mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 21:14:37 +00:00 
			
		
		
		
	 d34a39e9a6
			
		
	
	d34a39e9a6
	
	
	
		
			
			On p4, the clock was configured in the wrong order causing a dropped count on the first transmission. And gdma eof event fails to trigger parlio_tx eof event when transmitting single byte.
		
			
				
	
	
		
			675 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			675 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdatomic.h>
 | |
| #include <sys/cdefs.h>
 | |
| #include <sys/param.h>
 | |
| #include "sdkconfig.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/task.h"
 | |
| #include "freertos/queue.h"
 | |
| #include "freertos/idf_additions.h"
 | |
| #if CONFIG_PARLIO_ENABLE_DEBUG_LOG
 | |
| // The local log level must be defined before including esp_log.h
 | |
| // Set the maximum log level for this source file
 | |
| #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
 | |
| #endif
 | |
| #include "esp_log.h"
 | |
| #include "esp_check.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_err.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_pm.h"
 | |
| #include "soc/parlio_periph.h"
 | |
| #include "hal/parlio_ll.h"
 | |
| #include "hal/gpio_hal.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/parlio_tx.h"
 | |
| #include "parlio_private.h"
 | |
| #include "esp_memory_utils.h"
 | |
| #include "esp_clk_tree.h"
 | |
| #include "esp_private/gdma.h"
 | |
| 
 | |
| static const char *TAG = "parlio-tx";
 | |
| 
 | |
| typedef struct {
 | |
|     uint32_t idle_value; // Parallel IO bus idle value
 | |
|     const void *payload; // payload to be transmitted
 | |
|     size_t payload_bits; // payload size in bits
 | |
| } parlio_tx_trans_desc_t;
 | |
| 
 | |
| typedef struct parlio_tx_unit_t {
 | |
|     int unit_id;           // unit id
 | |
|     size_t data_width;     // data width
 | |
|     parlio_group_t *group; // group handle
 | |
|     intr_handle_t intr;    // allocated interrupt handle
 | |
|     esp_pm_lock_handle_t pm_lock;   // power management lock
 | |
|     gdma_channel_handle_t dma_chan; // DMA channel
 | |
| #if CONFIG_PM_ENABLE
 | |
|     char pm_lock_name[PARLIO_PM_LOCK_NAME_LEN_MAX]; // pm lock name
 | |
| #endif
 | |
|     portMUX_TYPE spinlock;     // prevent resource accessing by user and interrupt concurrently
 | |
|     uint32_t out_clk_freq_hz;  // output clock frequency
 | |
|     size_t max_transfer_bits;  // maximum transfer size in bits
 | |
|     size_t queue_depth;        // size of transaction queue
 | |
|     size_t num_trans_inflight; // indicates the number of transactions that are undergoing but not recycled to ready_queue
 | |
|     QueueHandle_t trans_queues[PARLIO_TX_QUEUE_MAX]; // transaction queues
 | |
|     parlio_tx_trans_desc_t *cur_trans; // points to current transaction
 | |
|     uint32_t idle_value_mask;          // mask of idle value
 | |
|     _Atomic parlio_tx_fsm_t fsm;       // Driver FSM state
 | |
|     parlio_tx_done_callback_t on_trans_done; // callback function when the transmission is done
 | |
|     void *user_data;                   // user data passed to the callback function
 | |
|     parlio_dma_desc_t *dma_nodes; // DMA descriptor nodes
 | |
|     parlio_tx_trans_desc_t trans_desc_pool[];   // transaction descriptor pool
 | |
| } parlio_tx_unit_t;
 | |
| 
 | |
| static void parlio_tx_default_isr(void *args);
 | |
| 
 | |
| static esp_err_t parlio_tx_register_to_group(parlio_tx_unit_t *unit)
 | |
| {
 | |
|     parlio_group_t *group = NULL;
 | |
|     int unit_id = -1;
 | |
|     for (int i = 0; i < SOC_PARLIO_GROUPS; i++) {
 | |
|         group = parlio_acquire_group_handle(i);
 | |
|         ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no memory for group (%d)", i);
 | |
|         portENTER_CRITICAL(&group->spinlock);
 | |
|         for (int j = 0; j < SOC_PARLIO_TX_UNITS_PER_GROUP; j++) {
 | |
|             if (group->tx_units[j] == NULL) {
 | |
|                 group->tx_units[j] = unit;
 | |
|                 unit_id = j;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         portEXIT_CRITICAL(&group->spinlock);
 | |
|         if (unit_id < 0) {
 | |
|             // didn't find a free unit slot in the group
 | |
|             parlio_release_group_handle(group);
