mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 21:14:37 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <string.h>
 | |
| #include <sys/param.h>
 | |
| #include "esp_log.h"
 | |
| #include "driver/spi_master.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "essl_internal.h"
 | |
| #include "essl_spi.h"
 | |
| #include "essl_spi/esp32s2_defs.h"
 | |
| 
 | |
| #define ESSL_SPI_CHECK(cond, warn, ret) do{if(!(cond)){ESP_LOGE(TAG, warn); return ret;}} while(0)
 | |
| 
 | |
| /**
 | |
|  * Initialise device function list of SPI by this macro.
 | |
|  */
 | |
| #define ESSL_SPI_DEFAULT_DEV_FUNC() (essl_dev_t) {\
 | |
|     .get_tx_buffer_num = essl_spi_get_tx_buffer_num,\
 | |
|     .update_tx_buffer_num = essl_spi_update_tx_buffer_num,\
 | |
|     .get_rx_data_size = essl_spi_get_rx_data_size,\
 | |
|     .update_rx_data_size = essl_spi_update_rx_data_size,\
 | |
|     .send_packet = essl_spi_send_packet,\
 | |
|     .get_packet = essl_spi_get_packet,\
 | |
|     .write_reg = essl_spi_write_reg,\
 | |
|     .read_reg = essl_spi_read_reg,\
 | |
| }
 | |
| 
 | |
| static const char TAG[] = "essl_spi";
 | |
| 
 | |
| typedef struct {
 | |
|     spi_device_handle_t     spi;                    // Pointer to SPI device handle.
 | |
|     /* Master TX, Slave RX */
 | |
|     struct {
 | |
|         size_t                  sent_buf_num;           // Number of TX buffers that has been sent out by the master.
 | |
|         size_t                  slave_rx_buf_num;       // Number of RX buffers laoded by the slave.
 | |
|         uint16_t                tx_buffer_size;         /* Buffer size for Master TX / Slave RX direction.
 | |
|                                                          * Data with length within this size will still be regarded as one buffer.
 | |
|                                                          * E.g. 10 bytes data costs 2 buffers if the size is 8 bytes per buffer. */
 | |
|         uint8_t                 tx_sync_reg;            // The pre-negotiated register ID for Master-TX-SLAVE-RX synchronization. 1 word (4 Bytes) will be reserved for the synchronization.
 | |
|     } master_out;
 | |
|     /* Master RX, Slave TX */
 | |
|     struct {
 | |
|         size_t                  received_bytes;         // Number of the RX bytes that has been received by the Master.
 | |
|         size_t                  slave_tx_bytes;         // Number of the TX bytes that has been loaded by the Slave
 | |
|         uint8_t                 rx_sync_reg;            // The pre-negotiated register ID for Master-RX-SLAVE-TX synchronization. 1 word (4 Bytes) will be reserved for the synchronization.
 | |
|     } master_in;
 | |
| } essl_spi_context_t;
 | |
| 
 | |
| 
 | |
| static uint16_t get_hd_command(uint16_t cmd_i, uint32_t flags)
 | |
| {
 | |
|     //have no prefixes
 | |
|     if (cmd_i == CMD_HD_EN_QPI_REG) return cmd_i;
 | |
|     //doesn't support 4-line commands
 | |
|     if(flags & SPI_TRANS_MODE_QIO && flags & SPI_TRANS_MODE_DIOQIO_ADDR &&
 | |
|        (cmd_i == CMD_HD_WR_END_REG || cmd_i == CMD_HD_INT0_REG ||
 | |
|        cmd_i == CMD_HD_INT1_REG || cmd_i == CMD_HD_INT2_REG)) {
 | |
|            //the transaction will be sent in corresponding 1/2/4 bit mode, without address and data.
