mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 21:14:37 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			886 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			886 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * FreeRTOS Kernel V10.5.1 (ESP-IDF SMP modified)
 | |
|  * Copyright (C) 2021 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 | |
|  *
 | |
|  * SPDX-FileCopyrightText: 2021 Amazon.com, Inc. or its affiliates
 | |
|  *
 | |
|  * SPDX-License-Identifier: MIT
 | |
|  *
 | |
|  * SPDX-FileContributor: 2023-2025 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy of
 | |
|  * this software and associated documentation files (the "Software"), to deal in
 | |
|  * the Software without restriction, including without limitation the rights to
 | |
|  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 | |
|  * the Software, and to permit persons to whom the Software is furnished to do so,
 | |
|  * subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in all
 | |
|  * copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 | |
|  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 | |
|  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 | |
|  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
|  *
 | |
|  * https://www.FreeRTOS.org
 | |
|  * https://github.com/FreeRTOS
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*-----------------------------------------------------------------------
 | |
|  * Implementation of functions defined in portable.h for the RISC-V port.
 | |
|  *----------------------------------------------------------------------*/
 | |
| 
 | |
| #include "sdkconfig.h"
 | |
| #include <string.h>
 | |
| #include "soc/soc_caps.h"
 | |
| #include "soc/periph_defs.h"
 | |
| #include "soc/system_reg.h"
 | |
| #include "soc/interrupt_reg.h"
 | |
| #include "hal/systimer_hal.h"
 | |
| #include "hal/systimer_ll.h"
 | |
| #include "riscv/rvruntime-frames.h"
 | |
| #include "riscv/rv_utils.h"
 | |
| #include "riscv/interrupt.h"
 | |
| #include "esp_private/crosscore_int.h"
 | |
| #include "hal/crosscore_int_ll.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_system.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_log.h"
 | |
| #include "FreeRTOS.h"       /* This pulls in portmacro.h */
 | |
| #include "task.h"
 | |
| #include "portmacro.h"
 | |
| #include "port_systick.h"
 | |
| #include "esp_memory_utils.h"
 | |
| 
 | |
| #if SOC_CPU_HAS_HWLOOP
 | |
| #include "riscv/csr.h"
 | |
| #include "riscv/csr_hwlp.h"
 | |
| #endif
 | |
| 
 | |
| #if ( SOC_CPU_COPROC_NUM > 0 )
 | |
| 
 | |
| #include "esp_private/panic_internal.h"
 | |
| 
 | |
| /* Since `portFORCE_INLINE` is not defined in `portmacro.h`, we must define it here since it is
 | |
|  * used by `atomic.h`. */
 | |
| #define portFORCE_INLINE    inline
 | |
| #include "freertos/atomic.h"
 | |
| 
 | |
| #endif // ( SOC_CPU_COPROC_NUM > 0 )
 | |
| 
 | |
| 
 | |
| _Static_assert(portBYTE_ALIGNMENT == 16, "portBYTE_ALIGNMENT must be set to 16");
 | |
| #if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
 | |
| /**
 | |
|  * offsetof() can not be used in asm code. Then we need make sure that
 | |
|  * PORT_OFFSET_PX_STACK and PORT_OFFSET_PX_END_OF_STACK have expected values.
 | |
|  * Macro used in the portasm.S instead of variables to save at least 4 instruction calls
 | |
|  * which accessing DRAM memory. This optimization saves CPU time in the interrupt handling.
