mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-27 11:58:55 +00:00 
			
		
		
		
	 de22f3a4e5
			
		
	
	de22f3a4e5
	
	
	
		
			
			Add configuration option to fallback to software implementation for exponential mod incase of hardware is not supporting it for larger MPI value. Usecase: ESP32C3 only supports till RSA3072 in hardware. This config option will help to support 4k certificates for WPA enterprise connection.
		
			
				
	
	
		
			530 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			530 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \brief  Multi-precision integer library, ESP32 hardware accelerated parts
 | |
|  *
 | |
|  *  based on mbedTLS implementation
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <malloc.h>
 | |
| #include <limits.h>
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <sys/param.h>
 | |
| #include "soc/hwcrypto_periph.h"
 | |
| #include "esp_system.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_attr.h"
 | |
| #include "bignum_impl.h"
 | |
| #include "soc/soc_caps.h"
 | |
| 
 | |
| #include <mbedtls/bignum.h>
 | |
| 
 | |
| 
 | |
| /* Some implementation notes:
 | |
|  *
 | |
|  * - Naming convention x_words, y_words, z_words for number of words (limbs) used in a particular
 | |
|  *   bignum. This number may be less than the size of the bignum
 | |
|  *
 | |
|  * - Naming convention hw_words for the hardware length of the operation. This number maybe be rounded up
 | |
|  *   for targets that requres this (e.g. ESP32), and may be larger than any of the numbers
 | |
|  *   involved in the calculation.
 | |
|  *
 | |
|  * - Timing behaviour of these functions will depend on the length of the inputs. This is fundamentally
 | |
|  *   the same constraint as the software mbedTLS implementations, and relies on the same
 | |
|  *   countermeasures (exponent blinding, etc) which are used in mbedTLS.
 | |
|  */
 | |
| 
 | |
| static const __attribute__((unused)) char *TAG = "bignum";
 | |
| 
 | |
| #define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
 | |
| #define biL    (ciL << 3)                         /* bits  in limb  */
 | |
| 
 | |
| 
 | |
| /* Convert bit count to word count
 | |
|  */
 | |
| static inline size_t bits_to_words(size_t bits)
 | |
| {
 | |
|     return (bits + 31) / 32;
 | |
| }
 | |
| 
 | |
| /* Return the number of words actually used to represent an mpi
 | |
|    number.
 | |
| */
 | |
| int __wrap_mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv );
 | |
| extern int __real_mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv );
 | |
| 
 | |
| static size_t mpi_words(const mbedtls_mpi *mpi)
 | |
| {
 | |
|     for (size_t i = mpi->n; i > 0; i--) {
 | |
|         if (mpi->p[i - 1] != 0) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *
 | |
|  * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
 | |
|  * where B^-1(B-1) mod N=1. Actually, only the least significant part of
 | |
|  * N' is needed, hence the definition N0'=N' mod b. We reproduce below the
 | |
|  * simple algorithm from an article by Dusse and Kaliski to efficiently
 | |
|  * find N0' from N0 and b
 | |
|  */
 | |
| static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t t = 1;
 | |
|     uint64_t two_2_i_minus_1 = 2;   /* 2^(i-1) */
 | |
|     uint64_t two_2_i = 4;           /* 2^i */
 | |
|     uint64_t N = M->p[0];
 | |
| 
 | |
|     for (i = 2; i <= 32; i++) {
 | |
|         if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
 | |
|             t += two_2_i_minus_1;
 | |
|         }
 | |
| 
 | |
|         two_2_i_minus_1 <<= 1;
 | |
|         two_2_i <<= 1;
 | |
|     }
 | |
| 
 | |
|     return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
 | |
| }
 | |
| 
 | |
| /* Calculate Rinv = RR^2 mod M, where:
 | |
|  *
 | |
|  *  R = b^n where b = 2^32, n=num_words,
 | |
|  *  R = 2^N (where N=num_bits)
 | |
|  *  RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
 | |
|  *
 | |
|  * This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
 | |
|  * so caller should cache the result where possible.
 | |
|  *
 | |
|  * DO NOT call this function while holding esp_mpi_enable_hardware_hw_op().
 | |
|  *
 | |
|  */
 | |
| static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
 | |
| {
 | |
|     int ret;
 | |
|     size_t num_bits = num_words * 32;
 | |
|     mbedtls_mpi RR;
 | |
|     mbedtls_mpi_init(&RR);