 | |
|            //the CMD will have no 0xA- prefix
 | |
|            return cmd_i;
 | |
|     }
 | |
| 
 | |
|     if (flags & SPI_TRANS_MODE_DIO) {
 | |
|         if (flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
 | |
|             return cmd_i | CMD_HD_DIO_MODE;
 | |
|         } else {
 | |
|             return cmd_i | CMD_HD_DOUT_MODE;
 | |
|         }
 | |
|     } else if (flags & SPI_TRANS_MODE_QIO) {
 | |
|         if (flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
 | |
|             return cmd_i | CMD_HD_QIO_MODE;
 | |
|         } else {
 | |
|             return cmd_i | CMD_HD_QOUT_MODE;
 | |
|         }
 | |
|     }
 | |
|     return cmd_i | CMD_HD_ONEBIT_MODE;
 | |
| }
 | |
| 
 | |
| static int get_hd_dummy_bits(uint32_t flags)
 | |
| {
 | |
|     //dummy is always 4 cycles when dual or quad mode is enabled. Otherwise 8 cycles in normal mode.
 | |
|     if (flags & (SPI_TRANS_MODE_DIO | SPI_TRANS_MODE_QIO)) {
 | |
|         return 4;
 | |
|     } else {
 | |
|         return 8;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_rdbuf(spi_device_handle_t spi, uint8_t *out_data, int addr, int len, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_ext_t t = {
 | |
|         .base = {
 | |
|             .cmd = get_hd_command(CMD_HD_RDBUF_REG, flags),
 | |
|             .addr = addr % 72,
 | |
|             .rxlength = len * 8,
 | |
|             .rx_buffer = out_data,
 | |
|             .flags = flags | SPI_TRANS_VARIABLE_DUMMY,
 | |
|         },
 | |
|         .dummy_bits = get_hd_dummy_bits(flags),
 | |
|     };
 | |
| 
 | |
|     return spi_device_transmit(spi, (spi_transaction_t*)&t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_rdbuf_polling(spi_device_handle_t spi, uint8_t *out_data, int addr, int len, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_ext_t t = {
 | |
|         .base = {
 | |
|             .cmd = get_hd_command(CMD_HD_RDBUF_REG, flags),
 | |
|             .addr = addr % 72,
 | |
|             .rxlength = len * 8,
 | |
|             .rx_buffer = out_data,
 | |
|             .flags = flags | SPI_TRANS_VARIABLE_DUMMY,
 | |
|         },
 | |
|         .dummy_bits = get_hd_dummy_bits(flags),
 | |
|     };
 | |
| 
 | |
|     return spi_device_polling_transmit(spi, (spi_transaction_t*)&t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_wrbuf(spi_device_handle_t spi, const uint8_t *data, int addr, int len, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_ext_t t = {
 | |
|         .base = {
 | |
|             .cmd = get_hd_command(CMD_HD_WRBUF_REG, flags),
 | |
|             .addr = addr % 72,
 | |
|             .length = len * 8,
 | |
|             .tx_buffer = data,
 | |
|             .flags = flags | SPI_TRANS_VARIABLE_DUMMY,
 | |
|         },
 | |
|         .dummy_bits = get_hd_dummy_bits(flags),
 | |
|     };
 | |
|     return spi_device_transmit(spi, (spi_transaction_t*)&t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_wrbuf_polling(spi_device_handle_t spi, const uint8_t *data, int addr, int len, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_ext_t t = {
 | |
|         .base = {
 | |
|             .cmd = get_hd_command(CMD_HD_WRBUF_REG, flags),
 | |
|             .addr = addr % 72,
 | |
|             .length = len * 8,
 | |
|             .tx_buffer = data,
 | |
|             .flags = flags | SPI_TRANS_VARIABLE_DUMMY,
 | |
|         },
 | |
|         .dummy_bits = get_hd_dummy_bits(flags),
 | |
|     };
 | |
|     return spi_device_polling_transmit(spi, (spi_transaction_t*)&t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_rddma_seg(spi_device_handle_t spi, uint8_t *out_data, int seg_len, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_ext_t t = {
 | |
|         .base = {
 | |
|             .cmd = get_hd_command(CMD_HD_RDDMA_REG, flags),
 | |
|             .rxlength = seg_len * 8,
 | |
