mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 12:50:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			662 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			662 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <sys/param.h> // For MIN/MAX
 | |
| #include "spi_flash_chip_generic.h"
 | |
| #include "spi_flash_defs.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_attr.h"
 | |
| 
 | |
| typedef struct flash_chip_dummy {
 | |
|     uint8_t dio_dummy_bitlen;
 | |
|     uint8_t qio_dummy_bitlen;
 | |
|     uint8_t qout_dummy_bitlen;
 | |
|     uint8_t dout_dummy_bitlen;
 | |
|     uint8_t fastrd_dummy_bitlen;
 | |
|     uint8_t slowrd_dummy_bitlen;
 | |
| } flash_chip_dummy_t;
 | |
| 
 | |
| // These parameters can be placed in the ROM. For now we use the code in IDF.
 | |
| DRAM_ATTR const static flash_chip_dummy_t default_flash_chip_dummy = {
 | |
|     .dio_dummy_bitlen = SPI_FLASH_DIO_DUMMY_BITLEN,
 | |
|     .qio_dummy_bitlen = SPI_FLASH_QIO_DUMMY_BITLEN,
 | |
|     .qout_dummy_bitlen = SPI_FLASH_QOUT_DUMMY_BITLEN,
 | |
|     .dout_dummy_bitlen = SPI_FLASH_DOUT_DUMMY_BITLEN,
 | |
|     .fastrd_dummy_bitlen = SPI_FLASH_FASTRD_DUMMY_BITLEN,
 | |
|     .slowrd_dummy_bitlen = SPI_FLASH_SLOWRD_DUMMY_BITLEN,
 | |
| };
 | |
| 
 | |
| DRAM_ATTR flash_chip_dummy_t *rom_flash_chip_dummy = (flash_chip_dummy_t *)&default_flash_chip_dummy;
 | |
| 
 | |
| #define SPI_FLASH_DEFAULT_IDLE_TIMEOUT_MS           200
 | |
| #define SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT_MS     4000
 | |
| #define SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT_MS   600  //according to GD25Q127(125°) + 100ms
 | |
| #define SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT_MS    4100  //according to GD25Q127(125°) + 100ms
 | |
| #define SPI_FLASH_GENERIC_PAGE_PROGRAM_TIMEOUT_MS   500
 | |
| 
 | |
| #define HOST_DELAY_INTERVAL_US                      1
 | |
| #define CHIP_WAIT_IDLE_INTERVAL_US                  20
 | |
| 
 | |
| const DRAM_ATTR flash_chip_op_timeout_t spi_flash_chip_generic_timeout = {
 | |
|     .idle_timeout = SPI_FLASH_DEFAULT_IDLE_TIMEOUT_MS * 1000,
 | |
|     .chip_erase_timeout = SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT_MS * 1000,
 | |
|     .block_erase_timeout = SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT_MS * 1000,
 | |
|     .sector_erase_timeout = SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT_MS * 1000,
 | |
|     .page_program_timeout = SPI_FLASH_GENERIC_PAGE_PROGRAM_TIMEOUT_MS * 1000,
 | |
| };
 | |
| 
 | |
| static const char TAG[] = "chip_generic";
 | |
| 
 | |
| #ifndef CONFIG_SPI_FLASH_ROM_IMPL
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_probe(esp_flash_t *chip, uint32_t flash_id)
 | |
| {
 | |
|     // This is the catch-all probe function, claim the chip always if nothing
 | |
|     // else has claimed it yet.
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_reset(esp_flash_t *chip)
 | |
| {
 | |
|     //this is written following the winbond spec..
