mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 12:50:41 +00:00 
			
		
		
		
	 66fb5a29bb
			
		
	
	66fb5a29bb
	
	
	
		
			
			Apply the pre-commit hook whitespace fixes to all files in the repo. (Line endings, blank lines at end of file, trailing whitespace)
		
			
				
	
	
		
			643 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			643 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <stdbool.h>
 | |
| #include <stddef.h>
 | |
| #include <sys/param.h>
 | |
| #include "esp_log.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "soc/soc_caps.h"
 | |
| #include "soc/soc_pins.h"
 | |
| #include "soc/gpio_periph.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "esp_rom_sys.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/sdmmc_host.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "sdmmc_private.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "soc/sdmmc_periph.h"
 | |
| 
 | |
| #define SDMMC_EVENT_QUEUE_LENGTH 32
 | |
| 
 | |
| 
 | |
| static void sdmmc_isr(void* arg);
 | |
| static void sdmmc_host_dma_init(void);
 | |
| 
 | |
| 
 | |
| static const char* TAG = "sdmmc_periph";
 | |
| static intr_handle_t s_intr_handle;
 | |
| static QueueHandle_t s_event_queue;
 | |
| static SemaphoreHandle_t s_io_intr_event;
 | |
| 
 | |
| size_t s_slot_width[2] = {1,1};
 | |
| 
 | |
| void sdmmc_host_reset(void)
 | |
| {
 | |
|     // Set reset bits
 | |
|     SDMMC.ctrl.controller_reset = 1;
 | |
|     SDMMC.ctrl.dma_reset = 1;
 | |
|     SDMMC.ctrl.fifo_reset = 1;
 | |
|     // Wait for the reset bits to be cleared by hardware
 | |
|     while (SDMMC.ctrl.controller_reset || SDMMC.ctrl.fifo_reset || SDMMC.ctrl.dma_reset) {
 | |
|         ;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* We have two clock divider stages:
 | |
|  * - one is the clock generator which drives SDMMC peripheral,
 | |
|  *   it can be configured using SDMMC.clock register. It can generate
 | |
|  *   frequencies 160MHz/(N + 1), where 0 < N < 16, I.e. from 10 to 80 MHz.
 | |
|  * - 4 clock dividers inside SDMMC peripheral, which can divide clock
 | |
|  *   from the first stage by 2 * M, where 0 < M < 255
 | |
|  *   (they can also be bypassed).
 | |
|  *
 | |
|  * For cards which aren't UHS-1 or UHS-2 cards, which we don't support,
 | |
|  * maximum bus frequency in high speed (HS) mode is 50 MHz.
 | |
|  * Note: for non-UHS-1 cards, HS mode is optional.
 | |
|  * Default speed (DS) mode is mandatory, it works up to 25 MHz.
 | |
|  * Whether the card supports HS or not can be determined using TRAN_SPEED
 | |
|  * field of card's CSD register.
 | |
|  *
 | |
|  * 50 MHz can not be obtained exactly, closest we can get is 53 MHz.
 | |
|  *
 | |
|  * The first stage divider is set to the highest possible value for the given
 | |
|  * frequency, and the the second stage dividers are used if division factor
 | |
|  * is >16.
 | |
|  *
 | |
|  * Of the second stage dividers, div0 is used for card 0, and div1 is used
 | |
|  * for card 1.