 | |
|         } else {
 | |
|             unit->unit_id = unit_id;
 | |
|             unit->group = group;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     ESP_RETURN_ON_FALSE(unit_id >= 0, ESP_ERR_NOT_FOUND, TAG, "no free tx unit");
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void parlio_tx_unregister_to_group(parlio_tx_unit_t *unit, parlio_group_t *group)
 | |
| {
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     group->tx_units[unit->unit_id] = NULL;
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
|     // the tx unit has a reference of the group, release it now
 | |
|     parlio_release_group_handle(group);
 | |
| }
 | |
| 
 | |
| static esp_err_t parlio_tx_create_trans_queue(parlio_tx_unit_t *tx_unit, const parlio_tx_unit_config_t *config)
 | |
| {
 | |
|     esp_err_t ret;
 | |
| 
 | |
|     tx_unit->queue_depth = config->trans_queue_depth;
 | |
|     // Allocate transaction queues. Each queue only holds pointers to the transaction descriptors
 | |
|     for (int i = 0; i < PARLIO_TX_QUEUE_MAX; i++) {
 | |
|         tx_unit->trans_queues[i] = xQueueCreateWithCaps(config->trans_queue_depth, sizeof(parlio_tx_trans_desc_t *), PARLIO_MEM_ALLOC_CAPS);
 | |
|         ESP_GOTO_ON_FALSE(tx_unit->trans_queues[i], ESP_ERR_NO_MEM, exit, TAG, "no mem for queue");
 | |
|     }
 | |
| 
 | |
|     // Initialize the ready queue
 | |
|     parlio_tx_trans_desc_t *p_trans_desc = NULL;
 | |
|     for (int i = 0; i < config->trans_queue_depth; i++) {
 | |
|         p_trans_desc = &tx_unit->trans_desc_pool[i];
 | |
|         ESP_GOTO_ON_FALSE(xQueueSend(tx_unit->trans_queues[PARLIO_TX_QUEUE_READY], &p_trans_desc, 0) == pdTRUE,
 | |
|                           ESP_ERR_INVALID_STATE, exit, TAG, "ready queue full");
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| 
 | |
| exit:
 | |
|     for (int i = 0; i < PARLIO_TX_QUEUE_MAX; i++) {
 | |
|         if (tx_unit->trans_queues[i]) {
 | |
|             vQueueDeleteWithCaps(tx_unit->trans_queues[i]);
 | |
|             tx_unit->trans_queues[i] = NULL;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t parlio_destroy_tx_unit(parlio_tx_unit_t *tx_unit)
 | |
| {
 | |
|     if (tx_unit->intr) {
 | |
|         ESP_RETURN_ON_ERROR(esp_intr_free(tx_unit->intr), TAG, "delete interrupt service failed");
 | |
|     }
 | |
|     if (tx_unit->pm_lock) {
 | |
|         ESP_RETURN_ON_ERROR(esp_pm_lock_delete(tx_unit->pm_lock), TAG, "delete pm lock failed");
 | |
|     }
 | |
|     if (tx_unit->dma_chan) {
 | |
|         ESP_RETURN_ON_ERROR(gdma_disconnect(tx_unit->dma_chan), TAG, "disconnect dma channel failed");
 | |
|         ESP_RETURN_ON_ERROR(gdma_del_channel(tx_unit->dma_chan), TAG, "delete dma channel failed");
 | |
|     }
 | |
|     for (int i = 0; i < PARLIO_TX_QUEUE_MAX; i++) {
 | |
|         if (tx_unit->trans_queues[i]) {
 | |
|             vQueueDeleteWithCaps(tx_unit->trans_queues[i]);
 | |
|         }
 | |
|     }
 | |
|     if (tx_unit->group) {
 | |
|         // de-register from group
 | |
|         parlio_tx_unregister_to_group(tx_unit, tx_unit->group);
 | |
|     }
 | |
|     if (tx_unit->dma_nodes) {
 | |
|         free(tx_unit->dma_nodes);
 | |
|     }
 | |
|     free(tx_unit);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t parlio_tx_unit_configure_gpio(parlio_tx_unit_t *tx_unit, const parlio_tx_unit_config_t *config)
 | |
| {
 | |
|     int group_id = tx_unit->group->group_id;
 | |
|     int unit_id = tx_unit->unit_id;
 | |
|     gpio_config_t gpio_conf = {
 | |
|         .intr_type = GPIO_INTR_DISABLE,
 | |
|         .mode = config->flags.io_loop_back ? GPIO_MODE_INPUT_OUTPUT : GPIO_MODE_OUTPUT,
 | |
|         .pull_down_en = false,
 | |
|         .pull_up_en = true,
 | |
|     };
 | |
| 
 | |
|     // connect peripheral signals via GPIO matrix
 | |
|     for (size_t i = 0; i < config->data_width; i++) {
 | |
|         if (config->data_gpio_nums[i] >= 0) {
 | |
|             gpio_conf.pin_bit_mask = BIT64(config->data_gpio_nums[i]);
 | |
|             ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config data GPIO failed");
 | |
|             esp_rom_gpio_connect_out_signal(config->data_gpio_nums[i],
 | |
|                                             parlio_periph_signals.groups[group_id].tx_units[unit_id].data_sigs[i], false, false);