 | |
|     spi_flash_trans_t t;
 | |
|     t = (spi_flash_trans_t) {
 | |
|         .command = CMD_RST_EN,
 | |
|     };
 | |
|     esp_err_t err = chip->host->driver->common_command(chip->host, &t);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     t = (spi_flash_trans_t) {
 | |
|         .command = CMD_RST_DEV,
 | |
|     };
 | |
|     err = chip->host->driver->common_command(chip->host, &t);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_detect_size(esp_flash_t *chip, uint32_t *size)
 | |
| {
 | |
|     uint32_t id = chip->chip_id;
 | |
|     *size = 0;
 | |
| 
 | |
|     /* Can't detect size unless the high byte of the product ID matches the same convention, which is usually 0x40 or
 | |
|      * 0xC0 or similar. */
 | |
|     if (((id & 0xFFFF) == 0x0000) || ((id & 0xFFFF) == 0xFFFF)) {
 | |
|         return ESP_ERR_FLASH_UNSUPPORTED_CHIP;
 | |
|     }
 | |
| 
 | |
|     *size = 1 << (id & 0xFF);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_erase_chip(esp_flash_t *chip)
 | |
| {
 | |
|     esp_err_t err;
 | |
| 
 | |
|     err = chip->chip_drv->set_chip_write_protect(chip, false);
 | |
|     if (err == ESP_OK) {
 | |
|         err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout);
 | |
|     }
 | |
|     //The chip didn't accept the previous write command. Ignore this in preparation stage.
 | |
|     if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         chip->host->driver->erase_chip(chip->host);
 | |
|         chip->busy = 1;
 | |
| #ifdef CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED
 | |
|         err = chip->chip_drv->wait_idle(chip, ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT);
 | |
| #else
 | |
|         err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->chip_erase_timeout);
 | |
| #endif
 | |
|     }
 | |
|     // Ensure WEL is 0, even if the erase failed.
 | |
|     if (err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         err = chip->chip_drv->set_chip_write_protect(chip, true);
 | |
|     }
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_erase_sector(esp_flash_t *chip, uint32_t start_address)
 | |
| {
 | |
|     esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false);
 | |
|     if (err == ESP_OK) {
 | |
|         err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout);
 | |
|     }
 | |
|     //The chip didn't accept the previous write command. Ignore this in preparationstage.
 | |
|     if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         chip->host->driver->erase_sector(chip->host, start_address);
 | |
|         chip->busy = 1;
 | |
| #ifdef CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED
 | |
|         err = chip->chip_drv->wait_idle(chip, ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT);
 | |
| #else
 | |
|         err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->sector_erase_timeout);
 | |
| #endif
 | |
|     }
 | |
|     // Ensure WEL is 0, even if the erase failed.
 | |
|     if (err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         err = chip->chip_drv->set_chip_write_protect(chip, true);
 | |
|     }
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_erase_block(esp_flash_t *chip, uint32_t start_address)
 | |
| {
 | |
|     esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false);
 | |
|     if (err == ESP_OK) {
 | |
|         err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout);
 | |
|     }
 | |
|     //The chip didn't accept the previous write command. Ignore this in preparationstage.
 | |
|     if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         chip->host->driver->erase_block(chip->host, start_address);
 | |
|         chip->busy = 1;
 | |
| #ifdef CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED
 | |
|         err = chip->chip_drv->wait_idle(chip, ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT);
 | |
| #else
 | |
|         err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->block_erase_timeout);
 | |
| #endif
 | |
|     }
 | |
|     // Ensure WEL is 0, even if the erase failed.
 | |
|     if (err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         err = chip->chip_drv->set_chip_write_protect(chip, true);
 | |
|     }
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length)
 | |
| {
 | |
|     esp_err_t err = ESP_OK;
 | |
|     const uint32_t page_size = chip->chip_drv->page_size;
 | |
|     uint32_t align_address;
 | |
|     uint8_t temp_buffer[64]; //spiflash hal max length of read no longer than 64byte
 | |
| 
 | |
|     // Configure the host, and return
 | |
|     err = spi_flash_chip_generic_config_host_io_mode(chip, false);
 | |
| 
 | |
|     if (err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         ESP_LOGE(TAG, "configure host io mode failed - unsupported");
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     while (err == ESP_OK && length > 0) {
 | |
|         memset(temp_buffer, 0xFF, sizeof(temp_buffer));
 | |
|         uint32_t read_len = chip->host->driver->read_data_slicer(chip->host, address, length, &align_address, page_size);
 | |
|         uint32_t left_off = address - align_address;
 | |
|         uint32_t data_len = MIN(align_address + read_len, address + length) - address;
 | |
|         err = chip->host->driver->read(chip->host, temp_buffer, align_address, read_len);
 | |
| 
 | |
|         memcpy(buffer, temp_buffer + left_off, data_len);
 | |
| 
 | |
|         address += data_len;
 | |
|         buffer = (void *)((intptr_t)buffer + data_len);
 | |
|         length = length - data_len;
 | |
|     }
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_page_program(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
 | |
| {
 | |
|     esp_err_t err;
 | |
| 
 | |
|     err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout);
 | |
|     //The chip didn't accept the previous write command. Ignore this in preparationstage.
