
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
|     /* Load and start a (X * Y) mod M calculation */
 | |
|     esp_mpi_mul_mpi_mod_hw_op(X, Y, M, &Rinv, Mprime, hw_words);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Z, z_words));
 | |
| 
 | |
|     /* Read back the result */
 | |
|     mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), z_words);
 | |
|     Z->MBEDTLS_PRIVATE(s) = X->MBEDTLS_PRIVATE(s) * Y->MBEDTLS_PRIVATE(s);
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&Rinv);
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_MPI_EXP_MOD_ALT) || defined(MBEDTLS_MPI_EXP_MOD_ALT_FALLBACK)
 | |
| 
 | |
| #ifdef ESP_MPI_USE_MONT_EXP
 | |
| /*
 | |
|  * Return the most significant one-bit.
 | |
|  */
 | |
| static size_t mbedtls_mpi_msb( const mbedtls_mpi *X )
 | |
| {
 | |
|     int i, j;
 | |
|     if (X != NULL && X->MBEDTLS_PRIVATE(n) != 0) {
 | |
|         for (i = X->MBEDTLS_PRIVATE(n) - 1; i >= 0; i--) {
 | |
|             if (X->MBEDTLS_PRIVATE(p[i]) != 0) {
 | |
|                 for (j = biL - 1; j >= 0; j--) {
 | |
|                     if ((X->MBEDTLS_PRIVATE(p[i]) & (1 << j)) != 0) {
 | |
|                         return (i * biL) + j;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Montgomery exponentiation: Z = X ^ Y mod M  (HAC 14.94)
 | |
|  */
 | |
| static int mpi_montgomery_exp_calc( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
 | |
|                                     mbedtls_mpi *Rinv,
 | |
|                                     size_t hw_words,
 | |
|                                     mbedtls_mpi_uint Mprime )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi X_, one;
 | |
| 
 | |
|     mbedtls_mpi_init(&X_);
 | |
|     mbedtls_mpi_init(&one);
 | |
|     if ( ( ( ret = mbedtls_mpi_grow(&one, hw_words) ) != 0 ) ||
 | |
|             ( ( ret = mbedtls_mpi_set_bit(&one, 0, 1) )  != 0 ) ) {
 | |
|         goto cleanup2;
 | |
|     }
 | |
| 
 | |
|     // Algorithm from HAC 14.94
 | |
|     {
 | |
|         // 0 determine t (highest bit set in y)
 | |
|         int t = mbedtls_mpi_msb(Y);
 | |
| 
 | |
|         esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
|         // 1.1 x_ = mont(x, R^2 mod m)
 | |
|         //        = mont(x, rb)
 | |
|         MBEDTLS_MPI_CHK( esp_mont_hw_op(&X_, X, Rinv, M, Mprime, hw_words, false) );
 | |
| 
 | |
|         // 1.2 z = R mod m
 | |
|         // now z = R mod m = Mont (R^2 mod m, 1) mod M (as Mont(x) = X&R^-1 mod M)
 | |
|         MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Rinv, &one, M, Mprime, hw_words, true) );
 | |
| 
 | |
|         // 2 for i from t down to 0
 | |
|         for (int i = t; i >= 0; i--) {
 | |
|             // 2.1 z = mont(z,z)
 | |
|             if (i != t) { // skip on the first iteration as is still unity
 | |
|                 MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, Z, M, Mprime, hw_words, true) );
 | |
|             }
 | |
| 
 | |
|             // 2.2 if y[i] = 1 then z = mont(A, x_)
 | |
|             if (mbedtls_mpi_get_bit(Y, i)) {
 | |
|                 MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &X_, M, Mprime, hw_words, true) );
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // 3 z = Mont(z, 1)
 | |
|         MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &one, M, Mprime, hw_words, true) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| 
 | |
| cleanup2:
 | |
|     mbedtls_mpi_free(&X_);
 | |
|     mbedtls_mpi_free(&one);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif //USE_MONT_EXPONENATIATION
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Z = X ^ Y mod M
 | |
|  *
 | |
|  * _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
 | |
|  *
 | |
|  * (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | |
|  *
 | |
|  */
 | |
| static int esp_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
 | |
|     mbedtls_mpi *Rinv;    /* points to _Rinv (if not NULL) othwerwise &RR_new */
 | |
|     mbedtls_mpi_uint Mprime;
 | |
| 
 | |
|     size_t x_words = mpi_words(X);
 | |
|     size_t y_words = mpi_words(Y);
 | |
|     size_t m_words = mpi_words(M);
 | |
| 
 | |
|     /* "all numbers must be the same length", so choose longest number
 | |
|        as cardinal length of operation...