 | |
|  */
 | |
| 
 | |
| static void sdmmc_host_set_clk_div(int div)
 | |
| {
 | |
|     // Set frequency to 160MHz / div
 | |
|     // div = p + 1
 | |
|     // duty cycle = (h + 1)/(p + 1) (should be = 1/2)
 | |
|     assert (div > 1 && div <= 16);
 | |
|     int p = div - 1;
 | |
|     int h = div / 2 - 1;
 | |
| 
 | |
|     SDMMC.clock.div_factor_p = p;
 | |
|     SDMMC.clock.div_factor_h = h;
 | |
|     SDMMC.clock.div_factor_m = p;
 | |
|     // Set phases for in/out clocks
 | |
|     SDMMC.clock.phase_dout = 4;     // 180 degree phase on the output clock
 | |
|     SDMMC.clock.phase_din = 4;      // 180 degree phase on the input clock
 | |
|     SDMMC.clock.phase_core = 0;
 | |
|     // Wait for the clock to propagate
 | |
|     esp_rom_delay_us(10);
 | |
| }
 | |
| 
 | |
| static void sdmmc_host_input_clk_disable(void)
 | |
| {
 | |
|     SDMMC.clock.val = 0;
 | |
| }
 | |
| 
 | |
| static void sdmmc_host_clock_update_command(int slot)
 | |
| {
 | |
|     // Clock update command (not a real command; just updates CIU registers)
 | |
|     sdmmc_hw_cmd_t cmd_val = {
 | |
|         .card_num = slot,
 | |
|         .update_clk_reg = 1,
 | |
|         .wait_complete = 1
 | |
|     };
 | |
|     bool repeat = true;
 | |
|     while(repeat) {
 | |
|         sdmmc_host_start_command(slot, cmd_val, 0);
 | |
|         while (true) {
 | |
|             // Sending clock update command to the CIU can generate HLE error.
 | |
|             // According to the manual, this is okay and we must retry the command.
 | |
|             if (SDMMC.rintsts.hle) {
 | |
|                 SDMMC.rintsts.hle = 1;
 | |
|                 repeat = true;
 | |
|                 break;
 | |
|             }
 | |
|             // When the command is accepted by CIU, start_command bit will be
 | |
|             // cleared in SDMMC.cmd register.
 | |
|             if (SDMMC.cmd.start_command == 0) {
 | |
|                 repeat = false;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_set_card_clk(int slot, uint32_t freq_khz)
 | |
| {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     const int clk40m = 40000;
 | |
| 
 | |
|     // Disable clock first
 | |
|     SDMMC.clkena.cclk_enable &= ~BIT(slot);
 | |
|     sdmmc_host_clock_update_command(slot);
 | |
| 
 | |
|     int host_div = 0;   /* clock divider of the host (SDMMC.clock) */
 | |
|     int card_div = 0;   /* 1/2 of card clock divider (SDMMC.clkdiv) */
 | |
| 
 | |
|     // Calculate new dividers
 | |
|     if (freq_khz >= SDMMC_FREQ_HIGHSPEED) {
 | |
|         host_div = 4;       // 160 MHz / 4 = 40 MHz
 | |
|         card_div = 0;
 | |
|     } else if (freq_khz == SDMMC_FREQ_DEFAULT) {
 | |
|         host_div = 8;       // 160 MHz / 8 = 20 MHz
 | |
|         card_div = 0;
 | |
|     } else if (freq_khz == SDMMC_FREQ_PROBING) {
 | |
|         host_div = 10;      // 160 MHz / 10 / (20 * 2) = 400 kHz
 | |
|         card_div = 20;
 | |
|     } else {
 | |
|         host_div = 2;
 | |
|         card_div = (clk40m + freq_khz * 2 - 1) / (freq_khz * 2); // round up
 | |
|     }
 | |
| 
 | |
|     ESP_LOGD(TAG, "slot=%d host_div=%d card_div=%d freq=%dkHz",
 | |
|             slot, host_div, card_div,
 | |
|             2 * APB_CLK_FREQ / host_div / ((card_div == 0) ? 1 : card_div * 2) / 1000);
 | |
| 
 | |
|     // Program CLKDIV and CLKSRC, send them to the CIU
 | |
|     switch(slot) {
 | |
|         case 0:
 | |
|             SDMMC.clksrc.card0 = 0;
 | |
|             SDMMC.clkdiv.div0 = card_div;
 | |
|             break;
 | |
|         case 1:
 | |