 | |
|  */
 | |
| 
 | |
| _Static_assert(offsetof( StaticTask_t, pxDummy6 ) == PORT_OFFSET_PX_STACK);
 | |
| _Static_assert(offsetof( StaticTask_t, pxDummy8 ) == PORT_OFFSET_PX_END_OF_STACK);
 | |
| #endif // CONFIG_ESP_SYSTEM_HW_STACK_GUARD
 | |
| 
 | |
| /* ---------------------------------------------------- Variables ------------------------------------------------------
 | |
|  *
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | |
| 
 | |
| volatile UBaseType_t port_xSchedulerRunning[portNUM_PROCESSORS] = {0}; // Indicates whether scheduler is running on a per-core basis
 | |
| volatile UBaseType_t port_uxInterruptNesting[portNUM_PROCESSORS] = {0};  // Interrupt nesting level. Increased/decreased in portasm.c
 | |
| volatile UBaseType_t port_uxCriticalNesting[portNUM_PROCESSORS] = {0};
 | |
| volatile UBaseType_t port_uxOldInterruptState[portNUM_PROCESSORS] = {0};
 | |
| volatile UBaseType_t xPortSwitchFlag[portNUM_PROCESSORS] = {0};
 | |
| 
 | |
| #if ( SOC_CPU_COPROC_NUM > 0 )
 | |
| 
 | |
| /* Current owner of the coprocessors for each core */
 | |
| StaticTask_t* port_uxCoprocOwner[portNUM_PROCESSORS][SOC_CPU_COPROC_NUM];
 | |
| 
 | |
| #endif /* SOC_CPU_COPROC_NUM > 0 */
 | |
| 
 | |
| /*
 | |
| *******************************************************************************
 | |
| * Interrupt stack. The size of the interrupt stack is determined by the config
 | |
| * parameter "configISR_STACK_SIZE" in FreeRTOSConfig.h
 | |
| *******************************************************************************
 | |
| */
 | |
| __attribute__((aligned(16))) StackType_t xIsrStack[portNUM_PROCESSORS][configISR_STACK_SIZE];
 | |
| StackType_t *xIsrStackTop[portNUM_PROCESSORS] = {0};
 | |
| 
 | |
| #if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
 | |
| StackType_t *xIsrStackBottom[portNUM_PROCESSORS] = {0};
 | |
| #endif
 | |
| 
 | |
| /* ------------------------------------------------ FreeRTOS Portable --------------------------------------------------
 | |
|  * - Provides implementation for functions required by FreeRTOS
 | |
|  * - Declared in portable.h
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | |
| 
 | |
| // ----------------- Scheduler Start/End -------------------
 | |
| 
 | |
| BaseType_t xPortStartScheduler(void)
 | |
| {
 | |
| #if ( SOC_CPU_COPROC_NUM > 0 )
 | |
| 
 | |
| #if SOC_CPU_HAS_FPU
 | |
|     /* Disable FPU so that the first task to use it will trigger an exception */
 | |
|     rv_utils_disable_fpu();
 | |
| #endif /* SOC_CPU_HAS_FPU */
 | |
| 
 | |
| #if SOC_CPU_HAS_PIE
 | |
|     /* Similarly, disable PIE */
 | |
|     rv_utils_disable_pie();
 | |
| #endif /* SOC_CPU_HAS_FPU */
 | |
| 
 | |
| #if SOC_CPU_HAS_HWLOOP
 | |
|     /* Initialize the Hardware loop feature */
 | |
|     RV_WRITE_CSR(CSR_HWLP_STATE_REG, HWLP_INITIAL_STATE);
 | |
| #endif /* SOC_CPU_HAS_HWLOOP */
 | |
| #endif /* ( SOC_CPU_COPROC_NUM > 0 ) */
 | |
| 
 | |
|     /* Initialize all kernel state tracking variables */
 | |
|     BaseType_t coreID = xPortGetCoreID();
 | |
|     port_uxInterruptNesting[coreID] = 0;
 | |
|     port_uxCriticalNesting[coreID] = 0;
 | |
|     port_xSchedulerRunning[coreID] = 0;
 | |
| 
 | |
|     /* Initialize ISR Stack(s) */
 | |
|     for (int i = 0; i < portNUM_PROCESSORS; i++) {
 | |
|         xIsrStackTop[i] = &xIsrStack[i][0] + (configISR_STACK_SIZE & (~((portPOINTER_SIZE_TYPE)portBYTE_ALIGNMENT_MASK)));
 | |
| #if CONFIG_ESP_SYSTEM_HW_STACK_GUARD
 | |
|         xIsrStackBottom[i] = &xIsrStack[i][0];
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /* Setup the hardware to generate the tick. */
 | |
|     vPortSetupTimer();
 | |
| 
 | |
|     esprv_int_set_threshold(RVHAL_INTR_ENABLE_THRESH); /* set global interrupt masking level */
 | |
|     rv_utils_intr_global_enable();
 | |
| 
 | |
|     vPortYield();
 | |
| 
 | |
|     /* Should not get here */
 | |
|     return pdTRUE;
 | |
| }
 | |
| 
 | |
| void vPortEndScheduler(void)
 | |
| {
 | |
|     /* very unlikely this function will be called, so just trap here */
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| // ------------------------ Stack --------------------------
 | |
| 
 | |
| /**
 | |
|  * @brief Align stack pointer in a downward growing stack
 | |
|  *
 | |
|  * This macro is used to round a stack pointer downwards to the nearest n-byte boundary, where n is a power of 2.