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&RR);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Z = (X * Y) mod M
 | |
| 
 | |
|    Not an mbedTLS function
 | |
| */
 | |
| int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     size_t x_bits = mbedtls_mpi_bitlen(X);
 | |
|     size_t y_bits = mbedtls_mpi_bitlen(Y);
 | |
|     size_t m_bits = mbedtls_mpi_bitlen(M);
 | |
|     size_t z_bits = MIN(m_bits, x_bits + y_bits);
 | |
|     size_t x_words = bits_to_words(x_bits);
 | |
|     size_t y_words = bits_to_words(y_bits);
 | |
|     size_t m_words = bits_to_words(m_bits);
 | |
|     size_t z_words = bits_to_words(z_bits);
 | |
|     size_t hw_words = esp_mpi_hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
 | |
|     mbedtls_mpi Rinv;
 | |
|     mbedtls_mpi_uint Mprime;
 | |
| 
 | |
|     /* Calculate and load the first stage montgomery multiplication */
 | |
|     mbedtls_mpi_init(&Rinv);
 | |
|     MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, hw_words));
 | |
|     Mprime = modular_inverse(M);
 | |
| 
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
|     /* Load and start a (X * Y) mod M calculation */
 | |
|     esp_mpi_mul_mpi_mod_hw_op(X, Y, M, &Rinv, Mprime, hw_words);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Z, z_words));
 | |
| 
 | |
|     esp_mpi_read_result_hw_op(Z, z_words);
 | |
|     Z->s = X->s * Y->s;
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&Rinv);
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #ifdef ESP_MPI_USE_MONT_EXP
 | |
| /*
 | |
|  * Return the most significant one-bit.
 | |
|  */
 | |
| static size_t mbedtls_mpi_msb( const mbedtls_mpi *X )
 | |
| {
 | |
|     int i, j;
 | |
|     if (X != NULL && X->n != 0) {
 | |
|         for (i = X->n - 1; i >= 0; i--) {
 | |
|             if (X->p[i] != 0) {
 | |
|                 for (j = biL - 1; j >= 0; j--) {
 | |
|                     if ((X->p[i] & (1 << j)) != 0) {
 | |
|                         return (i * biL) + j;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Montgomery exponentiation: Z = X ^ Y mod M  (HAC 14.94)
 | |
|  */
 | |
| static int mpi_montgomery_exp_calc( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
 | |
|                                     mbedtls_mpi *Rinv,
 | |
|                                     size_t hw_words,
 | |
|                                     mbedtls_mpi_uint Mprime )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi X_, one;
 | |
| 
 | |
|     mbedtls_mpi_init(&X_);
 | |
|     mbedtls_mpi_init(&one);
 | |
|     if ( ( ( ret = mbedtls_mpi_grow(&one, hw_words) ) != 0 ) ||
 | |
|             ( ( ret = mbedtls_mpi_set_bit(&one, 0, 1) )  != 0 ) ) {
 | |
|         goto cleanup2;
 | |
|     }
 | |
| 
 | |
|     // Algorithm from HAC 14.94
 | |
|     {
 | |
|         // 0 determine t (highest bit set in y)
 | |
|         int t = mbedtls_mpi_msb(Y);
 | |
| 
 | |
|         esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
|         // 1.1 x_ = mont(x, R^2 mod m)
 | |
|         //        = mont(x, rb)
 | |
|         MBEDTLS_MPI_CHK( esp_mont_hw_op(&X_, X, Rinv, M, Mprime, hw_words, false) );
 | |
| 
 | |
|         // 1.2 z = R mod m
 | |
|         // now z = R mod m = Mont (R^2 mod m, 1) mod M (as Mont(x) = X&R^-1 mod M)
 | |
|         MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Rinv, &one, M, Mprime, hw_words, true) );
 | |
| 
 | |
|         // 2 for i from t down to 0
 | |
|         for (int i = t; i >= 0; i--) {
 | |
|             // 2.1 z = mont(z,z)
 | |
|             if (i != t) { // skip on the first iteration as is still unity
 | |
|                 MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, Z, M, Mprime, hw_words, true) );
 | |
|             }
 | |
| 
 | |
|             // 2.2 if y[i] = 1 then z = mont(A, x_)
 | |
|             if (mbedtls_mpi_get_bit(Y, i)) {
 | |
|                 MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &X_, M, Mprime, hw_words, true) );
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // 3 z = Mont(z, 1)
 | |
|         MBEDTLS_MPI_CHK( esp_mont_hw_op(Z, Z, &one, M, Mprime, hw_words, true) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| 
 | |
| cleanup2:
 | |
|     mbedtls_mpi_free(&X_);
 | |
|     mbedtls_mpi_free(&one);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif //USE_MONT_EXPONENATIATION
 | |
| 
 | |
| /*
 | |
|  * Z = X ^ Y mod M
 | |
|  *
 | |
|  * _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