 | |
|     if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         // Perform the actual Page Program command
 | |
|         chip->host->driver->program_page(chip->host, buffer, address, length);
 | |
|         chip->busy = 1;
 | |
| 
 | |
|         err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->page_program_timeout);
 | |
|     }
 | |
|     // Ensure WEL is 0, even if the page program failed.
 | |
|     if (err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         err = chip->chip_drv->set_chip_write_protect(chip, true);
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
 | |
| {
 | |
|     esp_err_t err = ESP_OK;
 | |
|     const uint32_t page_size = chip->chip_drv->page_size;
 | |
|     uint32_t align_address;
 | |
|     uint8_t temp_buffer[64]; //spiflash hal max length of write no longer than 64byte
 | |
| 
 | |
|     while (err == ESP_OK && length > 0) {
 | |
|         memset(temp_buffer, 0xFF, sizeof(temp_buffer));
 | |
|         uint32_t page_len = chip->host->driver->write_data_slicer(chip->host, address, length, &align_address, page_size);
 | |
|         uint32_t left_off = address - align_address;
 | |
|         uint32_t write_len = MIN(align_address + page_len, address + length) - address;
 | |
|         memcpy(temp_buffer + left_off, buffer, write_len);
 | |
| 
 | |
|         err = chip->chip_drv->set_chip_write_protect(chip, false);
 | |
|         if (err == ESP_OK && length > 0) {
 | |
|             err = chip->chip_drv->program_page(chip, temp_buffer, align_address, page_len);
 | |
| 
 | |
|             address += write_len;
 | |
|             buffer = (void *)((intptr_t)buffer + write_len);
 | |
|             length -= write_len;
 | |
|         }
 | |
|     }
 | |
|     // The caller is responsible to do host->driver->flush_cache, because this function may be
 | |
|     // called in small pieces. Frequency call of flush cache will do harm to the performance.
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_write_encrypted(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
 | |
| {
 | |
|     return ESP_ERR_FLASH_UNSUPPORTED_HOST; // TODO
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_set_write_protect(esp_flash_t *chip, bool write_protect)
 | |
| {
 | |
|     esp_err_t err = ESP_OK;
 | |
| 
 | |
|     err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout);
 | |
|     //The chip didn't accept the previous write command. Ignore this in preparationstage.
 | |
|     if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) {
 | |
|         chip->host->driver->set_write_protect(chip->host, write_protect);
 | |
|     }
 | |
| 
 | |
|     bool wp_read;
 | |
|     err = chip->chip_drv->get_chip_write_protect(chip, &wp_read);
 | |
|     if (err == ESP_OK && wp_read != write_protect) {
 | |
|         // WREN flag has not been set!