 | |
|  * This macro is generally used when allocating aligned areas on a downward growing stack.
 | |
|  */
 | |
| #define STACKPTR_ALIGN_DOWN(n, ptr)     ((ptr) & (~((n)-1)))
 | |
| 
 | |
| /**
 | |
|  * @brief Allocate and initialize GCC TLS area
 | |
|  *
 | |
|  * This function allocates and initializes the area on the stack used to store GCC TLS (Thread Local Storage) variables.
 | |
|  * - The area's size is derived from the TLS section's linker variables, and rounded up to a multiple of 16 bytes
 | |
|  * - The allocated area is aligned to a 16-byte aligned address
 | |
|  * - The TLS variables in the area are then initialized
 | |
|  *
 | |
|  * Each task access the TLS variables using the THREADPTR register plus an offset to obtain the address of the variable.
 | |
|  * The value for the THREADPTR register is also calculated by this function, and that value should be use to initialize
 | |
|  * the THREADPTR register.
 | |
|  *
 | |
|  * @param[in] uxStackPointer Current stack pointer address
 | |
|  * @param[out] ret_threadptr_reg_init Calculated THREADPTR register initialization value
 | |
|  * @return Stack pointer that points to the TLS area
 | |
|  */
 | |
| FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackTLS(UBaseType_t uxStackPointer, uint32_t *ret_threadptr_reg_init)
 | |
| {
 | |
|     /*
 | |
|     LOW ADDRESS
 | |
|             |---------------------------|   Linker Symbols
 | |
|             | Section                   |   --------------
 | |
|             | .flash.tdata              |
 | |
|          0x0|---------------------------| <- _thread_local_data_start  ^
 | |
|             | .flash.tdata              |                              |
 | |
|             | int var_1 = 1;            |                              |
 | |
|             |                           | <- _thread_local_data_end    |
 | |
|             |                           | <- _thread_local_bss_start   | tls_area_size
 | |
|             |                           |                              |
 | |
|             | .flash.tbss (NOLOAD)      |                              |
 | |
|             | int var_2;                |                              |
 | |
|             |---------------------------| <- _thread_local_bss_end     V
 | |
|             | Other data                |
 | |
|             | ...                       |
 | |
|             |---------------------------|
 | |
|     HIGH ADDRESS
 | |
|     */
 | |
|     // Calculate TLS area size and round up to multiple of 16 bytes.
 | |
|     extern char _thread_local_data_start, _thread_local_data_end;
 | |
|     extern char _thread_local_bss_start, _thread_local_bss_end;
 | |
|     const uint32_t tls_data_size = (uint32_t)&_thread_local_data_end - (uint32_t)&_thread_local_data_start;
 | |
|     const uint32_t tls_bss_size = (uint32_t)&_thread_local_bss_end - (uint32_t)&_thread_local_bss_start;
 | |
|     const uint32_t tls_area_size = ALIGNUP(16, tls_data_size + tls_bss_size);
 | |
|     // TODO: check that TLS area fits the stack
 | |
| 
 | |
|     // Allocate space for the TLS area on the stack. The area must be aligned to 16-bytes
 | |
|     uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - (UBaseType_t)tls_area_size);
 | |
|     // Initialize the TLS data with the initialization values of each TLS variable
 | |
|     memcpy((void *)uxStackPointer, &_thread_local_data_start, tls_data_size);
 | |
|     // Initialize the TLS bss with zeroes
 | |
|     memset((void *)(uxStackPointer + tls_data_size), 0, tls_bss_size);
 | |
| 
 | |
|     // Save tls start address
 | |
|     *ret_threadptr_reg_init = (uint32_t)uxStackPointer;
 | |
|     return uxStackPointer;
 | |
| }
 | |
| 
 | |
| #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
 | |
| static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters)
 | |
| {
 | |
|     __asm__ volatile(".cfi_undefined ra");  // tell to debugger that it's outermost (initial) frame
 | |
|     extern void __attribute__((noreturn)) panic_abort(const char *details);
 | |
|     static char DRAM_ATTR msg[80] = "FreeRTOS: FreeRTOS Task \"\0";
 | |
|     pxCode(pvParameters);
 | |
|     /* FreeRTOS tasks should not return. Log the task name and abort. */
 | |
|     /* We cannot use s(n)printf because it is in flash */
 | |
|     strcat(msg, pcTaskGetName(NULL));
 | |
|     strcat(msg, "\" should not return, Aborting now!");
 | |
|     panic_abort(msg);
 | |
| }
 | |
| #endif // CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
 | |
| 
 | |
| 
 | |
| #if ( SOC_CPU_COPROC_NUM > 0 )
 | |
| 
 | |
| /**
 | |
|  * @brief Retrieve or allocate coprocessors save area from the given pxTopOfStack address.