|             SDMMC.clksrc.card1 = 1;
 | |
|             SDMMC.clkdiv.div1 = card_div;
 | |
|             break;
 | |
|     }
 | |
|     sdmmc_host_set_clk_div(host_div);
 | |
|     sdmmc_host_clock_update_command(slot);
 | |
| 
 | |
|     // Re-enable clocks
 | |
|     SDMMC.clkena.cclk_enable |= BIT(slot);
 | |
|     SDMMC.clkena.cclk_low_power |= BIT(slot);
 | |
|     sdmmc_host_clock_update_command(slot);
 | |
| 
 | |
|     // set data timeout
 | |
|     const uint32_t data_timeout_ms = 100;
 | |
|     uint32_t data_timeout_cycles = data_timeout_ms * freq_khz;
 | |
|     const uint32_t data_timeout_cycles_max = 0xffffff;
 | |
|     if (data_timeout_cycles > data_timeout_cycles_max) {
 | |
|         data_timeout_cycles = data_timeout_cycles_max;
 | |
|     }
 | |
|     SDMMC.tmout.data = data_timeout_cycles;
 | |
|     // always set response timeout to highest value, it's small enough anyway
 | |
|     SDMMC.tmout.response = 255;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_start_command(int slot, sdmmc_hw_cmd_t cmd, uint32_t arg) {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if ((SDMMC.cdetect.cards & BIT(slot)) != 0) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
|     if (cmd.data_expected && cmd.rw && (SDMMC.wrtprt.cards & BIT(slot)) != 0) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     while (SDMMC.cmd.start_command == 1) {
 | |
|         ;
 | |
|     }
 | |
|     SDMMC.cmdarg = arg;
 | |
|     cmd.card_num = slot;
 | |
|     cmd.start_command = 1;
 | |
|     SDMMC.cmd = cmd;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_init(void)
 | |
| {
 | |
|     if (s_intr_handle) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     periph_module_reset(PERIPH_SDMMC_MODULE);
 | |
|     periph_module_enable(PERIPH_SDMMC_MODULE);
 | |
| 
 | |
|     // Enable clock to peripheral. Use smallest divider first.
 | |
|     sdmmc_host_set_clk_div(2);
 | |
| 
 | |
|     // Reset
 | |
|     sdmmc_host_reset();
 | |
|     ESP_LOGD(TAG, "peripheral version %x, hardware config %08x", SDMMC.verid, SDMMC.hcon);
 | |
| 
 | |
|     // Clear interrupt status and set interrupt mask to known state
 | |
|     SDMMC.rintsts.val = 0xffffffff;
 | |
|     SDMMC.intmask.val = 0;
 | |
|     SDMMC.ctrl.int_enable = 0;
 | |
| 
 | |
|     // Allocate event queue
 | |
|     s_event_queue = xQueueCreate(SDMMC_EVENT_QUEUE_LENGTH, sizeof(sdmmc_event_t));
 | |
|     if (!s_event_queue) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     s_io_intr_event = xSemaphoreCreateBinary();
 | |
|     if (!s_io_intr_event) {
 | |
|         vQueueDelete(s_event_queue);
 | |
|         s_event_queue = NULL;
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     // Attach interrupt handler
 | |
|     esp_err_t ret = esp_intr_alloc(ETS_SDIO_HOST_INTR_SOURCE, 0, &sdmmc_isr, s_event_queue, &s_intr_handle);
 | |
|     if (ret != ESP_OK) {
 | |
|         vQueueDelete(s_event_queue);
 | |
|         s_event_queue = NULL;
 | |
|         vSemaphoreDelete(s_io_intr_event);
 | |
|         s_io_intr_event = NULL;
 | |
|         return ret;
 | |
|     }
 | |
|     // Enable interrupts
 | |
|     SDMMC.intmask.val =
 | |
|             SDMMC_INTMASK_CD |
 | |
|             SDMMC_INTMASK_CMD_DONE |
 | |
|             SDMMC_INTMASK_DATA_OVER |
 | |
|             SDMMC_INTMASK_RCRC | SDMMC_INTMASK_DCRC |
 | |
|             SDMMC_INTMASK_RTO | SDMMC_INTMASK_DTO | SDMMC_INTMASK_HTO |
 | |
|             SDMMC_INTMASK_SBE | SDMMC_INTMASK_EBE |
 | |
|             SDMMC_INTMASK_RESP_ERR | SDMMC_INTMASK_HLE; //sdio is enabled only when use.