 | |
|         err = ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_get_write_protect(esp_flash_t *chip, bool *out_write_protect)
 | |
| {
 | |
|     esp_err_t err = ESP_OK;
 | |
|     uint32_t status;
 | |
|     assert(out_write_protect!=NULL);
 | |
|     err = chip->chip_drv->read_reg(chip, SPI_FLASH_REG_STATUS, &status);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     *out_write_protect = ((status & SR_WREN) == 0);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_read_reg(esp_flash_t* chip, spi_flash_register_t reg_id, uint32_t* out_reg)
 | |
| {
 | |
|     return chip->host->driver->read_status(chip->host, (uint8_t*)out_reg);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_yield(esp_flash_t* chip, uint32_t wip)
 | |
| {
 | |
|     esp_err_t err = ESP_OK;
 | |
|     uint32_t flags = wip? 1: 0; //check_yield() and yield() impls should not issue suspend/resume if this flag is zero
 | |
| 
 | |
|     if (chip->os_func->check_yield) {
 | |
|         uint32_t request;
 | |
|         //According to the implementation, the check_yield() function may block, poll, delay or do nothing but return
 | |
|         err = chip->os_func->check_yield(chip->os_func_data, flags, &request);
 | |
|         if (err == ESP_OK) {
 | |
|             if (err == ESP_OK && (request & SPI_FLASH_YIELD_REQ_YIELD) != 0) {
 | |
|                 uint32_t status;
 | |
|                 //According to the implementation, the yield() function may block until something happen
 | |
|                 err = chip->os_func->yield(chip->os_func_data, &status);
 | |
|             }
 | |
|         } else if (err == ESP_ERR_TIMEOUT) {
 | |
|             err = ESP_OK;
 | |
|         } else {
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_wait_idle(esp_flash_t *chip, uint32_t timeout_us)
 | |
| {
 | |
|     bool timeout_en = (timeout_us != ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT);
 | |
|     if (timeout_us == ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT) {
 | |
|         timeout_us = 0;// In order to go into while
 | |
|     }
 | |
|     timeout_us++; // allow at least one pass before timeout, last one has no sleep cycle
 | |
| 
 | |
|     uint8_t status = 0;
 | |
|     const int interval = CHIP_WAIT_IDLE_INTERVAL_US;
 | |
|     while (timeout_us > 0) {
 | |
|         while (!chip->host->driver->host_status(chip->host) && timeout_us > 0) {
 | |
| 
 | |
| #if HOST_DELAY_INTERVAL_US > 0
 | |
|             if (timeout_us > 1) {
 | |
|                 int delay = MIN(HOST_DELAY_INTERVAL_US, timeout_us);
 | |
|                 chip->os_func->delay_us(chip->os_func_data, delay);
 | |
|                 timeout_us -= delay;
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         uint32_t read;
 | |
|         esp_err_t err = chip->chip_drv->read_reg(chip, SPI_FLASH_REG_STATUS, &read);
 | |
|         if (err != ESP_OK) {
 | |
|             return err;
 | |
|         }
 | |
|         status = read;
 | |
| 
 | |
|         if ((status & SR_WIP) == 0) { // Verify write in progress is complete
 | |
|             if (chip->busy == 1) {
 | |
|                 chip->busy = 0;
 | |
|                 if ((status & SR_WREN) != 0) { // The previous command is not accepted, leaving the WEL still set.
 | |
|                     return ESP_ERR_NOT_SUPPORTED;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         if (timeout_us > 0 && interval > 0) {
 | |
|             int delay = MIN(interval, timeout_us);
 | |
|             chip->os_func->delay_us(chip->os_func_data, delay);
 | |
|             if (timeout_en) {
 | |
|                 timeout_us -= delay;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return (timeout_us > 0) ?  ESP_OK : ESP_ERR_TIMEOUT;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_config_host_io_mode(esp_flash_t *chip, bool addr_32bit)
 | |
| {
 | |
|     uint32_t dummy_cyclelen_base;
 | |
|     uint32_t addr_bitlen;
 | |
|     uint32_t read_command;
 | |
|     bool conf_required = false;
 | |
|     esp_flash_io_mode_t read_mode = chip->read_mode;
 | |
| 
 | |
|     switch (read_mode & 0xFFFF) {
 | |
|     case SPI_FLASH_QIO:
 | |
|         //for QIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that.
 | |
|         addr_bitlen = SPI_FLASH_QIO_ADDR_BITLEN;
 | |
|         dummy_cyclelen_base = rom_flash_chip_dummy->qio_dummy_bitlen;
 | |
|         read_command = (addr_32bit? CMD_FASTRD_QIO_4B: CMD_FASTRD_QIO);
 | |
|         conf_required = true;
 | |
|         break;
 | |
|     case SPI_FLASH_QOUT:
 | |
|         addr_bitlen = SPI_FLASH_QOUT_ADDR_BITLEN;
 | |
|         dummy_cyclelen_base = rom_flash_chip_dummy->qout_dummy_bitlen;
 | |
|         read_command = (addr_32bit? CMD_FASTRD_QUAD_4B: CMD_FASTRD_QUAD);
 | |
|         break;
 | |
|     case SPI_FLASH_DIO:
 | |
|         //for DIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that.