 | |
|  *
 | |
|  * @param pxTopOfStack End of the stack address. This represents the highest address of a Task's stack.
 | |
|  */
 | |
| FORCE_INLINE_ATTR RvCoprocSaveArea* pxRetrieveCoprocSaveAreaFromStackPointer(UBaseType_t pxTopOfStack)
 | |
| {
 | |
|     return (RvCoprocSaveArea*) STACKPTR_ALIGN_DOWN(16, pxTopOfStack - sizeof(RvCoprocSaveArea));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Allocate and initialize the coprocessors save area on the stack
 | |
|  *
 | |
|  * @param[in] uxStackPointer Current stack pointer address
 | |
|  *
 | |
|  * @return Stack pointer that points to allocated and initialized the coprocessor save area
 | |
|  */
 | |
| FORCE_INLINE_ATTR UBaseType_t uxInitialiseCoprocSaveArea(UBaseType_t uxStackPointer)
 | |
| {
 | |
|     RvCoprocSaveArea* sa = pxRetrieveCoprocSaveAreaFromStackPointer(uxStackPointer);
 | |
|     memset(sa, 0, sizeof(RvCoprocSaveArea));
 | |
|     return (UBaseType_t) sa;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void vPortCleanUpCoprocArea(void *pvTCB)
 | |
| {
 | |
|     StaticTask_t* task = (StaticTask_t*) pvTCB;
 | |
| 
 | |
|     /* Get a pointer to the task's coprocessor save area */
 | |
|     const UBaseType_t bottomstack = (UBaseType_t) task->pxDummy8;
 | |
|     RvCoprocSaveArea* sa = pxRetrieveCoprocSaveAreaFromStackPointer(bottomstack);
 | |
| 
 | |
|     /* If the Task ever saved the original stack pointer, restore it before returning */
 | |
|     if (sa->sa_allocator != 0) {
 | |
|         /* Restore the original lowest address of the stack in the TCB */
 | |
|         task->pxDummy6 = sa->sa_tcbstack;
 | |
| 
 | |
|         /* Get the core the task is pinned on */
 | |
|         #if ( configNUM_CORES > 1 )
 | |
|             const BaseType_t coreID = task->xDummyCoreID;
 | |
|             /* If the task is not pinned on any core, it didn't use any coprocessor than need to be freed (FPU or PIE).
 | |
|              * If it used the HWLP coprocessor, it has nothing to clear since there is no "owner" for it. */
 | |
|             if (coreID == tskNO_AFFINITY) {
 | |
|                 return;
 | |
|             }
 | |
|         #else /* configNUM_CORES > 1 */
 | |
|             const BaseType_t coreID = 0;
 | |
|         #endif /* configNUM_CORES > 1 */
 | |
| 
 | |
|         for (int i = 0; i < SOC_CPU_COPROC_NUM; i++) {
 | |
|             StaticTask_t** owner = &port_uxCoprocOwner[coreID][i];
 | |
|             /* If the owner is `task`, replace it with NULL atomically */
 | |
|             Atomic_CompareAndSwapPointers_p32((void**) owner, NULL, task);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif /* SOC_CPU_COPROC_NUM > 0 */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief Initialize the task's starting interrupt stack frame
 | |
|  *
 | |
|  * This function initializes the task's starting interrupt stack frame. The dispatcher will use this stack frame in a
 | |
|  * context restore routine. Therefore, the starting stack frame must be initialized as if the task was interrupted right
 | |
|  * before its first instruction is called.