 | |
|  *
 | |
|  * (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | |
|  *
 | |
|  */
 | |
| int __wrap_mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t x_words = mpi_words(X);
 | |
|     size_t y_words = mpi_words(Y);
 | |
|     size_t m_words = mpi_words(M);
 | |
| 
 | |
| 
 | |
|     /* "all numbers must be the same length", so choose longest number
 | |
|        as cardinal length of operation...
 | |
|     */
 | |
|     size_t num_words = esp_mpi_hardware_words(MAX(m_words, MAX(x_words, y_words)));
 | |
| 
 | |
|     mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
 | |
|     mbedtls_mpi *Rinv;    /* points to _Rinv (if not NULL) othwerwise &RR_new */
 | |
|     mbedtls_mpi_uint Mprime;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(M, 0) <= 0 || (M->p[0] & 1) == 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(Y, 0) < 0) {
 | |
|         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|     }
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(Y, 0) == 0) {
 | |
|         return mbedtls_mpi_lset(Z, 1);
 | |
|     }
 | |
| 
 | |
|     if (num_words * 32 > SOC_RSA_MAX_BIT_LEN) {
 | |
| #ifdef CONFIG_MBEDTLS_LARGE_KEY_SOFTWARE_MPI
 | |
|         return __real_mbedtls_mpi_exp_mod(Z, X, Y, M, _Rinv);
 | |
| #else
 | |
|         return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /* Determine RR pointer, either _RR for cached value
 | |
|        or local RR_new */
 | |
|     if (_Rinv == NULL) {
 | |
|         mbedtls_mpi_init(&Rinv_new);
 | |
|         Rinv = &Rinv_new;
 | |
|     } else {
 | |
|         Rinv = _Rinv;
 | |
|     }
 | |
|     if (Rinv->p == NULL) {
 | |
|         MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
 | |
|     }
 | |
| 
 | |
|     Mprime = modular_inverse(M);
 | |
| 
 | |
|     // Montgomery exponentiation: Z = X ^ Y mod M  (HAC 14.94)
 | |
| #ifdef ESP_MPI_USE_MONT_EXP
 | |
|     ret = mpi_montgomery_exp_calc(Z, X, Y, M, Rinv, num_words, Mprime) ;
 | |
|     MBEDTLS_MPI_CHK(ret);
 | |
| #else
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
|     esp_mpi_exp_mpi_mod_hw_op(X, Y, M, Rinv, Mprime, num_words);
 | |
|     ret = mbedtls_mpi_grow(Z, m_words);
 | |
|     if (ret != 0) {
 | |
|         esp_mpi_disable_hardware_hw_op();
 | |
|         goto cleanup;
 | |
|     }
 | |
|     esp_mpi_read_result_hw_op(Z, m_words);
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| #endif
 | |
| 
 | |
|     // Compensate for negative X
 | |
|     if (X->s == -1 && (Y->p[0] & 1) != 0) {
 | |
|         Z->s = -1;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(Z, M, Z));
 | |
|     } else {
 | |
|         Z->s = 1;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     if (_Rinv == NULL) {
 | |
|         mbedtls_mpi_free(&Rinv_new);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
 | |
| 
 | |
| static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
 | |
| static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words);
 | |
| 
 | |
| /* Z = X * Y */
 | |
| int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t x_bits = mbedtls_mpi_bitlen(X);
 | |
|     size_t y_bits = mbedtls_mpi_bitlen(Y);
 | |
|     size_t x_words = bits_to_words(x_bits);
 | |
|     size_t y_words = bits_to_words(y_bits);
 | |
|     size_t z_words = bits_to_words(x_bits + y_bits);
 | |
|     size_t hw_words = esp_mpi_hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
 | |
| 
 | |
|     /* Short-circuit eval if either argument is 0 or 1.
 | |
| 
 | |
|        This is needed as the mpi modular division
 | |
|        argument will sometimes call in here when one
 | |
|        argument is too large for the hardware unit, but the other
 | |
|        argument is zero or one.
 | |
|     */
 | |
|     if (x_bits == 0 || y_bits == 0) {
 | |
|         mbedtls_mpi_lset(Z, 0);
 | |
|         return 0;
 | |
|     }
 | |
|     if (x_bits == 1) {
 | |
|         ret = mbedtls_mpi_copy(Z, Y);
 | |
|         Z->s *= X->s;
 | |
|         return ret;
 | |
|     }
 | |
|     if (y_bits == 1) {
 | |
|         ret = mbedtls_mpi_copy(Z, X);
 | |
|         Z->s *= Y->s;
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Grow Z to result size early, avoid interim allocations */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, z_words) );
 | |
| 
 | |
|     /* If either factor is over 2048 bits, we can't use the standard hardware multiplier
 | |
|        (it assumes result is double longest factor, and result is max 4096 bits.)