 | |
|             gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->data_gpio_nums[i]], PIN_FUNC_GPIO);
 | |
|         }
 | |
|     }
 | |
|     // Note: the valid signal will override TXD[PARLIO_LL_TX_DATA_LINE_AS_VALID_SIG]
 | |
|     if (config->valid_gpio_num >= 0) {
 | |
|         gpio_conf.pin_bit_mask = BIT64(config->valid_gpio_num);
 | |
|         ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config valid GPIO failed");
 | |
|         esp_rom_gpio_connect_out_signal(config->valid_gpio_num,
 | |
|                                         parlio_periph_signals.groups[group_id].tx_units[unit_id].data_sigs[PARLIO_LL_TX_DATA_LINE_AS_VALID_SIG],
 | |
|                                         false, false);
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->valid_gpio_num], PIN_FUNC_GPIO);
 | |
|     }
 | |
|     if (config->clk_out_gpio_num >= 0) {
 | |
|         gpio_conf.pin_bit_mask = BIT64(config->clk_out_gpio_num);
 | |
|         ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config clk out GPIO failed");
 | |
|         esp_rom_gpio_connect_out_signal(config->clk_out_gpio_num,
 | |
|                                         parlio_periph_signals.groups[group_id].tx_units[unit_id].clk_out_sig, false, false);
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->clk_out_gpio_num], PIN_FUNC_GPIO);
 | |
|     }
 | |
|     if (config->clk_in_gpio_num >= 0) {
 | |
|         gpio_conf.mode = config->flags.io_loop_back ? GPIO_MODE_INPUT_OUTPUT : GPIO_MODE_INPUT;
 | |
|         gpio_conf.pin_bit_mask = BIT64(config->clk_in_gpio_num);
 | |
|         ESP_RETURN_ON_ERROR(gpio_config(&gpio_conf), TAG, "config clk in GPIO failed");
 | |
|         esp_rom_gpio_connect_in_signal(config->clk_in_gpio_num,
 | |
|                                        parlio_periph_signals.groups[group_id].tx_units[unit_id].clk_in_sig, false);
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->clk_in_gpio_num], PIN_FUNC_GPIO);
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t parlio_tx_unit_init_dma(parlio_tx_unit_t *tx_unit)
 | |
| {
 | |
|     gdma_channel_alloc_config_t dma_chan_config = {
 | |
|         .direction = GDMA_CHANNEL_DIRECTION_TX,
 | |
|     };
 | |
|     ESP_RETURN_ON_ERROR(PARLIO_GDMA_NEW_CHANNEL(&dma_chan_config, &tx_unit->dma_chan), TAG, "allocate TX DMA channel failed");
 | |
|     gdma_connect(tx_unit->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_PARLIO, 0));
 | |
|     gdma_strategy_config_t gdma_strategy_conf = {
 | |
|         .auto_update_desc = true,
 | |
|         .owner_check = true,
 | |
|     };
 | |
|     gdma_apply_strategy(tx_unit->dma_chan, &gdma_strategy_conf);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t parlio_select_periph_clock(parlio_tx_unit_t *tx_unit, const parlio_tx_unit_config_t *config)
 | |
| {
 | |
|     parlio_hal_context_t *hal = &tx_unit->group->hal;
 | |
|     // parlio_ll_clock_source_t and parlio_clock_source_t are binary compatible if the clock source is from internal
 | |
|     parlio_ll_clock_source_t clk_src = (parlio_ll_clock_source_t)(config->clk_src);
 | |
|     uint32_t periph_src_clk_hz = 0;
 | |
|     // if the source clock is input from the GPIO, then we're in the slave mode
 | |
|     if (config->clk_in_gpio_num >= 0) {
 | |
|         clk_src = PARLIO_LL_CLK_SRC_PAD;
 | |
|         periph_src_clk_hz = config->input_clk_src_freq_hz;
 | |
|     } else {
 | |
|         // get the internal clock source frequency
 | |
|         esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &periph_src_clk_hz);
 | |
|     }
 | |
|     ESP_RETURN_ON_FALSE(periph_src_clk_hz, ESP_ERR_INVALID_ARG, TAG, "invalid clock source frequency");
 | |
| 
 | |
| #if CONFIG_PM_ENABLE
 | |
|     if (clk_src != PARLIO_LL_CLK_SRC_PAD) {
 | |
|         // XTAL and PLL clock source will be turned off in light sleep, so we need to create a NO_LIGHT_SLEEP lock
 | |
|         sprintf(tx_unit->pm_lock_name, "parlio_tx_%d_%d", tx_unit->group->group_id, tx_unit->unit_id); // e.g. parlio_tx_0_0
 | |
|         esp_err_t ret  = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, tx_unit->pm_lock_name, &tx_unit->pm_lock);
 | |
|         ESP_RETURN_ON_ERROR(ret, TAG, "create NO_LIGHT_SLEEP lock failed");