 | |
|  *
 | |
|  * - The stack frame is allocated to a 16-byte aligned address
 | |
|  *
 | |
|  * @param[in] uxStackPointer Current stack pointer address
 | |
|  * @param[in] pxCode Task function
 | |
|  * @param[in] pvParameters Task function's parameter
 | |
|  * @param[in] threadptr_reg_init THREADPTR register initialization value
 | |
|  * @return Stack pointer that points to the stack frame
 | |
|  */
 | |
| FORCE_INLINE_ATTR UBaseType_t uxInitialiseStackFrame(UBaseType_t uxStackPointer, TaskFunction_t pxCode, void *pvParameters, uint32_t threadptr_reg_init)
 | |
| {
 | |
|     /*
 | |
|     Allocate space for the task's starting interrupt stack frame.
 | |
|     - The stack frame must be allocated to a 16-byte aligned address.
 | |
|     - We use RV_STK_FRMSZ as it rounds up the total size to a multiple of 16.
 | |
|     */
 | |
|     uxStackPointer = STACKPTR_ALIGN_DOWN(16, uxStackPointer - RV_STK_FRMSZ);
 | |
| 
 | |
|     // Clear the entire interrupt stack frame
 | |
|     RvExcFrame *frame = (RvExcFrame *)uxStackPointer;
 | |
|     memset(frame, 0, sizeof(RvExcFrame));
 | |
| 
 | |
|     /* Initialize the stack frame. */
 | |
|     extern uint32_t __global_pointer$;
 | |
|     #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
 | |
|         frame->mepc = (UBaseType_t)vPortTaskWrapper;
 | |
|         frame->a0 = (UBaseType_t)pxCode;
 | |
|         frame->a1 = (UBaseType_t)pvParameters;
 | |
|     #else
 | |
|         frame->mepc = (UBaseType_t)pxCode;
 | |
|         frame->a0 = (UBaseType_t)pvParameters;
 | |
|     #endif // CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
 | |
|     frame->gp = (UBaseType_t)&__global_pointer$;
 | |
|     frame->tp = (UBaseType_t)threadptr_reg_init;
 | |
| 
 | |
|     return uxStackPointer;
 | |
| }
 | |
| 
 | |
| StackType_t *pxPortInitialiseStack(StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters)
 | |
| {
 | |
| #ifdef __clang_analyzer__
 | |
|     // Teach clang-tidy that pxTopOfStack cannot be a pointer to const
 | |
|     volatile StackType_t * pxTemp = pxTopOfStack;
 | |
|     pxTopOfStack = pxTemp;
 | |
| #endif /*__clang_analyzer__ */
 | |
|     /*
 | |
|     HIGH ADDRESS
 | |
|     |---------------------------| <- pxTopOfStack on entry
 | |
|     | TLS Variables             |
 | |
|     | ------------------------- | <- Start of usable stack
 | |
|     | Starting stack frame      |
 | |
|     | ------------------------- | <- pxTopOfStack on return (which is the tasks current SP)
 | |
|     |             |             |
 | |
|     |             |             |
 | |
|     |             V             |
 | |
|     ----------------------------- <- Bottom of stack
 | |
|     LOW ADDRESS
 | |
| 
 | |
|     - All stack areas are aligned to 16 byte boundary
 | |
|     - We use UBaseType_t for all of stack area initialization functions for more convenient pointer arithmetic
 | |
| 
 | |
|     In the case of targets that have coprocessors, the stack is presented as follows:
 | |
|     HIGH ADDRESS
 | |
|     |---------------------------| <- pxTopOfStack on entry
 | |
|     | Coproc. Save Area         | <- RvCoprocSaveArea
 | |
|     | ------------------------- |
 | |
|     | TLS Variables             |
 | |
|     | ------------------------- | <- Start of usable stack
 | |
|     | Starting stack frame      |
 | |
|     | ------------------------- | <- pxTopOfStack on return (which is the tasks current SP)
 | |
|     |             |             |
 | |
|     |             |             |
 | |
|     |             V             |
 | |
|     |---------------------------|
 | |
