mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			169 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| // HAL for SPI Flash (non-IRAM part)
 | |
| // The IRAM part is in spi_flash_hal_iram.c, spi_flash_hal_gpspi.c, spi_flash_hal_common.inc.
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| #include "soc/soc_caps.h"
 | |
| #include "hal/gpio_ll.h"    //for GPIO_LL_MATRIX_DELAY_NS
 | |
| #include "hal/spi_flash_hal.h"
 | |
| #include "hal/assert.h"
 | |
| #include "hal/log.h"
 | |
| #include "hal/spi_flash_types.h"
 | |
| 
 | |
| #define APB_CYCLE_NS   (1000*1000*1000LL/APB_CLK_FREQ)
 | |
| 
 | |
| static const char *TAG = "flash_hal";
 | |
| 
 | |
| static uint32_t get_flash_clock_divider(const spi_flash_hal_config_t *cfg)
 | |
| {
 | |
|     const int clk_source   = cfg->clock_src_freq;
 | |
|     const int clk_freq_mhz = cfg->freq_mhz;
 | |
|     // On ESP32, ESP32-S2, ESP32-C3, we allow specific frequency 26.666MHz
 | |
|     // If user passes freq_mhz like 26 or 27, it's allowed to use integer divider 3.
 | |
|     // However on other chips or on other frequency, we only allow user pass frequency which
 | |
|     // can be integer divided. If no, the following strategy is round up the division and
 | |
|     // round down flash frequency to keep it safe.
 | |
|     int best_div = 0;
 | |
|     if (clk_source < clk_freq_mhz) {
 | |
|         HAL_LOGE(TAG, "Target frequency %dMHz higher than supported.", clk_freq_mhz);
 | |
|         abort();
 | |
|     }
 | |
| #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32C3
 | |
|     if (clk_freq_mhz == 26 || clk_freq_mhz == 27) {
 | |
|         best_div = 3;
 | |
|     } else
 | |
| #endif
 | |
|     {
 | |
|         /* Do not use float/double as the FPU may not have been initialized yet on startup.
 | |
|          * The values are in MHz, so for sure we won't have an overflow by adding them. */
 | |
|         best_div = (clk_source + clk_freq_mhz - 1) / clk_freq_mhz;
 | |
|         /* Perform a division that returns both quotient and remainder */
 | |
|         const div_t res = div(clk_source, clk_freq_mhz);
 | |
|         if (res.rem != 0) {
 | |
|             HAL_LOGW(TAG, "Flash clock frequency round down to %d", res.quot);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return best_div;
 | |
| }
 | |
| 
 | |
| static uint32_t spi_flash_cal_clock(const spi_flash_hal_config_t *cfg)
 | |
| {
 | |
|     uint32_t div_parameter = spi_flash_ll_calculate_clock_reg(cfg->host_id, get_flash_clock_divider(cfg));
 | |
|     return div_parameter;
 | |
| }
 | |
| 
 | |
| static inline int get_dummy_n(bool gpio_is_used, int input_delay_ns, int eff_clk)
 | |
| {
 | |
|     const int apbclk_kHz = APB_CLK_FREQ / 1000;
 | |
|     //calculate how many apb clocks a period has
 | |
|     const int apbclk_n = APB_CLK_FREQ / eff_clk;
 | |
|     int gpio_delay_ns = 0;
 | |
| #if GPIO_LL_MATRIX_DELAY_NS
 | |
|     gpio_delay_ns = gpio_is_used ? GPIO_LL_MATRIX_DELAY_NS : 0;
 | |
| #endif
 | |
| 
 | |
|     //calculate how many apb clocks the delay is, the 1 is to compensate in case ``input_delay_ns`` is rounded off.
 | |
|     int apb_period_n = (1 + input_delay_ns + gpio_delay_ns) * apbclk_kHz / 1000 / 1000;
 | |
|     if (apb_period_n < 0) {
 | |
|         apb_period_n = 0;
 | |
|     }
 | |
| 
 | |
|     return apb_period_n / apbclk_n;
 | |
| }
 | |
| 
 | |
| #if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
 | |
| static inline int extra_dummy_under_timing_tuning(const spi_flash_hal_config_t *cfg)
 | |
| {
 | |
|     bool main_flash = (cfg->host_id == SPI1_HOST && cfg->cs_num == 0);
 | |
|     int extra_dummy = 0;
 | |
|     if (main_flash) {
 | |
|         /**
 | |
|          * For Octal Flash, the dummy is `usr_dummy` + `extra_dummy`, they are in two different regs, we don't touch `extra_dummy` here, so set extra_dummy 0.