 | |
|     SDMMC.ctrl.int_enable = 1;
 | |
| 
 | |
|     // Disable generation of Busy Clear Interrupt
 | |
|     SDMMC.cardthrctl.busy_clr_int_en = 0;
 | |
| 
 | |
|     // Enable DMA
 | |
|     sdmmc_host_dma_init();
 | |
| 
 | |
|     // Initialize transaction handler
 | |
|     ret = sdmmc_host_transaction_handler_init();
 | |
|     if (ret != ESP_OK) {
 | |
|         vQueueDelete(s_event_queue);
 | |
|         s_event_queue = NULL;
 | |
|         vSemaphoreDelete(s_io_intr_event);
 | |
|         s_io_intr_event = NULL;
 | |
|         esp_intr_free(s_intr_handle);
 | |
|         s_intr_handle = NULL;
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void configure_pin(int pin)
 | |
| {
 | |
|     const int sdmmc_func = 3;
 | |
|     const int drive_strength = 3;
 | |
|     assert(pin!=GPIO_NUM_NC);
 | |
|     gpio_pulldown_dis(pin);
 | |
| 
 | |
|     uint32_t reg = GPIO_PIN_MUX_REG[pin];
 | |
|     assert(reg != UINT32_MAX);
 | |
|     PIN_INPUT_ENABLE(reg);
 | |
|     PIN_FUNC_SELECT(reg, sdmmc_func);
 | |
|     PIN_SET_DRV(reg, drive_strength);
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_init_slot(int slot, const sdmmc_slot_config_t* slot_config)
 | |
| {
 | |
|     if (!s_intr_handle) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (slot_config == NULL) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     bool pullup = slot_config->flags & SDMMC_SLOT_FLAG_INTERNAL_PULLUP;
 | |
|     if (pullup) {
 | |
|         sdmmc_host_pullup_en(slot, slot_config->width);
 | |
|     }
 | |
|     int gpio_cd = slot_config->gpio_cd;
 | |
|     int gpio_wp = slot_config->gpio_wp;
 | |
|     uint8_t slot_width = slot_config->width;
 | |
| 
 | |
|     // Configure pins
 | |
|     const sdmmc_slot_info_t* pslot = &sdmmc_slot_info[slot];
 | |
| 
 | |
|     if (slot_width == SDMMC_SLOT_WIDTH_DEFAULT) {
 | |
|         slot_width = pslot->width;
 | |
|     }
 | |
|     else if (slot_width > pslot->width) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     s_slot_width[slot] = slot_width;
 | |
| 
 | |
|     configure_pin(pslot->clk_gpio);
 | |
|     configure_pin(pslot->cmd_gpio);
 | |
|     configure_pin(pslot->d0_gpio);
 | |
| 
 | |
|     if (slot_width >= 4) {
 | |
|         configure_pin(pslot->d1_gpio);
 | |
|         configure_pin(pslot->d2_gpio);
 | |
|         // Force D3 high to make slave enter SD mode.
 | |
|         // Connect to peripheral after width configuration.