|     | Coproc. m Saved Context   | <- Coprocessor context save area after allocation
 | |
|     |---------------------------|
 | |
|     | Coproc. n Saved Context   | <- Another coprocessor context save area after allocation
 | |
|     ----------------------------- <- Bottom of stack
 | |
|     LOW ADDRESS
 | |
| 
 | |
|     Where m != n, n < SOC_CPU_COPROC_NUM, m < SOC_CPU_COPROC_NUM
 | |
| 
 | |
|     */
 | |
| 
 | |
|     UBaseType_t uxStackPointer = (UBaseType_t)pxTopOfStack;
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| 
 | |
| #if ( SOC_CPU_COPROC_NUM > 0 )
 | |
|     // Initialize the coprocessors save area
 | |
|     uxStackPointer = uxInitialiseCoprocSaveArea(uxStackPointer);
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| #endif // SOC_CPU_COPROC_NUM > 0
 | |
| 
 | |
|     // Initialize GCC TLS area
 | |
|     uint32_t threadptr_reg_init;
 | |
|     uxStackPointer = uxInitialiseStackTLS(uxStackPointer, &threadptr_reg_init);
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| 
 | |
|     // Initialize the starting interrupt stack frame
 | |
|     uxStackPointer = uxInitialiseStackFrame(uxStackPointer, pxCode, pvParameters, threadptr_reg_init);
 | |
|     configASSERT((uxStackPointer & portBYTE_ALIGNMENT_MASK) == 0);
 | |
| 
 | |
|     // Return the task's current stack pointer address which should point to the starting interrupt stack frame
 | |
|     return (StackType_t *)uxStackPointer;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------- Port Implementations -------------------------------------------------
 | |
|  *
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | |
| 
 | |
| // --------------------- Interrupts ------------------------
 | |
| 
 | |
| BaseType_t xPortInIsrContext(void)
 | |
| {
 | |
| #if (configNUM_CORES > 1)
 | |
|     unsigned int irqStatus;
 | |
|     BaseType_t ret;
 | |
| 
 | |
|     /* Disable interrupts to fetch the coreID atomically */
 | |
|     irqStatus = portSET_INTERRUPT_MASK_FROM_ISR();
 | |
| 
 | |
|     /* Return the interrupt nesting counter for this core */
 | |
|     ret = port_uxInterruptNesting[xPortGetCoreID()];
 | |
| 
 | |
|     /* Restore interrupts */
 | |
|     portCLEAR_INTERRUPT_MASK_FROM_ISR(irqStatus);
 | |
| 
 | |
|     return ret;
 | |
| #else
 | |
|     /* Optimize the call for single-core targets */
 | |
|     return port_uxInterruptNesting[0];
 | |
| #endif /* (configNUM_CORES > 1) */
 | |
| }
 | |
| 
 | |
| void vPortAssertIfInISR(void)
 | |
| {
 | |
|     /* Assert if the interrupt nesting count is > 0 */
 | |
|     configASSERT(xPortInIsrContext() == 0);
 | |
| }
 | |
| 
 | |
| BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void)
 | |
| {
 | |
|     /* Return the interrupt nesting counter for this core */
 | |
|     return port_uxInterruptNesting[xPortGetCoreID()];
 | |
| }
 | |
| 
 | |
| UBaseType_t xPortSetInterruptMaskFromISR(void)
 | |
| {
 | |
|     UBaseType_t prev_int_level = 0, int_level = 0;
 | |
| #if !SOC_INT_CLIC_SUPPORTED
 | |
|     int_level = RVHAL_EXCM_LEVEL;
 | |
| #else
 | |
|     int_level = RVHAL_EXCM_LEVEL_CLIC;
 | |
| #endif
 | |
| 
 | |
|     prev_int_level = rv_utils_set_intlevel_regval(int_level);
 | |
|     return prev_int_level;
 | |
| }
 | |
| 
 | |
| void vPortClearInterruptMaskFromISR(UBaseType_t prev_int_level)
 | |
| {
 | |
|     rv_utils_restore_intlevel_regval(prev_int_level);
 | |
|     /**
 | |
|      * The delay between the moment we unmask the interrupt threshold register
 | |
|      * and the moment the potential requested interrupt is triggered is not
 | |
|      * null: up to three machine cycles/instructions can be executed.