 | |
|         addr_bitlen = SPI_FLASH_DIO_ADDR_BITLEN;
 | |
|         dummy_cyclelen_base = rom_flash_chip_dummy->dio_dummy_bitlen;
 | |
|         read_command = (addr_32bit? CMD_FASTRD_DIO_4B: CMD_FASTRD_DIO);
 | |
|         conf_required = true;
 | |
|         break;
 | |
|     case SPI_FLASH_DOUT:
 | |
|         addr_bitlen = SPI_FLASH_DOUT_ADDR_BITLEN;
 | |
|         dummy_cyclelen_base = rom_flash_chip_dummy->dout_dummy_bitlen;
 | |
|         read_command = (addr_32bit? CMD_FASTRD_DUAL_4B: CMD_FASTRD_DUAL);
 | |
|         break;
 | |
|     case SPI_FLASH_FASTRD:
 | |
|         addr_bitlen = SPI_FLASH_FASTRD_ADDR_BITLEN;
 | |
|         dummy_cyclelen_base = rom_flash_chip_dummy->fastrd_dummy_bitlen;
 | |
|         read_command = (addr_32bit? CMD_FASTRD_4B: CMD_FASTRD);
 | |
|         break;
 | |
|     case SPI_FLASH_SLOWRD:
 | |
|         addr_bitlen = SPI_FLASH_SLOWRD_ADDR_BITLEN;
 | |
|         dummy_cyclelen_base = rom_flash_chip_dummy->slowrd_dummy_bitlen;
 | |
|         read_command = (addr_32bit? CMD_READ_4B: CMD_READ);
 | |
|         break;
 | |
|     default:
 | |
|         return ESP_ERR_FLASH_NOT_INITIALISED;
 | |
|     }
 | |
|     //For W25Q256 chip, the only difference between 4-Byte address command and 3-Byte version is the command value and the address bit length.
 | |
|     if (addr_32bit) {
 | |
|         addr_bitlen += 8;
 | |
|     }
 | |
| 
 | |
|     if (conf_required) {
 | |
|         read_mode |= SPI_FLASH_CONFIG_CONF_BITS;
 | |
|     }
 | |
| 
 | |
|     return chip->host->driver->configure_host_io_mode(chip->host, read_command, addr_bitlen, dummy_cyclelen_base, read_mode);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_get_io_mode(esp_flash_t *chip, esp_flash_io_mode_t* out_io_mode)
 | |
| {
 | |
|     // On "generic" chips, this involves checking
 | |
|     // bit 1 (QE) of RDSR2 (35h) result
 | |
|     // (it works this way on GigaDevice & Fudan Micro chips, probably others...)
 | |
|     const uint8_t BIT_QE = 1 << 1;
 | |
|     uint32_t sr;
 | |
|     esp_err_t ret = spi_flash_common_read_status_8b_rdsr2(chip, &sr);
 | |
|     if (ret == ESP_OK) {
 | |
|         *out_io_mode = ((sr & BIT_QE)? SPI_FLASH_QOUT: 0);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_set_io_mode(esp_flash_t *chip)
 | |
| {
 | |
|     // On "generic" chips, this involves checking
 | |
|     // bit 9 (QE) of RDSR (05h) result
 | |
|     const uint32_t BIT_QE = 1 << 9;
 | |
|     return spi_flash_common_set_io_mode(chip,
 | |
|                                         spi_flash_common_write_status_16b_wrsr,
 | |
|                                         spi_flash_common_read_status_16b_rdsr_rdsr2,
 | |
|                                         BIT_QE);
 | |
| }
 | |
| #endif // CONFIG_SPI_FLASH_ROM_IMPL
 | |
| 
 | |
| static const char chip_name[] = "generic";
 | |
| 
 | |
| const spi_flash_chip_t esp_flash_chip_generic = {
 | |
|     .name = chip_name,
 | |
|     .timeout = &spi_flash_chip_generic_timeout,
 | |
|     .probe = spi_flash_chip_generic_probe,
 | |
|     .reset = spi_flash_chip_generic_reset,
 | |
|     .detect_size = spi_flash_chip_generic_detect_size,
 | |
|     .erase_chip = spi_flash_chip_generic_erase_chip,
 | |
|     .erase_sector = spi_flash_chip_generic_erase_sector,
 | |
|     .erase_block = spi_flash_chip_generic_erase_block,
 | |
|     .sector_size = 4 * 1024,
 | |
|     .block_erase_size = 64 * 1024,
 | |
| 
 | |
|     // TODO: figure out if generic chip-wide protection bits exist across some manufacturers
 | |
|     .get_chip_write_protect = spi_flash_chip_generic_get_write_protect,
 | |
|     .set_chip_write_protect = spi_flash_chip_generic_set_write_protect,
 | |
| 
 | |
|     // Chip write protection regions do not appear to be standardised
 | |
|     // at all, this is implemented in chip-specific drivers only.