 | |
|     */
 | |
|     size_t num_words = mpi_hal_calc_hardware_words(MAX(m_words, MAX(x_words, y_words)));
 | |
| 
 | |
|     if (num_words * 32 > SOC_RSA_MAX_BIT_LEN) {
 | |
|         return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(M, 0) <= 0 || (M->MBEDTLS_PRIVATE(p[0]) & 1) == 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(Y, 0) < 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(Y, 0) == 0) {
 | |
|         return mbedtls_mpi_lset(Z, 1);
 | |
|     }
 | |
| 
 | |
|     /* Determine RR pointer, either _RR for cached value
 | |
|        or local RR_new */
 | |
|     if (_Rinv == NULL) {
 | |
|         mbedtls_mpi_init(&Rinv_new);
 | |
|         Rinv = &Rinv_new;
 | |
|     } else {
 | |
|         Rinv = _Rinv;
 | |
|     }
 | |
|     if (Rinv->MBEDTLS_PRIVATE(p) == NULL) {
 | |
|         MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
 | |
|     }
 | |
| 
 | |
|     Mprime = modular_inverse(M);
 | |
| 
 | |
|     // Montgomery exponentiation: Z = X ^ Y mod M  (HAC 14.94)
 | |
| #ifdef ESP_MPI_USE_MONT_EXP
 | |
|     ret = mpi_montgomery_exp_calc(Z, X, Y, M, Rinv, num_words, Mprime) ;
 | |
|     MBEDTLS_MPI_CHK(ret);
 | |
| #else
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
| #if defined (CONFIG_MBEDTLS_MPI_USE_INTERRUPT)
 | |
|     if (esp_mpi_isr_initialise() != ESP_OK) {
 | |
|         ret = -1;
 | |
|         esp_mpi_disable_hardware_hw_op();
 | |
|         goto cleanup;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     esp_mpi_exp_mpi_mod_hw_op(X, Y, M, Rinv, Mprime, num_words);
 | |
|     ret = mbedtls_mpi_grow(Z, m_words);
 | |
|     if (ret != 0) {
 | |
|         esp_mpi_disable_hardware_hw_op();
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| #if defined(CONFIG_MBEDTLS_MPI_USE_INTERRUPT)
 | |
|     ret = esp_mpi_wait_intr();
 | |
|     if (ret != 0) {
 | |
|         esp_mpi_disable_hardware_hw_op();
 | |
|         goto cleanup;
 | |
|     }
 | |
| #endif //CONFIG_MBEDTLS_MPI_USE_INTERRUPT
 | |
| 
 | |
|     /* Read back the result */
 | |
|     mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), m_words);
 | |
| 
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| #endif
 | |
| 
 | |
|     // Compensate for negative X
 | |
|     if (X->MBEDTLS_PRIVATE(s) == -1 && (Y->MBEDTLS_PRIVATE(p[0]) & 1) != 0) {
 | |
|         Z->MBEDTLS_PRIVATE(s) = -1;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(Z, M, Z));
 | |
|     } else {
 | |
|         Z->MBEDTLS_PRIVATE(s) = 1;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     if (_Rinv == NULL) {
 | |
|         mbedtls_mpi_free(&Rinv_new);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* (MBEDTLS_MPI_EXP_MOD_ALT || MBEDTLS_MPI_EXP_MOD_ALT_FALLBACK) */
 | |
| 
 | |
| /*
 | |
|  * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
 | |
|  */
 | |
| int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
 | |
|                          const mbedtls_mpi *E, const mbedtls_mpi *N,
 | |
|                          mbedtls_mpi *_RR )
 | |
| {
 | |
|     int ret;
 | |
| #if defined(MBEDTLS_MPI_EXP_MOD_ALT_FALLBACK)
 | |
|     /* Try hardware API first and then fallback to software */
 | |
|     ret = esp_mpi_exp_mod( X, A, E, N, _RR );
 | |
|     if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE ) {
 | |
|         ret = mbedtls_mpi_exp_mod_soft( X, A, E, N, _RR );
 | |
|     }
 | |
| #else
 | |
|     /* Hardware approach */
 | |
|     ret = esp_mpi_exp_mod( X, A, E, N, _RR );
 | |
| #endif
 | |
|     /* Note: For software only approach, it gets handled in mbedTLS library.