 | |
| 
 | |
|        However, we can fail over to mod_mult for up to 4096 bits of result (modulo
 | |
|        multiplication doesn't have the same restriction, so result is simply the
 | |
|        number of bits in X plus number of bits in in Y.)
 | |
|     */
 | |
|     if (hw_words * 32 > SOC_RSA_MAX_BIT_LEN/2) {
 | |
|         if (z_words * 32 <= SOC_RSA_MAX_BIT_LEN) {
 | |
|             /* Note: it's possible to use mpi_mult_mpi_overlong
 | |
|                for this case as well, but it's very slightly
 | |
|                slower and requires a memory allocation.
 | |
|             */
 | |
|             return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
 | |
|         } else {
 | |
|             /* Still too long for the hardware unit... */
 | |
|             if (y_words > x_words) {
 | |
|                 return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
 | |
|             } else {
 | |
|                 return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Otherwise, we can use the (faster) multiply hardware unit */
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
|     esp_mpi_mul_mpi_hw_op(X, Y, hw_words);
 | |
|     esp_mpi_read_result_hw_op(Z, z_words);
 | |
| 
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
| 
 | |
|     Z->s = X->s * Y->s;
 | |
| 
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Deal with the case when X & Y are too long for the hardware unit, by splitting one operand
 | |
|    into two halves.
 | |
| 
 | |
|    Y must be the longer operand
 | |
| 
 | |
|    Slice Y into Yp, Ypp such that:
 | |
|    Yp = lower 'b' bits of Y
 | |
|    Ypp = upper 'b' bits of Y (right shifted)
 | |
| 
 | |
|    Such that
 | |
|    Z = X * Y
 | |
|    Z = X * (Yp + Ypp<<b)
 | |
|    Z = (X * Yp) + (X * Ypp<<b)
 | |
| 
 | |
|    Note that this function may recurse multiple times, if both X & Y
 | |
|    are too long for the hardware multiplication unit.
 | |
| */
 | |
| static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words)
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi Ztemp;
 | |
|     /* Rather than slicing in two on bits we slice on limbs (32 bit words) */
 | |
|     const size_t words_slice = y_words / 2;
 | |
|     /* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
 | |
|     const mbedtls_mpi Yp = {
 | |
|         .p = Y->p,
 | |
|         .n = words_slice,
 | |
|         .s = Y->s
 | |
|     };
 | |
|     /* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
 | |
|     const mbedtls_mpi Ypp = {
 | |
|         .p = Y->p + words_slice,
 | |
|         .n = y_words - words_slice,
 | |
|         .s = Y->s
 | |
|     };
 | |
|     mbedtls_mpi_init(&Ztemp);
 | |
| 
 | |
|     /* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
 | |
| 
 | |
|     /* Z = Ypp * Y */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
 | |
| 
 | |
|     /* Z = Z << b */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, words_slice * 32) );
 | |
| 
 | |
|     /* Z += Ztemp */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&Ztemp);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
 | |
|    multiplication to calculate an mbedtls_mpi_mult_mpi result where either
 | |
|    A or B are >2048 bits so can't use the standard multiplication method.
 | |
| 
 | |
|    Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
 | |
| 
 | |
|    This case is simpler than the general case modulo multiply of
 | |
|    esp_mpi_mul_mpi_mod() because we can control the other arguments:
 | |
| 
 | |
|    * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
 | |
|    * Mprime and Rinv are therefore predictable as follows:
 | |
|    isn't actually modulo anything.
 | |
|    Mprime 1
 | |
|    Rinv 1
 | |
| 
 | |
|    (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | |
| */
 | |
| 
 | |
| static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words)
 | |
| {
 | |
|     int ret;
 | |
|     size_t hw_words = esp_mpi_hardware_words(z_words);
 | |
| 
 | |
|     esp_mpi_enable_hardware_hw_op();
 | |
| 
 | |
|     esp_mpi_mult_mpi_failover_mod_mult_hw_op(X, Y, hw_words );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
 | |
|     esp_mpi_read_result_hw_op(Z, hw_words);
 | |
| 
 | |
|     Z->s = X->s * Y->s;
 | |
| cleanup:
 | |
|     esp_mpi_disable_hardware_hw_op();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_MPI_MUL_MPI_ALT */
 |