 | |
|     .num_protectable_regions = 0,
 | |
|     .protectable_regions = NULL,
 | |
|     .get_protected_regions = NULL,
 | |
|     .set_protected_regions = NULL,
 | |
| 
 | |
|     .read = spi_flash_chip_generic_read,
 | |
|     .write = spi_flash_chip_generic_write,
 | |
|     .program_page = spi_flash_chip_generic_page_program,
 | |
|     .page_size = 256,
 | |
|     .write_encrypted = spi_flash_chip_generic_write_encrypted,
 | |
| 
 | |
|     .wait_idle = spi_flash_chip_generic_wait_idle,
 | |
|     .set_io_mode = spi_flash_chip_generic_set_io_mode,
 | |
|     .get_io_mode = spi_flash_chip_generic_get_io_mode,
 | |
| 
 | |
|     .read_reg = spi_flash_chip_generic_read_reg,
 | |
|     .yield = spi_flash_chip_generic_yield,
 | |
|     .sus_setup = spi_flash_chip_generic_suspend_cmd_conf,
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_SPI_FLASH_ROM_IMPL
 | |
| /*******************************************************************************
 | |
|  * Utility functions
 | |
|  ******************************************************************************/
 | |
| 
 | |
| static esp_err_t spi_flash_common_read_qe_sr(esp_flash_t *chip, uint8_t qe_rdsr_command, uint8_t qe_sr_bitwidth, uint32_t *sr)
 | |
| {
 | |
|     uint32_t sr_buf = 0;
 | |
|     spi_flash_trans_t t = {
 | |
|         .command = qe_rdsr_command,
 | |
|         .miso_data = (uint8_t*) &sr_buf,
 | |
|         .miso_len = qe_sr_bitwidth / 8,
 | |
|     };
 | |
|     esp_err_t ret = chip->host->driver->common_command(chip->host, &t);
 | |
|     *sr = sr_buf;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t spi_flash_common_write_qe_sr(esp_flash_t *chip, uint8_t qe_wrsr_command, uint8_t qe_sr_bitwidth, uint32_t qe)
 | |
| {
 | |
|     spi_flash_trans_t t = {
 | |
|         .command = qe_wrsr_command,
 | |
|         .mosi_data = ((uint8_t*) &qe),
 | |
|         .mosi_len = qe_sr_bitwidth / 8,
 | |
|         .miso_len = 0,
 | |
|     };
 | |
|     return chip->host->driver->common_command(chip->host, &t);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_common_read_status_16b_rdsr_rdsr2(esp_flash_t* chip, uint32_t* out_sr)
 | |
| {
 | |
|     uint32_t sr, sr2;
 | |
|     esp_err_t ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, &sr2);
 | |
|     if (ret == ESP_OK) {
 | |
|         ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, &sr);
 | |
|     }
 | |
|     if (ret == ESP_OK) {
 | |
|         *out_sr = (sr & 0xff) | ((sr2 & 0xff) << 8);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_common_read_status_8b_rdsr2(esp_flash_t* chip, uint32_t* out_sr)
 | |
| {
 | |
|     return spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, out_sr);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_common_read_status_8b_rdsr(esp_flash_t* chip, uint32_t* out_sr)
 | |
| {
 | |
|     return spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, out_sr);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_common_write_status_16b_wrsr(esp_flash_t* chip, uint32_t sr)
 | |
| {
 | |
|     return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 16, sr);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_common_write_status_8b_wrsr(esp_flash_t* chip, uint32_t sr)
 | |
| {
 | |
|     return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 8, sr);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_common_write_status_8b_wrsr2(esp_flash_t* chip, uint32_t sr)
 | |
| {
 | |
|     return spi_flash_common_write_qe_sr(chip, CMD_WRSR2, 8, sr);
 | |
| }
 | |
| 
 | |
| esp_err_t spi_flash_common_set_io_mode(esp_flash_t *chip, esp_flash_wrsr_func_t wrsr_func, esp_flash_rdsr_func_t rdsr_func, uint32_t qe_sr_bit)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     const bool is_quad_mode = esp_flash_is_quad_mode(chip);
 | |
|     bool update_config = false;
 | |
|     /*
 | |
|      * By default, we don't clear the QE bit even the flash mode is not QIO or QOUT. Force clearing
 | |
|      * QE bit by the generic chip driver (command 01H with 2 bytes) may cause the output of some
 | |
|      * chips (MXIC) no longer valid.