|             .rx_buffer = out_data,
 | |
|             .flags = flags | SPI_TRANS_VARIABLE_DUMMY,
 | |
|         },
 | |
|         .dummy_bits = get_hd_dummy_bits(flags),
 | |
|     };
 | |
|     return spi_device_transmit(spi, (spi_transaction_t*)&t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_rddma_done(spi_device_handle_t spi, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_t end_t = {
 | |
|         .cmd = get_hd_command(CMD_HD_INT0_REG, flags),
 | |
|         .flags = flags,
 | |
|     };
 | |
|     return spi_device_transmit(spi, &end_t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_rddma(spi_device_handle_t spi, uint8_t *out_data, int len, int seg_len, uint32_t flags)
 | |
| {
 | |
|     if (!esp_ptr_dma_capable(out_data) || ((intptr_t)out_data % 4) != 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     seg_len = (seg_len > 0)? seg_len : len;
 | |
| 
 | |
|     uint8_t* read_ptr = out_data;
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     while (len > 0) {
 | |
|         int send_len = MIN(seg_len, len);
 | |
| 
 | |
|         ret = essl_spi_rddma_seg(spi, read_ptr, send_len, flags);
 | |
|         if (ret != ESP_OK) return ret;
 | |
| 
 | |
|         len -= send_len;
 | |
|         read_ptr += send_len;
 | |
|     }
 | |
|     return essl_spi_rddma_done(spi, flags);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_wrdma_seg(spi_device_handle_t spi, const uint8_t *data, int seg_len, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_ext_t t = {
 | |
|         .base = {
 | |
|             .cmd = get_hd_command(CMD_HD_WRDMA_REG, flags),
 | |
|             .length = seg_len * 8,
 | |
|             .tx_buffer = data,
 | |
|             .flags = flags | SPI_TRANS_VARIABLE_DUMMY,
 | |
|         },
 | |
|         .dummy_bits = get_hd_dummy_bits(flags),
 | |
|     };
 | |
|     return spi_device_transmit(spi, (spi_transaction_t*)&t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_wrdma_done(spi_device_handle_t spi, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_t end_t = {
 | |
|         .cmd = get_hd_command(CMD_HD_WR_END_REG, flags),
 | |
|         .flags = flags,
 | |
|     };
 | |
|     return spi_device_transmit(spi, &end_t);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_wrdma(spi_device_handle_t spi, const uint8_t *data, int len, int seg_len, uint32_t flags)
 | |
| {
 | |
|     if (!esp_ptr_dma_capable(data)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     seg_len = (seg_len > 0)? seg_len : len;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         int send_len = MIN(seg_len, len);
 | |
| 
 | |
|         esp_err_t ret = essl_spi_wrdma_seg(spi, data, send_len, flags);
 | |
|         if (ret != ESP_OK) return ret;
 | |
| 
 | |
|         len -= send_len;
 | |
|         data += send_len;
 | |
|     }
 | |
| 
 | |
|     return essl_spi_wrdma_done(spi, flags);
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_int(spi_device_handle_t spi, int int_n, uint32_t flags)
 | |
| {
 | |
|     spi_transaction_t end_t = {
 | |
|         .cmd = get_hd_command(CMD_HD_INT0_REG + int_n, flags),
 | |
|         .flags = flags,
 | |
|     };
 | |
|     return spi_device_transmit(spi, &end_t);
 | |
| }
 | |
| 
 | |
| //------------------------------------ APPEND MODE ----------------------------------//
 | |
| static uint32_t essl_spi_get_rx_data_size(void *arg);
 | |
| static esp_err_t essl_spi_update_rx_data_size(void *arg, uint32_t wait_ms);
 | |
| static uint32_t essl_spi_get_tx_buffer_num(void *arg);
 | |
| static esp_err_t essl_spi_update_tx_buffer_num(void *arg, uint32_t wait_ms);
 | |
| 
 | |
| esp_err_t essl_spi_init_dev(essl_handle_t *out_handle, const essl_spi_config_t *init_config)
 | |
| {
 | |
|     ESSL_SPI_CHECK(init_config->spi, "Check SPI initialization first", ESP_ERR_INVALID_STATE);
 | |