 | |
|     }
 | |
| #endif
 | |
|     hal_utils_clk_div_t clk_div = {};
 | |
|     hal_utils_clk_info_t clk_info = {
 | |
|         .src_freq_hz = periph_src_clk_hz,
 | |
|         .exp_freq_hz = config->output_clk_freq_hz,
 | |
|         .max_integ = PARLIO_LL_TX_MAX_CLK_INT_DIV,
 | |
|         .min_integ = 1,
 | |
|         .round_opt = HAL_DIV_ROUND,
 | |
|     };
 | |
| #if PARLIO_LL_TX_MAX_CLK_FRACT_DIV
 | |
|     clk_info.max_fract = PARLIO_LL_TX_MAX_CLK_FRACT_DIV;
 | |
|     tx_unit->out_clk_freq_hz = hal_utils_calc_clk_div_frac_accurate(&clk_info, &clk_div);
 | |
| #else
 | |
|     tx_unit->out_clk_freq_hz = hal_utils_calc_clk_div_integer(&clk_info, &clk_div.integer);
 | |
| #endif
 | |
|     PARLIO_CLOCK_SRC_ATOMIC() {
 | |
|         // turn on the tx module clock to sync the register configuration to the module
 | |
|         parlio_ll_tx_enable_clock(hal->regs, true);
 | |
|         parlio_ll_tx_set_clock_source(hal->regs, clk_src);
 | |
|         // set clock division
 | |
|         parlio_ll_tx_set_clock_div(hal->regs, &clk_div);
 | |
|     }
 | |
|     // precision lost due to division
 | |
|     if (tx_unit->out_clk_freq_hz != config->output_clk_freq_hz) {
 | |
|         ESP_LOGW(TAG, "precision loss, real output frequency: %"PRIu32, tx_unit->out_clk_freq_hz);
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t parlio_new_tx_unit(const parlio_tx_unit_config_t *config, parlio_tx_unit_handle_t *ret_unit)
 | |
| {
 | |
| #if CONFIG_PARLIO_ENABLE_DEBUG_LOG
 | |
|     esp_log_level_set(TAG, ESP_LOG_DEBUG);
 | |
| #endif
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     parlio_tx_unit_t *unit = NULL;
 | |
|     ESP_RETURN_ON_FALSE(config && ret_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     size_t data_width = config->data_width;
 | |
|     // data_width must be power of 2 and less than or equal to SOC_PARLIO_TX_UNIT_MAX_DATA_WIDTH
 | |
|     ESP_RETURN_ON_FALSE(data_width && (data_width <= SOC_PARLIO_TX_UNIT_MAX_DATA_WIDTH) && ((data_width & (data_width - 1)) == 0),
 | |
|                         ESP_ERR_INVALID_ARG, TAG, "invalid data width");
 | |
|     // data_width must not conflict with the valid signal
 | |
|     ESP_RETURN_ON_FALSE(!(config->valid_gpio_num >= 0 && data_width > PARLIO_LL_TX_DATA_LINE_AS_VALID_SIG),
 | |
|                         ESP_ERR_INVALID_ARG, TAG, "valid signal conflicts with data signal");
 | |
|     ESP_RETURN_ON_FALSE(config->max_transfer_size && config->max_transfer_size <= PARLIO_LL_TX_MAX_BITS_PER_FRAME / 8,
 | |
|                         ESP_ERR_INVALID_ARG, TAG, "invalid max transfer size");
 | |
| #if SOC_PARLIO_TX_CLK_SUPPORT_GATING
 | |
|     // clock gating is controlled by either the MSB bit of data bus or the valid signal
 | |
|     ESP_RETURN_ON_FALSE(!(config->flags.clk_gate_en && config->valid_gpio_num < 0 && config->data_width <= PARLIO_LL_TX_DATA_LINE_AS_CLK_GATE),
 | |
|                         ESP_ERR_INVALID_ARG, TAG, "no gpio can control the clock gating");
 | |
| #else
 | |
|     ESP_RETURN_ON_FALSE(config->flags.clk_gate_en == 0, ESP_ERR_NOT_SUPPORTED, TAG, "clock gating is not supported");
 | |
| #endif // SOC_PARLIO_TX_CLK_SUPPORT_GATING
 | |
| 
 | |
|     // malloc unit memory
 | |
|     unit = heap_caps_calloc(1, sizeof(parlio_tx_unit_t) + sizeof(parlio_tx_trans_desc_t) * config->trans_queue_depth, PARLIO_MEM_ALLOC_CAPS);
 | |
|     ESP_GOTO_ON_FALSE(unit, ESP_ERR_NO_MEM, err, TAG, "no memory for tx unit");
 | |
|     size_t dma_nodes_num = config->max_transfer_size / DMA_DESCRIPTOR_BUFFER_MAX_SIZE + 1;
 | |
|     // DMA descriptors must be placed in internal SRAM
 | |
| 
 | |
|     unit->dma_nodes = heap_caps_aligned_calloc(PARLIO_DMA_DESC_ALIGNMENT, dma_nodes_num, sizeof(parlio_dma_desc_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
 | |
|     ESP_GOTO_ON_FALSE(unit->dma_nodes, ESP_ERR_NO_MEM, err, TAG, "no memory for DMA nodes");
 | |
|     // Link the descriptors
 | |
|     for (int i = 0; i < dma_nodes_num; i++) {
 | |
|         unit->dma_nodes[i].next = (i == dma_nodes_num - 1) ? NULL : &(unit->dma_nodes[i+1]);
 | |
|     }
 | |
|     unit->max_transfer_bits = config->max_transfer_size * 8;
 | |
| 
 | |
|     unit->data_width = data_width;
 | |
|     //create transaction queue