 | |
|      * Enable this option when testing a new flash chip for clearing of QE.
 | |
|      */
 | |
|     const bool force_check = false;
 | |
| 
 | |
|     bool need_check = is_quad_mode || force_check;
 | |
| 
 | |
|     uint32_t sr_update;
 | |
|     if (need_check) {
 | |
|         // Ensure quad modes are enabled, using the Quad Enable parameters supplied.
 | |
|         uint32_t sr;
 | |
|         ret = (*rdsr_func)(chip, &sr);
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
|         ESP_EARLY_LOGD(TAG, "set_io_mode: status before 0x%x", sr);
 | |
|         if (is_quad_mode) {
 | |
|             sr_update = sr | qe_sr_bit;
 | |
|         } else {
 | |
|             sr_update = sr & (~qe_sr_bit);
 | |
|         }
 | |
|         ESP_EARLY_LOGV(TAG, "set_io_mode: status update 0x%x", sr_update);
 | |
|         if (sr != sr_update) {
 | |
|             update_config = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (update_config) {
 | |
|         //some chips needs the write protect to be disabled before writing to Status Register
 | |
|         chip->chip_drv->set_chip_write_protect(chip, false);
 | |
| 
 | |
|         ret = (*wrsr_func)(chip, sr_update);
 | |
|         if (ret != ESP_OK) {
 | |
|             chip->chip_drv->set_chip_write_protect(chip, true);
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         ret = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout);
 | |
|         if (ret == ESP_ERR_NOT_SUPPORTED) {
 | |
|             chip->chip_drv->set_chip_write_protect(chip, true);
 | |
|         }
 | |
|         /* This function is the fallback approach, so we give it higher tolerance.
 | |
|          *   When the previous WRSR is rejected by the flash,
 | |
|          *  the result of this function is determined by the result -whether the value of RDSR meets the expectation.
 | |
|          */
 | |
|         if (ret != ESP_OK && ret != ESP_ERR_NOT_SUPPORTED) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         /* Check the new QE bit has stayed set */
 | |
|         uint32_t sr;
 | |
|         ret = (*rdsr_func)(chip, &sr);
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
|         ESP_EARLY_LOGD(TAG, "set_io_mode: status after 0x%x", sr);
 | |
|         if (sr != sr_update) {
 | |
|             ret = ESP_ERR_FLASH_NO_RESPONSE;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif // !CONFIG_SPI_FLASH_ROM_IMPL
 | |
| 
 | |
| esp_err_t spi_flash_chip_generic_suspend_cmd_conf(esp_flash_t *chip)
 | |
| {
 | |
|     // Only XMC support auto-suspend
 | |
|     if (chip->chip_id >> 16 != 0x20) {
 | |
|         ESP_EARLY_LOGE(TAG, "The flash you use doesn't support auto suspend, only \'XMC\' is supported");
 | |
|         return ESP_ERR_NOT_SUPPORTED;
 | |
|     }
 | |
|     spi_flash_sus_cmd_conf sus_conf = {
 | |
|         .sus_mask = 0x80,
 | |
|         .cmd_rdsr = CMD_RDSR2,
 | |
|         .sus_cmd = CMD_SUSPEND,
 | |
|         .res_cmd = CMD_RESUME,
 | |
|     };
 | |
| 
 | |
|     return chip->host->driver->sus_setup(chip->host, &sus_conf);
 | |
| }
 | 