|     ESSL_SPI_CHECK(init_config->tx_sync_reg <= (SOC_SPI_MAXIMUM_BUFFER_SIZE - 1) * 4, "tx_sync_reg ID larger than interal register length", ESP_ERR_INVALID_ARG);
 | |
|     ESSL_SPI_CHECK(init_config->rx_sync_reg <= (SOC_SPI_MAXIMUM_BUFFER_SIZE - 1) * 4, "rx_sync_reg ID larger than interal register length", ESP_ERR_INVALID_ARG);
 | |
|     ESSL_SPI_CHECK(init_config->tx_sync_reg != init_config->rx_sync_reg, "Should use different word of registers for synchronization", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     essl_spi_context_t *context = calloc(1, sizeof(essl_spi_context_t));
 | |
|     essl_dev_t *dev = calloc(1, sizeof(essl_dev_t));
 | |
|     if (!context || !dev) {
 | |
|         free(context);
 | |
|         free(dev);
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
| 
 | |
|     *context = (essl_spi_context_t) {
 | |
|         .spi = *init_config->spi,
 | |
|         .master_out.tx_buffer_size = init_config->tx_buf_size,
 | |
|         .master_out.tx_sync_reg = init_config->tx_sync_reg,
 | |
|         .master_in.rx_sync_reg = init_config->rx_sync_reg
 | |
|     };
 | |
| 
 | |
|     *dev = ESSL_SPI_DEFAULT_DEV_FUNC();
 | |
|     dev->args = context;
 | |
| 
 | |
|     *out_handle = dev;
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_deinit_dev(essl_handle_t handle)
 | |
| {
 | |
|     ESSL_SPI_CHECK(handle, "ESSL SPI is not in use", ESP_ERR_INVALID_STATE);
 | |
|     free(handle->args);
 | |
|     free(handle);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| void essl_spi_reset_cnt(void *arg)
 | |
| {
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     if (ctx) {
 | |
|         ctx->master_out.sent_buf_num = 0;
 | |
|         ctx->master_in.received_bytes = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //------------------------------------ RX ----------------------------------//
 | |
| esp_err_t essl_spi_read_reg(void *arg, uint8_t addr, uint8_t *out_value, uint32_t wait_ms)
 | |
| {
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     ESSL_SPI_CHECK(arg, "Check ESSL SPI initialization first", ESP_ERR_INVALID_STATE);
 | |
|     uint8_t reserved_1_head = ctx->master_out.tx_sync_reg < ctx->master_in.rx_sync_reg ? ctx->master_out.tx_sync_reg : ctx->master_in.rx_sync_reg;
 | |
|     uint8_t reserved_1_tail = reserved_1_head + 3;
 | |
|     uint8_t reserved_2_head = ctx->master_out.tx_sync_reg < ctx->master_in.rx_sync_reg ? ctx->master_in.rx_sync_reg : ctx->master_out.tx_sync_reg;
 | |
|     uint8_t reserved_2_tail = reserved_2_head + 3;
 | |
|     ESSL_SPI_CHECK(addr < reserved_1_head || (addr > reserved_1_tail && addr < reserved_2_head) || addr > reserved_2_tail, "Invalid address", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     return essl_spi_rdbuf(ctx->spi, out_value, addr, sizeof(uint8_t), 0);
 | |
| }
 | |
| 
 | |
| static uint32_t essl_spi_get_rx_data_size(void *arg)
 | |
| {
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     ESP_LOGV(TAG, "slave tx buffer: %d bytes, master has read: %d bytes", ctx->master_in.slave_tx_bytes, ctx->master_in.received_bytes);
 | |
|     return ctx->master_in.slave_tx_bytes - ctx->master_in.received_bytes;
 | |
| }
 | |
| 
 | |
| static esp_err_t essl_spi_update_rx_data_size(void *arg, uint32_t wait_ms)
 | |
| {
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     uint32_t updated_size;
 | |
|     uint32_t previous_size;
 | |
|     esp_err_t ret;
 | |
| 
 | |
|     ret = essl_spi_rdbuf_polling(ctx->spi, (uint8_t *)&previous_size, ctx->master_in.rx_sync_reg, sizeof(uint32_t), 0);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Read until the last 2 reading result are same. Reason:
 | |
|      * SPI transaction is carried on per 1 Byte. So when Master is reading the shared register, if the
 | |
|      * register value is changed by Slave at this time, Master may get wrong data.