 | |
|     ESP_GOTO_ON_ERROR(parlio_tx_create_trans_queue(unit, config), err, TAG, "create transaction queue failed");
 | |
| 
 | |
|     // register the unit to a group
 | |
|     ESP_GOTO_ON_ERROR(parlio_tx_register_to_group(unit), err, TAG, "register unit to group failed");
 | |
|     parlio_group_t *group = unit->group;
 | |
|     parlio_hal_context_t *hal = &group->hal;
 | |
|     // select the clock source
 | |
|     ESP_GOTO_ON_ERROR(parlio_select_periph_clock(unit, config), err, TAG, "set clock source failed");
 | |
| 
 | |
|     // install interrupt service
 | |
|     int isr_flags = PARLIO_INTR_ALLOC_FLAG;
 | |
|     ret = esp_intr_alloc_intrstatus(parlio_periph_signals.groups[group->group_id].tx_irq_id, isr_flags,
 | |
|                                     (uint32_t)parlio_ll_get_interrupt_status_reg(hal->regs),
 | |
|                                     PARLIO_LL_EVENT_TX_EOF, parlio_tx_default_isr, unit, &unit->intr);
 | |
|     ESP_GOTO_ON_ERROR(ret, err, TAG, "install interrupt failed");
 | |
| 
 | |
|     // install DMA service
 | |
|     ESP_GOTO_ON_ERROR(parlio_tx_unit_init_dma(unit), err, TAG, "install tx DMA failed");
 | |
| 
 | |
|     // reset fifo and core clock domain
 | |
|     PARLIO_RCC_ATOMIC() {
 | |
|         parlio_ll_tx_reset_clock(hal->regs);
 | |
|     }
 | |
|     parlio_ll_tx_reset_fifo(hal->regs);
 | |
|     PARLIO_CLOCK_SRC_ATOMIC() {
 | |
|         // stop output clock
 | |
|         parlio_ll_tx_enable_clock(hal->regs, false);
 | |
|     }
 | |
|     // clock gating
 | |
|     parlio_ll_tx_enable_clock_gating(hal->regs, config->flags.clk_gate_en);
 | |
|     // set data width
 | |
|     parlio_ll_tx_set_bus_width(hal->regs, data_width);
 | |
|     unit->idle_value_mask = (1 << data_width) - 1;
 | |
|     // whether to use the valid signal
 | |
|     if (config->valid_gpio_num >= 0) {
 | |
|         parlio_ll_tx_treat_msb_as_valid(hal->regs, true);
 | |
|         unit->idle_value_mask &= ~(1 << PARLIO_LL_TX_DATA_LINE_AS_VALID_SIG);
 | |
|     } else {
 | |
|         parlio_ll_tx_treat_msb_as_valid(hal->regs, false);
 | |
|     }
 | |
|     // set data byte packing order
 | |
|     if (data_width < 8) {
 | |
|         parlio_ll_tx_set_bit_pack_order(hal->regs, config->bit_pack_order);
 | |
|     }
 | |
|     // set sample clock edge
 | |
|     parlio_ll_tx_set_sample_clock_edge(hal->regs, config->sample_edge);
 | |
| 
 | |
| #if SOC_PARLIO_TX_SIZE_BY_DMA
 | |
|     // Always use DATA LEN EOF as the Parlio TX EOF
 | |
|     parlio_ll_tx_set_eof_condition(hal->regs, PARLIO_LL_TX_EOF_COND_DATA_LEN);
 | |
| #endif  // SOC_PARLIO_TX_SIZE_BY_DMA
 | |
| 
 | |
|     // clear any pending interrupt
 | |
|     parlio_ll_clear_interrupt_status(hal->regs, PARLIO_LL_EVENT_TX_MASK);
 | |
| 
 | |
|     // GPIO Matrix/MUX configuration
 | |
|     ESP_GOTO_ON_ERROR(parlio_tx_unit_configure_gpio(unit, config), err, TAG, "configure gpio failed");
 | |
| 
 | |
|     portMUX_INITIALIZE(&unit->spinlock);
 | |
|     atomic_init(&unit->fsm, PARLIO_TX_FSM_INIT);
 | |
|     // return TX unit handle
 | |
|     *ret_unit = unit;
 | |
|     ESP_LOGD(TAG, "new tx unit(%d,%d) at %p, out clk=%"PRIu32"Hz, queue_depth=%zu, idle_mask=%"PRIx32,
 | |
|              group->group_id, unit->unit_id, unit, unit->out_clk_freq_hz, unit->queue_depth, unit->idle_value_mask);
 | |
|     return ESP_OK;
 | |
| 
 | |
| err:
 | |
|     if (unit) {
 | |
|         parlio_destroy_tx_unit(unit);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t parlio_del_tx_unit(parlio_tx_unit_handle_t unit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     ESP_RETURN_ON_FALSE(atomic_load(&unit->fsm) == PARLIO_TX_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "unit not in init state");
 | |
|     ESP_LOGD(TAG, "del tx unit(%d,%d)", unit->group->group_id, unit->unit_id);
 | |
|     return parlio_destroy_tx_unit(unit);
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR parlio_tx_mount_dma_data(parlio_dma_desc_t *desc_head, const void *buffer, size_t len)
 | |
| {
 | |
|     size_t prepared_length = 0;
 | |
|     uint8_t *data = (uint8_t *)buffer;
 | |
|     parlio_dma_desc_t *desc = desc_head;
 | |
| 
 | |
|     while (len) {
 | |
|         parlio_dma_desc_t *non_cache_desc = PARLIO_GET_NON_CACHED_DESC_ADDR(desc);