 | |
|          * Instead, for both Quad and Octal Flash, we use `usr_dummy` and set the whole dummy length (usr_dummy + extra_dummy) to this register.
 | |
|          */
 | |
|         extra_dummy = cfg->extra_dummy;
 | |
|     } else {
 | |
|         // TODO: for other flash chips, dummy get logic implement here. Currently, still calculate extra dummy by itself.
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     return extra_dummy;
 | |
| }
 | |
| #endif //SOC_SPI_MEM_SUPPORT_TIMING_TUNING
 | |
| 
 | |
| esp_err_t spi_flash_hal_init(spi_flash_hal_context_t *data_out, const spi_flash_hal_config_t *cfg)
 | |
| {
 | |
|     if (cfg->cs_num >= SOC_SPI_PERIPH_CS_NUM(cfg->host_id)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     *data_out = (spi_flash_hal_context_t) {
 | |
|         .inst = data_out->inst, // Keeps the function pointer table
 | |
|         .spi = spi_flash_ll_get_hw(cfg->host_id),
 | |
|         .cs_num = cfg->cs_num,
 | |
|         .cs_hold = cfg->cs_hold,
 | |
|         .cs_setup = cfg->cs_setup,
 | |
|         .base_io_mode = cfg->default_io_mode,
 | |
|         .freq_mhz = cfg->freq_mhz,
 | |
|     };
 | |
| #if SOC_SPI_MEM_SUPPORT_TIMING_TUNING
 | |
|     if (cfg->using_timing_tuning) {
 | |
|         data_out->extra_dummy = extra_dummy_under_timing_tuning(cfg);
 | |
|         data_out->fdummy_rin = cfg->fdummy_rin;
 | |
|         data_out->clock_conf = cfg->clock_config;
 | |
|     } else
 | |
| #endif // SOC_SPI_MEM_SUPPORT_TIMING_TUNING
 | |
|     {
 | |
|         data_out->extra_dummy = get_dummy_n(!cfg->iomux, cfg->input_delay_ns, APB_CLK_FREQ/get_flash_clock_divider(cfg));
 | |
|         data_out->clock_conf = (spi_flash_ll_clock_reg_t)spi_flash_cal_clock(cfg);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (cfg->auto_sus_en) {
 | |
|         data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_AUTO_SUSPEND;
 | |
|         data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_AUTO_RESUME;
 | |
|         data_out->tsus_val = cfg->tsus_val;
 | |
|         data_out->auto_waiti_pes = cfg->auto_waiti_pes;
 | |
|     }
 | |
| 
 | |
| #if CONFIG_SPI_FLASH_SOFTWARE_RESUME
 | |
|     data_out->flags &= ~SPI_FLASH_HOST_CONTEXT_FLAG_AUTO_RESUME;
 | |
| #endif
 | |
| 
 | |
| #if SOC_SPI_MEM_SUPPORT_FLASH_OPI_MODE
 | |
|     if (cfg->octal_mode_en) {
 | |
|         data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_OCTAL_MODE;
 | |
|     }
 | |
| 
 | |
|     if (cfg->default_io_mode == SPI_FLASH_OPI_DTR) {
 | |
|         data_out->slicer_flags |= SPI_FLASH_HOST_CONTEXT_SLICER_FLAG_DTR;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| bool spi_flash_hal_supports_direct_write(spi_flash_host_inst_t *host, const void *p)
 | |
| {
 | |
|     (void)p;
 | |
|     bool direct_write = (((spi_flash_hal_context_t *)host)->spi != spi_flash_ll_get_hw(SPI1_HOST));
 | |
|     return direct_write;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool spi_flash_hal_supports_direct_read(spi_flash_host_inst_t *host, const void *p)
 | |
| {
 | |
|     (void)p;
 | |
|     //currently the host doesn't support to read through dma, no word-aligned requirements
 | |
|     bool direct_read = ( ((spi_flash_hal_context_t *)host)->spi != spi_flash_ll_get_hw(SPI1_HOST));
 | |
|     return direct_read;
 | |
| }
 | 