 | |
|      */
 | |
|     while (1) {
 | |
|         ret = essl_spi_rdbuf_polling(ctx->spi, (uint8_t *)&updated_size, ctx->master_in.rx_sync_reg, sizeof(uint32_t), 0);
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
|         if (updated_size == previous_size) {
 | |
|             ctx->master_in.slave_tx_bytes = updated_size;
 | |
|             ESP_LOGV(TAG, "updated: slave prepared tx buffer is: %d bytes", updated_size);
 | |
|             return ret;
 | |
|         }
 | |
|         previous_size = updated_size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_get_packet(void *arg, void *out_data, size_t size, uint32_t wait_ms)
 | |
| {
 | |
|     ESSL_SPI_CHECK(arg, "Check ESSL SPI initialization first", ESP_ERR_INVALID_STATE);
 | |
|     if (!esp_ptr_dma_capable(out_data) || ((intptr_t)out_data % 4) != 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     esp_err_t ret;
 | |
| 
 | |
|     if (essl_spi_get_rx_data_size(arg) < size) {
 | |
|         /**
 | |
|          * For realistic situation, usually there will be a large overhead (Slave will load large amount of data),
 | |
|          * so here we only update the Slave's TX size when the last-updated size is smaller than what Master requires.
 | |
|          */
 | |
|         ret = essl_spi_update_rx_data_size(arg, wait_ms);
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         //Slave still did not load enough size of buffer
 | |
|         if (essl_spi_get_rx_data_size(arg) < size) {
 | |
|             ESP_LOGV(TAG, "slave buffer: %d is not enough, %d is required", ctx->master_in.slave_tx_bytes, ctx->master_in.received_bytes + size);
 | |
|             return ESP_ERR_NOT_FOUND;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ESP_LOGV(TAG, "get_packet: size to read is: %d", size);
 | |
|     ret = essl_spi_rddma_seg(ctx->spi, out_data, size, 0);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
|     ctx->master_in.received_bytes += size;
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| //------------------------------------ TX ----------------------------------//
 | |
| esp_err_t essl_spi_write_reg(void *arg, uint8_t addr, uint8_t value, uint8_t *out_value, uint32_t wait_ms)
 | |
| {
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     ESSL_SPI_CHECK(arg, "Check ESSL SPI initialization first", ESP_ERR_INVALID_STATE);
 | |
|     uint8_t reserved_1_head = ctx->master_out.tx_sync_reg < ctx->master_in.rx_sync_reg ? ctx->master_out.tx_sync_reg : ctx->master_in.rx_sync_reg;
 | |
|     uint8_t reserved_1_tail = reserved_1_head + 3;
 | |
|     uint8_t reserved_2_head = ctx->master_out.tx_sync_reg < ctx->master_in.rx_sync_reg ? ctx->master_in.rx_sync_reg : ctx->master_out.tx_sync_reg;
 | |
|     uint8_t reserved_2_tail = reserved_2_head + 3;
 | |
|     ESSL_SPI_CHECK(addr < reserved_1_head || (addr > reserved_1_tail && addr < reserved_2_head) || addr > reserved_2_tail, "Invalid address", ESP_ERR_INVALID_ARG);
 | |
|     ESSL_SPI_CHECK(out_value == NULL, "This feature is not supported", ESP_ERR_NOT_SUPPORTED);
 | |
| 
 | |
|     return essl_spi_wrbuf(ctx->spi, &value, addr, sizeof(uint8_t), 0);
 | |
| }
 | |
| 
 | |
| static uint32_t essl_spi_get_tx_buffer_num(void *arg)