 | |
|         uint32_t mount_bytes = len > DMA_DESCRIPTOR_BUFFER_MAX_SIZE ? DMA_DESCRIPTOR_BUFFER_MAX_SIZE : len;
 | |
|         len -= mount_bytes;
 | |
|         non_cache_desc->dw0.suc_eof = len == 0;    // whether the last frame
 | |
|         non_cache_desc->dw0.size = mount_bytes;
 | |
|         non_cache_desc->dw0.length = mount_bytes;
 | |
|         non_cache_desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
 | |
|         non_cache_desc->buffer = &data[prepared_length];
 | |
|         desc = desc->next; // move to next descriptor
 | |
|         prepared_length += mount_bytes;
 | |
|     }
 | |
| #if CONFIG_IDF_TARGET_ESP32P4
 | |
|     // Write back to cache to synchronize the cache before DMA start
 | |
|     Cache_WriteBack_Addr(CACHE_MAP_L1_DCACHE, (uint32_t)buffer, len);
 | |
| #endif  // CONFIG_IDF_TARGET_ESP32P4
 | |
| }
 | |
| 
 | |
| esp_err_t parlio_tx_unit_wait_all_done(parlio_tx_unit_handle_t tx_unit, int timeout_ms)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(tx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     TickType_t wait_ticks = timeout_ms < 0 ? portMAX_DELAY : pdMS_TO_TICKS(timeout_ms);
 | |
|     // recycle all pending transactions
 | |
|     parlio_tx_trans_desc_t *t = NULL;
 | |
|     size_t num_trans_inflight = tx_unit->num_trans_inflight;
 | |
|     for (size_t i = 0; i < num_trans_inflight; i++) {
 | |
|         ESP_RETURN_ON_FALSE(xQueueReceive(tx_unit->trans_queues[PARLIO_TX_QUEUE_COMPLETE], &t, wait_ticks) == pdTRUE,
 | |
|                             ESP_ERR_TIMEOUT, TAG, "flush timeout");
 | |
|         ESP_RETURN_ON_FALSE(xQueueSend(tx_unit->trans_queues[PARLIO_TX_QUEUE_READY], &t, 0) == pdTRUE,
 | |
|                             ESP_ERR_INVALID_STATE, TAG, "ready queue full");
 | |
|         tx_unit->num_trans_inflight--;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t parlio_tx_unit_register_event_callbacks(parlio_tx_unit_handle_t tx_unit, const parlio_tx_event_callbacks_t *cbs, void *user_data)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(tx_unit && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
| 
 | |
| #if CONFIG_PARLIO_ISR_IRAM_SAFE
 | |
|     if (cbs->on_trans_done) {
 | |
|         ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_trans_done), ESP_ERR_INVALID_ARG, TAG, "on_trans_done callback not in IRAM");
 | |
|     }
 | |
|     if (user_data) {
 | |
|         ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     tx_unit->on_trans_done = cbs->on_trans_done;
 | |
|     tx_unit->user_data = user_data;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR parlio_tx_do_transaction(parlio_tx_unit_t *tx_unit, parlio_tx_trans_desc_t *t)
 | |
| {
 | |
|     parlio_hal_context_t *hal = &tx_unit->group->hal;
 | |
| 
 | |
|     tx_unit->cur_trans = t;
 | |
| 
 | |
|     // DMA transfer data based on bytes not bits, so convert the bit length to bytes, round up
 | |
|     parlio_tx_mount_dma_data(tx_unit->dma_nodes, t->payload, (t->payload_bits + 7) / 8);
 | |
| 
 | |
|     parlio_ll_tx_reset_fifo(hal->regs);
 | |
|     PARLIO_RCC_ATOMIC() {
 | |
|         parlio_ll_tx_reset_clock(hal->regs);
 | |
|     }
 | |
|     parlio_ll_tx_set_idle_data_value(hal->regs, t->idle_value);
 | |
|     parlio_ll_tx_set_trans_bit_len(hal->regs, t->payload_bits);
 | |
| 
 | |
|     gdma_start(tx_unit->dma_chan, (intptr_t)tx_unit->dma_nodes);
 | |
|     // wait until the data goes from the DMA to TX unit's FIFO
 | |
|     while (parlio_ll_tx_is_ready(hal->regs) == false);
 | |
|     // turn on the core clock after we start the TX unit
 | |
|     parlio_ll_tx_start(hal->regs, true);
 | |
|     PARLIO_CLOCK_SRC_ATOMIC() {
 | |
|         parlio_ll_tx_enable_clock(hal->regs, true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t parlio_tx_unit_enable(parlio_tx_unit_handle_t tx_unit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(tx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     parlio_tx_fsm_t expected_fsm = PARLIO_TX_FSM_INIT;
 | |
|     if (atomic_compare_exchange_strong(&tx_unit->fsm, &expected_fsm, PARLIO_TX_FSM_ENABLE_WAIT)) {
 | |
|         // acquire power management lock
 | |
|         if (tx_unit->pm_lock) {
 | |
|             esp_pm_lock_acquire(tx_unit->pm_lock);
 | |
|         }
 | |