 | |
|         gpio_config_t gpio_conf = {
 | |
|             .pin_bit_mask = BIT64(pslot->d3_gpio),
 | |
|             .mode = GPIO_MODE_OUTPUT ,
 | |
|             .pull_up_en = 0,
 | |
|             .pull_down_en = 0,
 | |
|             .intr_type = GPIO_INTR_DISABLE,
 | |
|         };
 | |
|         gpio_config(&gpio_conf);
 | |
|         gpio_set_level(pslot->d3_gpio, 1);
 | |
|         if (slot_width == 8) {
 | |
|             configure_pin(pslot->d4_gpio);
 | |
|             configure_pin(pslot->d5_gpio);
 | |
|             configure_pin(pslot->d6_gpio);
 | |
|             configure_pin(pslot->d7_gpio);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // SDIO slave interrupt is edge sensitive to ~(int_n | card_int | card_detect)
 | |
|     // set this and card_detect to high to enable sdio interrupt
 | |
|     esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, pslot->card_int, false);
 | |
| 
 | |
|     // Set up Card Detect input
 | |
|     int matrix_in_cd;
 | |
|     if (gpio_cd != SDMMC_SLOT_NO_CD) {
 | |
|         ESP_LOGD(TAG, "using GPIO%d as CD pin", gpio_cd);
 | |
|         esp_rom_gpio_pad_select_gpio(gpio_cd);
 | |
|         gpio_set_direction(gpio_cd, GPIO_MODE_INPUT);
 | |
|         matrix_in_cd = gpio_cd;
 | |
|     } else {
 | |
|         // if not set, default to CD low (card present)
 | |
|         matrix_in_cd = GPIO_MATRIX_CONST_ZERO_INPUT;
 | |
|     }
 | |
|     esp_rom_gpio_connect_in_signal(matrix_in_cd, pslot->card_detect, false);
 | |
| 
 | |
|     // Set up Write Protect input
 | |
|     int matrix_in_wp;
 | |
|     if (gpio_wp != SDMMC_SLOT_NO_WP) {
 | |
|         ESP_LOGD(TAG, "using GPIO%d as WP pin", gpio_wp);
 | |
|         esp_rom_gpio_pad_select_gpio(gpio_wp);
 | |
|         gpio_set_direction(gpio_wp, GPIO_MODE_INPUT);
 | |
|         matrix_in_wp = gpio_wp;
 | |
|     } else {
 | |
|         // if not set, default to WP high (not write protected)
 | |
|         matrix_in_wp = GPIO_MATRIX_CONST_ONE_INPUT;
 | |
|     }
 | |
|     // WP signal is normally active low, but hardware expects
 | |
|     // an active-high signal, so invert it in GPIO matrix
 | |
|     esp_rom_gpio_connect_in_signal(matrix_in_wp, pslot->write_protect, true);
 | |
| 
 | |
|     // By default, set probing frequency (400kHz) and 1-bit bus
 | |
|     esp_err_t ret = sdmmc_host_set_card_clk(slot, 400);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
|     ret = sdmmc_host_set_bus_width(slot, 1);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_deinit(void)
 | |
| {
 | |
|     if (!s_intr_handle) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     esp_intr_free(s_intr_handle);
 | |
|     s_intr_handle = NULL;
 | |
|     vQueueDelete(s_event_queue);
 | |
|     s_event_queue = NULL;
 | |
|     vQueueDelete(s_io_intr_event);
 | |
|     s_io_intr_event = NULL;
 | |
|     sdmmc_host_input_clk_disable();
 | |
|     sdmmc_host_transaction_handler_deinit();
 | |
|     periph_module_disable(PERIPH_SDMMC_MODULE);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_wait_for_event(int tick_count, sdmmc_event_t* out_event)
 | |
| {
 | |
|     if (!out_event) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (!s_event_queue) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     int ret = xQueueReceive(s_event_queue, out_event, tick_count);
 | |
|     if (ret == pdFALSE) {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_set_bus_width(int slot, size_t width)
 | |
| {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (sdmmc_slot_info[slot].width < width) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     const uint16_t mask = BIT(slot);
 | |
|     if (width == 1) {
 | |
|         SDMMC.ctype.card_width_8 &= ~mask;
 | |
|         SDMMC.ctype.card_width &= ~mask;
 | |
|     } else if (width == 4) {
 | |
|         SDMMC.ctype.card_width_8 &= ~mask;