 | |
|     This file is not part of build objects for that case */
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
 | |
| 
 | |
| static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
 | |
| static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words);
 | |
| 
 | |
| /* Z = X * Y */
 | |
| int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t x_bits = mbedtls_mpi_bitlen(X);
 | |
|     size_t y_bits = mbedtls_mpi_bitlen(Y);
 | |
|     size_t x_words = bits_to_words(x_bits);
 | |
|     size_t y_words = bits_to_words(y_bits);
 | |
|     size_t z_words = bits_to_words(x_bits + y_bits);
 | |
|     size_t hw_words = mpi_hal_calc_hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
 | |
| 
 | |
|     /* Short-circuit eval if either argument is 0 or 1.
 | |
| 
 | |
|        This is needed as the mpi modular division
 | |
|        argument will sometimes call in here when one
 | |
|        argument is too large for the hardware unit, but the other
 | |
|        argument is zero or one.
 | |
|     */
 | |
|     if (x_bits == 0 || y_bits == 0) {
 | |
|         mbedtls_mpi_lset(Z, 0);
 | |
|         return 0;
 | |
|     }
 | |
|     if (x_bits == 1) {
 | |
|         ret = mbedtls_mpi_copy(Z, Y);
 | |
|         Z->MBEDTLS_PRIVATE(s) *= X->MBEDTLS_PRIVATE(s);
 | |
|         return ret;
 | |
|     }
 | |
|     if (y_bits == 1) {
 | |
|         ret = mbedtls_mpi_copy(Z, X);
 | |
|         Z->MBEDTLS_PRIVATE(s) *= Y->MBEDTLS_PRIVATE(s);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Grow Z to result size early, avoid interim allocations */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, z_words) );
 | |
| 
 | |
|     /* If either factor is over 2048 bits, we can't use the standard hardware multiplier
 | |
|        (it assumes result is double longest factor, and result is max 4096 bits.)
 | |
| 
 | |
|        However, we can fail over to mod_mult for up to 4096 bits of result (modulo
 | |
|        multiplication doesn't have the same restriction, so result is simply the
 | |
|        number of bits in X plus number of bits in in Y.)
 | |
|     */
 | |
|     if (hw_words * 32 > SOC_RSA_MAX_BIT_LEN/2) {
 | |
|         if (z_words * 32 <= SOC_RSA_MAX_BIT_LEN) {
 | |
|             /* Note: it's possible to use mpi_mult_mpi_overlong
 | |
|                for this case as well, but it's very slightly
 | |
|                slower and requires a memory allocation.
 | |
|             */
 | |
|             return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
 | |
|         } else {
 | |
|             /* Still too long for the hardware unit... */
 | |
|             if (y_words > x_words) {
 | |
|                 return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
 | |
|             } else {
 | |
|                 return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Otherwise, we can use the (faster) multiply hardware unit */
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
|     esp_mpi_mul_mpi_hw_op(X, Y, hw_words);
 | |
| 
 | |
|     /* Read back the result */
 | |
|     mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), z_words);
 | |
| 
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| 
 | |
|     Z->MBEDTLS_PRIVATE(s) = X->MBEDTLS_PRIVATE(s) * Y->MBEDTLS_PRIVATE(s);
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
 | |
| {
 | |
|     mbedtls_mpi _B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
| 
 | |
|     _B.MBEDTLS_PRIVATE(s) = 1;
 | |
|     _B.MBEDTLS_PRIVATE(n) = 1;
 | |
|     _B.MBEDTLS_PRIVATE(p) = p;
 | |
|     p[0] = b;
 | |
| 
 | |
|     return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
 | |
| }
 | |
| 
 | |
| /* Deal with the case when X & Y are too long for the hardware unit, by splitting one operand
 | |
|    into two halves.