|         parlio_hal_context_t *hal = &tx_unit->group->hal;
 | |
|         parlio_ll_enable_interrupt(hal->regs, PARLIO_LL_EVENT_TX_EOF, true);
 | |
|         atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_ENABLE);
 | |
|     } else {
 | |
|         ESP_RETURN_ON_FALSE(false, ESP_ERR_INVALID_STATE, TAG, "unit not in init state");
 | |
|     }
 | |
| 
 | |
|     // check if we need to start one pending transaction
 | |
|     parlio_tx_trans_desc_t *t = NULL;
 | |
|     expected_fsm = PARLIO_TX_FSM_ENABLE;
 | |
|     if (atomic_compare_exchange_strong(&tx_unit->fsm, &expected_fsm, PARLIO_TX_FSM_RUN_WAIT)) {
 | |
|         // check if we need to start one transaction
 | |
|         if (xQueueReceive(tx_unit->trans_queues[PARLIO_TX_QUEUE_PROGRESS], &t, 0) == pdTRUE) {
 | |
|             // sanity check
 | |
|             assert(t);
 | |
|             atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_RUN);
 | |
|             parlio_tx_do_transaction(tx_unit, t);
 | |
|         } else {
 | |
|             atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_ENABLE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t parlio_tx_unit_disable(parlio_tx_unit_handle_t tx_unit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(tx_unit, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     bool valid_state = false;
 | |
|     // check the supported states, and switch to intermediate state: INIT_WAIT
 | |
|     parlio_tx_fsm_t expected_fsm = PARLIO_TX_FSM_ENABLE;
 | |
|     if (atomic_compare_exchange_strong(&tx_unit->fsm, &expected_fsm, PARLIO_TX_FSM_INIT_WAIT)) {
 | |
|         valid_state = true;
 | |
|     }
 | |
|     expected_fsm = PARLIO_TX_FSM_RUN;
 | |
|     if (atomic_compare_exchange_strong(&tx_unit->fsm, &expected_fsm, PARLIO_TX_FSM_INIT_WAIT)) {
 | |
|         valid_state = true;
 | |
|         assert(tx_unit->cur_trans);
 | |
|         // recycle the interrupted transaction
 | |
|         if (xQueueSend(tx_unit->trans_queues[PARLIO_TX_QUEUE_COMPLETE], &tx_unit->cur_trans, 0) == pdFALSE) {
 | |
|             // this should never happen
 | |
|             valid_state = false;
 | |
|         }
 | |
|         tx_unit->cur_trans = NULL;
 | |
|     }
 | |
|     ESP_RETURN_ON_FALSE(valid_state, ESP_ERR_INVALID_STATE, TAG, "unit can't be disabled in state %d", expected_fsm);
 | |
| 
 | |
|     // stop the TX engine
 | |
|     parlio_hal_context_t *hal = &tx_unit->group->hal;
 | |
|     gdma_stop(tx_unit->dma_chan);
 | |
|     parlio_ll_tx_start(hal->regs, false);
 | |
|     parlio_ll_enable_interrupt(hal->regs, PARLIO_LL_EVENT_TX_EOF, false);
 | |
| 
 | |
|     // release power management lock
 | |
|     if (tx_unit->pm_lock) {
 | |
|         esp_pm_lock_release(tx_unit->pm_lock);
 | |
|     }
 | |
| 
 | |
|     // finally we switch to the INIT state
 | |
|     atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_INIT);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t parlio_tx_unit_transmit(parlio_tx_unit_handle_t tx_unit, const void *payload, size_t payload_bits, const parlio_transmit_config_t *config)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(tx_unit && payload && payload_bits, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     ESP_RETURN_ON_FALSE((payload_bits % tx_unit->data_width) == 0, ESP_ERR_INVALID_ARG, TAG, "payload bit length must align to bus width");
 | |
|     ESP_RETURN_ON_FALSE(payload_bits <= tx_unit->max_transfer_bits, ESP_ERR_INVALID_ARG, TAG, "payload bit length too large");
 | |
| #if !SOC_PARLIO_TRANS_BIT_ALIGN
 | |
|     ESP_RETURN_ON_FALSE((payload_bits % 8) == 0, ESP_ERR_INVALID_ARG, TAG, "payload bit length must be multiple of 8");
 | |
| #endif // !SOC_PARLIO_TRANS_BIT_ALIGN
 | |
| 
 | |
|     TickType_t queue_wait_ticks = portMAX_DELAY;
 | |
|     if (config->flags.queue_nonblocking) {
 | |
|         queue_wait_ticks = 0;
 | |
|     }
 | |
|     parlio_tx_trans_desc_t *t = NULL;
 | |
|     // acquire one transaction description from ready queue or complete queue
 | |
|     if (xQueueReceive(tx_unit->trans_queues[PARLIO_TX_QUEUE_READY], &t, 0) != pdTRUE) {
 | |
|         if (xQueueReceive(tx_unit->trans_queues[PARLIO_TX_QUEUE_COMPLETE], &t, queue_wait_ticks) == pdTRUE) {
 | |
|             tx_unit->num_trans_inflight--;
 | |