 | |
|         SDMMC.ctype.card_width |= mask;
 | |
|         // D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
 | |
|         configure_pin(sdmmc_slot_info[slot].d3_gpio);
 | |
|     } else if (width == 8) {
 | |
|         SDMMC.ctype.card_width_8 |= mask;
 | |
|         // D3 was set to GPIO high to force slave into SD mode, until 4-bit mode is set
 | |
|         configure_pin(sdmmc_slot_info[slot].d3_gpio);
 | |
|     } else {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     ESP_LOGD(TAG, "slot=%d width=%d", slot, width);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| size_t sdmmc_host_get_slot_width(int slot)
 | |
| {
 | |
|     assert( slot == 0 || slot == 1 );
 | |
|     return s_slot_width[slot];
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_set_bus_ddr_mode(int slot, bool ddr_enabled)
 | |
| {
 | |
|     if (!(slot == 0 || slot == 1)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     if (s_slot_width[slot] == 8 && ddr_enabled) {
 | |
|         ESP_LOGW(TAG, "DDR mode with 8-bit bus width is not supported yet");
 | |
|         // requires reconfiguring controller clock for 2x card frequency
 | |
|         return ESP_ERR_NOT_SUPPORTED;
 | |
|     }
 | |
|     uint32_t mask = BIT(slot);
 | |
|     if (ddr_enabled) {
 | |
|         SDMMC.uhs.ddr |= mask;
 | |
|         SDMMC.emmc_ddr_reg |= mask;
 | |
|     } else {
 | |
|         SDMMC.uhs.ddr &= ~mask;
 | |
|         SDMMC.emmc_ddr_reg &= ~mask;
 | |
|     }
 | |
|     ESP_LOGD(TAG, "slot=%d ddr=%d", slot, ddr_enabled ? 1 : 0);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void sdmmc_host_dma_init(void)
 | |
| {
 | |
|     SDMMC.ctrl.dma_enable = 1;
 | |
|     SDMMC.bmod.val = 0;
 | |
|     SDMMC.bmod.sw_reset = 1;
 | |
|     SDMMC.idinten.ni = 1;
 | |
|     SDMMC.idinten.ri = 1;
 | |
|     SDMMC.idinten.ti = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| void sdmmc_host_dma_stop(void)
 | |
| {
 | |
|     SDMMC.ctrl.use_internal_dma = 0;
 | |
|     SDMMC.ctrl.dma_reset = 1;
 | |
|     SDMMC.bmod.fb = 0;
 | |
|     SDMMC.bmod.enable = 0;
 | |
| }
 | |
| 
 | |
| void sdmmc_host_dma_prepare(sdmmc_desc_t* desc, size_t block_size, size_t data_size)
 | |
| {
 | |
|     // Set size of data and DMA descriptor pointer
 | |
|     SDMMC.bytcnt = data_size;
 | |
|     SDMMC.blksiz = block_size;
 | |
|     SDMMC.dbaddr = desc;
 | |
| 
 | |
|     // Enable everything needed to use DMA
 | |
|     SDMMC.ctrl.dma_enable = 1;
 | |
|     SDMMC.ctrl.use_internal_dma = 1;
 | |
|     SDMMC.bmod.enable = 1;
 | |
|     SDMMC.bmod.fb = 1;
 | |
|     sdmmc_host_dma_resume();
 | |
| }
 | |
| 
 | |
| void sdmmc_host_dma_resume(void)
 | |
| {
 | |
|     SDMMC.pldmnd = 1;
 | |
| }
 | |
| 
 | |
| bool sdmmc_host_card_busy(void)
 | |
| {
 | |
|     return SDMMC.status.data_busy == 1;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_io_int_enable(int slot)
 | |
| {
 | |
|     configure_pin(sdmmc_slot_info[slot].d1_gpio);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_io_int_wait(int slot, TickType_t timeout_ticks)
 | |
| {
 | |
|     /* SDIO interrupts are negedge sensitive ones: the status bit is only set
 | |
|      * when first interrupt triggered.
 | |
|      *
 | |
|      * If D1 GPIO is low when entering this function, we know that interrupt
 | |
|      * (in SDIO sense) has occurred and we don't need to use SDMMC peripheral
 | |
|      * interrupt.
 | |
|      */
 | |
| 
 | |
|     SDMMC.intmask.sdio &= ~BIT(slot);   /* Disable SDIO interrupt */
 | |
|     SDMMC.rintsts.sdio = BIT(slot);
 | |
|     if (gpio_get_level(sdmmc_slot_info[slot].d1_gpio) == 0) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     /* Otherwise, need to wait for an interrupt. Since D1 was high,
 | |
|      * SDMMC peripheral interrupt is guaranteed to trigger on negedge.