 | |
| 
 | |
|    Y must be the longer operand
 | |
| 
 | |
|    Slice Y into Yp, Ypp such that:
 | |
|    Yp = lower 'b' bits of Y
 | |
|    Ypp = upper 'b' bits of Y (right shifted)
 | |
| 
 | |
|    Such that
 | |
|    Z = X * Y
 | |
|    Z = X * (Yp + Ypp<<b)
 | |
|    Z = (X * Yp) + (X * Ypp<<b)
 | |
| 
 | |
|    Note that this function may recurse multiple times, if both X & Y
 | |
|    are too long for the hardware multiplication unit.
 | |
| */
 | |
| static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words)
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi Ztemp;
 | |
|     /* Rather than slicing in two on bits we slice on limbs (32 bit words) */
 | |
|     const size_t words_slice = y_words / 2;
 | |
|     /* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
 | |
|     const mbedtls_mpi Yp = {
 | |
|         .MBEDTLS_PRIVATE(p) = Y->MBEDTLS_PRIVATE(p),
 | |
|         .MBEDTLS_PRIVATE(n) = words_slice,
 | |
|         .MBEDTLS_PRIVATE(s) = Y->MBEDTLS_PRIVATE(s)
 | |
|     };
 | |
|     /* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
 | |
|     const mbedtls_mpi Ypp = {
 | |
|         .MBEDTLS_PRIVATE(p) = Y->MBEDTLS_PRIVATE(p) + words_slice,
 | |
|         .MBEDTLS_PRIVATE(n) = y_words - words_slice,
 | |
|         .MBEDTLS_PRIVATE(s) = Y->MBEDTLS_PRIVATE(s)
 | |
|     };
 | |
|     mbedtls_mpi_init(&Ztemp);
 | |
| 
 | |
|     /* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
 | |
| 
 | |
|     /* Z = Ypp * Y */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
 | |
| 
 | |
|     /* Z = Z << b */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, words_slice * 32) );
 | |
| 
 | |
|     /* Z += Ztemp */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&Ztemp);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words)
 | |
| {
 | |
|     int ret;
 | |
|     size_t hw_words = mpi_hal_calc_hardware_words(z_words);
 | |
| 
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
|     esp_mpi_mult_mpi_failover_mod_mult_hw_op(X, Y, hw_words );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
 | |
| 
 | |
|     /* Read back the result */
 | |
|     mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), hw_words);
 | |
| 
 | |
|     Z->MBEDTLS_PRIVATE(s) = X->MBEDTLS_PRIVATE(s) * Y->MBEDTLS_PRIVATE(s);
 | |
| 
 | |
|     /*
 | |
|      * Relevant: https://github.com/espressif/esp-idf/issues/11850
 | |
|      *
 | |
|      * If z_words < mpi_words(Z) (the actual words taken by the MPI result),
 | |
|      * the assert fails due to unsigned arithmetic - most likely hardware
 | |
|      * peripheral has produced an incorrect result for MPI operation.
 | |
|      * This can happen if data fed to the peripheral register was incorrect.
 | |
|      *
 | |
|      * z_words is calculated as the worst-case possible size of the result
 | |
|      * MPI Z. The difference between z_words and the actual words taken by
 | |
|      * the MPI result (mpi_words(Z)) can be a maximum of 1 word.
 | |
|      * The value z_bits (actual bits taken by the MPI result) is calculated
 | |
|      * as x_bits + y_bits bits, however, in some cases, z_bits can be
 | |
|      * x_bits + y_bits - 1 bits (see example below).
 | |
|      * 0b1111 * 0b1111 = 0b11100001 -> 8 bits
 | |
|      * 0b1000 * 0b1000 = 0b01000000 -> 7 bits.
 | |
|      * The code rounds up to the nearest word size, so the maximum difference
 | |
|      * could be of only 1 word. The assert handles this.
 | |
|      *
 | |
|      */
 | |
|     assert(z_words - mpi_words(Z) <= (size_t)1);
 | |
| cleanup:
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_MPI_MUL_MPI_ALT */
 | 