|         }
 | |
|     }
 | |
|     ESP_RETURN_ON_FALSE(t, ESP_ERR_INVALID_STATE, TAG, "no free transaction descriptor, please consider increasing trans_queue_depth");
 | |
| 
 | |
|     // fill in the transaction descriptor
 | |
|     memset(t, 0, sizeof(parlio_tx_trans_desc_t));
 | |
|     t->payload = payload;
 | |
|     t->payload_bits = payload_bits;
 | |
|     t->idle_value = config->idle_value & tx_unit->idle_value_mask;
 | |
| 
 | |
|     // send the transaction descriptor to progress queue
 | |
|     ESP_RETURN_ON_FALSE(xQueueSend(tx_unit->trans_queues[PARLIO_TX_QUEUE_PROGRESS], &t, 0) == pdTRUE,
 | |
|                         ESP_ERR_INVALID_STATE, TAG, "failed to send transaction descriptor to progress queue");
 | |
|     tx_unit->num_trans_inflight++;
 | |
| 
 | |
|     // check if we need to start one pending transaction
 | |
|     parlio_tx_fsm_t expected_fsm = PARLIO_TX_FSM_ENABLE;
 | |
|     if (atomic_compare_exchange_strong(&tx_unit->fsm, &expected_fsm, PARLIO_TX_FSM_RUN_WAIT)) {
 | |
|         // check if we need to start one transaction
 | |
|         if (xQueueReceive(tx_unit->trans_queues[PARLIO_TX_QUEUE_PROGRESS], &t, 0) == pdTRUE) {
 | |
|             atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_RUN);
 | |
|             parlio_tx_do_transaction(tx_unit, t);
 | |
|         } else {
 | |
|             atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_ENABLE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR parlio_tx_default_isr(void *args)
 | |
| {
 | |
|     parlio_tx_unit_t *tx_unit = (parlio_tx_unit_t *)args;
 | |
|     parlio_group_t *group = tx_unit->group;
 | |
|     parlio_hal_context_t *hal = &group->hal;
 | |
|     BaseType_t high_task_woken = pdFALSE;
 | |
|     bool need_yield = false;
 | |
| 
 | |
|     uint32_t status = parlio_ll_tx_get_interrupt_status(hal->regs);
 | |
| 
 | |
|     if (status & PARLIO_LL_EVENT_TX_EOF) {
 | |
|         parlio_ll_clear_interrupt_status(hal->regs, PARLIO_LL_EVENT_TX_EOF);
 | |
|         PARLIO_CLOCK_SRC_ATOMIC() {
 | |
|             parlio_ll_tx_enable_clock(hal->regs, false);
 | |
|         }
 | |
|         parlio_ll_tx_start(hal->regs, false);
 | |
| 
 | |
|         parlio_tx_trans_desc_t *trans_desc = NULL;
 | |
| 
 | |
|         parlio_tx_fsm_t expected_fsm = PARLIO_TX_FSM_RUN;
 | |
|         if (atomic_compare_exchange_strong(&tx_unit->fsm, &expected_fsm, PARLIO_TX_FSM_ENABLE_WAIT)) {
 | |
|             trans_desc = tx_unit->cur_trans;
 | |
|             // move current finished transaction to the complete queue
 | |
|             xQueueSendFromISR(tx_unit->trans_queues[PARLIO_TX_QUEUE_COMPLETE], &trans_desc, &high_task_woken);
 | |
|             if (high_task_woken == pdTRUE) {
 | |
|                 need_yield = true;
 | |
|             }
 | |
|             tx_unit->cur_trans = NULL;
 | |
|             atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_ENABLE);
 | |
|         }
 | |
| 
 | |
|         // invoke callback
 | |
|         parlio_tx_done_callback_t done_cb = tx_unit->on_trans_done;
 | |
|         if (done_cb) {
 | |
|             if (done_cb(tx_unit, NULL, tx_unit->user_data)) {
 | |
|                 need_yield = true;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // if the tx unit is till in enable state (i.e. not disabled by user), let's try start the next pending transaction
 | |
|         expected_fsm = PARLIO_TX_FSM_ENABLE;
 | |
|         if (atomic_compare_exchange_strong(&tx_unit->fsm, &expected_fsm, PARLIO_TX_FSM_RUN_WAIT)) {
 | |
|             if (xQueueReceiveFromISR(tx_unit->trans_queues[PARLIO_TX_QUEUE_PROGRESS], &trans_desc, &high_task_woken) == pdTRUE) {
 | |
|                 // sanity check
 | |
|                 assert(trans_desc);
 | |
|                 atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_RUN);
 | |
|                 parlio_tx_do_transaction(tx_unit, trans_desc);
 | |
|                 if (high_task_woken == pdTRUE) {
 | |
|                     need_yield = true;
 | |
|                 }
 | |
|             } else {
 | |
|                 atomic_store(&tx_unit->fsm, PARLIO_TX_FSM_ENABLE);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (need_yield) {
 | |
|             portYIELD_FROM_ISR();
 | |
|         }
 | |
|     }
 | |
| }
 |