 | |
|      */
 | |
|     xSemaphoreTake(s_io_intr_event, 0);
 | |
|     SDMMC.intmask.sdio |= BIT(slot);    /* Re-enable SDIO interrupt */
 | |
| 
 | |
|     if (xSemaphoreTake(s_io_intr_event, timeout_ticks) == pdTRUE) {
 | |
|         return ESP_OK;
 | |
|     } else {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief SDMMC interrupt handler
 | |
|  *
 | |
|  * All communication in SD protocol is driven by the master, and the hardware
 | |
|  * handles things like stop commands automatically.
 | |
|  * So the interrupt handler doesn't need to do much, we just push interrupt
 | |
|  * status into a queue, clear interrupt flags, and let the task currently
 | |
|  * doing communication figure out what to do next.
 | |
|  * This also applies to SDIO interrupts which are generated by the slave.
 | |
|  *
 | |
|  * Card detect interrupts pose a small issue though, because if a card is
 | |
|  * plugged in and out a few times, while there is no task to process
 | |
|  * the events, event queue can become full and some card detect events
 | |
|  * may be dropped. We ignore this problem for now, since the there are no other
 | |
|  * interesting events which can get lost due to this.
 | |
|  */
 | |
| static void sdmmc_isr(void* arg) {
 | |
|     QueueHandle_t queue = (QueueHandle_t) arg;
 | |
|     sdmmc_event_t event;
 | |
|     int higher_priority_task_awoken = pdFALSE;
 | |
| 
 | |
|     uint32_t pending = SDMMC.mintsts.val & 0xFFFF;
 | |
|     SDMMC.rintsts.val = pending;
 | |
|     event.sdmmc_status = pending;
 | |
| 
 | |
|     uint32_t dma_pending = SDMMC.idsts.val;
 | |
|     SDMMC.idsts.val = dma_pending;
 | |
|     event.dma_status = dma_pending & 0x1f;
 | |
| 
 | |
|     if (pending != 0 || dma_pending != 0) {
 | |
|         xQueueSendFromISR(queue, &event, &higher_priority_task_awoken);
 | |
|     }
 | |
| 
 | |
|     uint32_t sdio_pending = SDMMC.mintsts.sdio;
 | |
|     if (sdio_pending) {
 | |
|         // disable the interrupt (no need to clear here, this is done in sdmmc_host_io_wait_int)
 | |
|         SDMMC.intmask.sdio &= ~sdio_pending;
 | |
|         xSemaphoreGiveFromISR(s_io_intr_event, &higher_priority_task_awoken);
 | |
|     }
 | |
| 
 | |
|     if (higher_priority_task_awoken == pdTRUE) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_host_pullup_en(int slot, int width)
 | |
| {
 | |
|     if (width > sdmmc_slot_info[slot].width) {
 | |
|         //in esp32 we only support 8 bit in slot 0, note this is occupied by the flash by default
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     //according to the spec, the host control the clk, we don't to pull it up here
 | |
|     gpio_pullup_en(sdmmc_slot_info[slot].cmd_gpio);
 | |
|     gpio_pullup_en(sdmmc_slot_info[slot].d0_gpio);
 | |
|     if (width >= 4) {
 | |
|         gpio_pullup_en(sdmmc_slot_info[slot].d1_gpio);
 | |
|         gpio_pullup_en(sdmmc_slot_info[slot].d2_gpio);
 | |
|         gpio_pullup_en(sdmmc_slot_info[slot].d3_gpio);
 | |
|     }
 | |
|     if (width == 8) {
 | |
|         gpio_pullup_en(sdmmc_slot_info[slot].d4_gpio);
 | |
|         gpio_pullup_en(sdmmc_slot_info[slot].d5_gpio);
 | |
|         gpio_pullup_en(sdmmc_slot_info[slot].d6_gpio);
 | |
|         gpio_pullup_en(sdmmc_slot_info[slot].d7_gpio);
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 |