 | |
| {
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     ESP_LOGV(TAG, "slave rx buffer: %d, master has sent: %d", ctx->master_out.slave_rx_buf_num, ctx->master_out.sent_buf_num);
 | |
|     return ctx->master_out.slave_rx_buf_num - ctx->master_out.sent_buf_num;
 | |
| }
 | |
| 
 | |
| static esp_err_t essl_spi_update_tx_buffer_num(void *arg, uint32_t wait_ms)
 | |
| {
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     uint32_t updated_num;
 | |
|     uint32_t previous_size;
 | |
|     esp_err_t ret;
 | |
| 
 | |
|     ret = essl_spi_rdbuf_polling(ctx->spi, (uint8_t *)&previous_size, ctx->master_out.tx_sync_reg, sizeof(uint32_t), 0);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Read until the last 2 reading result are same. Reason:
 | |
|      * SPI transaction is carried on per 1 Byte. So when Master is reading the shared register, if the
 | |
|      * register value is changed by Slave at this time, Master may get wrong data.
 | |
|      */
 | |
|     while (1) {
 | |
|         ret = essl_spi_rdbuf_polling(ctx->spi, (uint8_t *)&updated_num, ctx->master_out.tx_sync_reg, sizeof(uint32_t), 0);
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
|         if (updated_num == previous_size) {
 | |
|             ctx->master_out.slave_rx_buf_num = updated_num;
 | |
|             ESP_LOGV(TAG, "updated: slave prepared rx buffer: %d", updated_num);
 | |
|             return ret;
 | |
|         }
 | |
|         previous_size = updated_num;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t essl_spi_send_packet(void *arg, const void *data, size_t size, uint32_t wait_ms)
 | |
| {
 | |
|     ESSL_SPI_CHECK(arg, "Check ESSL SPI initialization first", ESP_ERR_INVALID_STATE);
 | |
|     if (!esp_ptr_dma_capable(data)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     essl_spi_context_t *ctx = arg;
 | |
|     esp_err_t ret;
 | |
|     uint32_t buf_num_to_use = (size + ctx->master_out.tx_buffer_size - 1) / ctx->master_out.tx_buffer_size;
 | |
| 
 | |
|     if (essl_spi_get_tx_buffer_num(arg) < buf_num_to_use) {
 | |
|         /**
 | |
|          * For realistic situation, usually there will be a large overhead (Slave will load enough number of RX buffers),
 | |
|          * so here we only update the Slave's RX buffer number when the last-updated number is smaller than what Master requires.
 | |
|          */
 | |
|         ret = essl_spi_update_tx_buffer_num(arg, wait_ms);
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
|         //Slave still did not load a sufficient amount of buffers
 | |
|         if (essl_spi_get_tx_buffer_num(arg) < buf_num_to_use) {
 | |
|             ESP_LOGV(TAG, "slave buffer: %d is not enough, %d is required", ctx->master_out.slave_rx_buf_num, ctx->master_out.sent_buf_num + buf_num_to_use);
 | |
|             return ESP_ERR_NOT_FOUND;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ESP_LOGV(TAG, "send_packet: size to write is: %d", size);
 | |
|     ret = essl_spi_wrdma_seg(ctx->spi, data, size, 0);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     }
 | |
|     ctx->master_out.sent_buf_num += buf_num_to_use;
 | |
| 
 | |
|     return essl_spi_wrdma_done(ctx->spi, 0);
 | |
| }
 | 