 | |
|      *
 | |
|      * When compilation size optimization is enabled, this function and its
 | |
|      * callers returning void will have NO epilogue, thus the instruction
 | |
|      * following these calls will be executed.
 | |
|      *
 | |
|      * If the requested interrupt is a context switch to a higher priority
 | |
|      * task then the one currently running, we MUST NOT execute any instruction
 | |
|      * before the interrupt effectively happens.
 | |
|      * In order to prevent this, force this routine to have a 3-instruction
 | |
|      * delay before exiting.
 | |
|      */
 | |
|     asm volatile ( "nop" );
 | |
|     asm volatile ( "nop" );
 | |
|     asm volatile ( "nop" );
 | |
| }
 | |
| 
 | |
| // ------------------ Critical Sections --------------------
 | |
| 
 | |
| #if (configNUM_CORES > 1)
 | |
| BaseType_t __attribute__((optimize("-O3"))) xPortEnterCriticalTimeout(portMUX_TYPE *mux, BaseType_t timeout)
 | |
| {
 | |
|     /* Interrupts may already be disabled (if this function is called in nested
 | |
|      * manner). However, there's no atomic operation that will allow us to check,
 | |
|      * thus we have to disable interrupts again anyways.
 | |
|      *
 | |
|      * However, if this is call is NOT nested (i.e., the first call to enter a
 | |
|      * critical section), we will save the previous interrupt level so that the
 | |
|      * saved level can be restored on the last call to exit the critical.
 | |
|      */
 | |
|     BaseType_t xOldInterruptLevel = portSET_INTERRUPT_MASK_FROM_ISR();
 | |
|     if (!spinlock_acquire(mux, timeout)) {
 | |
|         //Timed out attempting to get spinlock. Restore previous interrupt level and return
 | |
|         portCLEAR_INTERRUPT_MASK_FROM_ISR(xOldInterruptLevel);
 | |
|         return pdFAIL;
 | |
|     }
 | |
|     //Spinlock acquired. Increment the critical nesting count.
 | |
|     BaseType_t coreID = xPortGetCoreID();
 | |
|     BaseType_t newNesting = port_uxCriticalNesting[coreID] + 1;
 | |
|     port_uxCriticalNesting[coreID] = newNesting;
 | |
|     //If this is the first entry to a critical section. Save the old interrupt level.
 | |
|     if ( newNesting == 1 ) {
 | |
|         port_uxOldInterruptState[coreID] = xOldInterruptLevel;
 | |
|     }
 | |
|     return pdPASS;
 | |
| }
 | |
| 
 | |
| void __attribute__((optimize("-O3"))) vPortExitCriticalMultiCore(portMUX_TYPE *mux)
 | |
| {
 | |
|     /* This function may be called in a nested manner. Therefore, we only need
 | |
|      * to re-enable interrupts if this is the last call to exit the critical. We
 | |
|      * can use the nesting count to determine whether this is the last exit call.
 | |
|      */
 | |
|     spinlock_release(mux);
 | |
|     BaseType_t coreID = xPortGetCoreID();
 | |
|     BaseType_t nesting = port_uxCriticalNesting[coreID];
 | |
| 
 | |
|     /* Critical section nesting count must never be negative */
 | |
|     configASSERT( nesting > 0 );
 | |
| 
 | |
|     if (nesting > 0) {
 | |
|         nesting--;
 | |
|         port_uxCriticalNesting[coreID] = nesting;
 | |
| 
 | |
|         //This is the last exit call, restore the saved interrupt level
 | |
|         if ( nesting == 0 ) {
 | |
|             portCLEAR_INTERRUPT_MASK_FROM_ISR(port_uxOldInterruptState[coreID]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| BaseType_t xPortEnterCriticalTimeoutCompliance(portMUX_TYPE *mux, BaseType_t timeout)
 | |
| {
 | |
|     BaseType_t ret;
 | |
|     if (!xPortInIsrContext()) {
 | |
|         ret = xPortEnterCriticalTimeout(mux, timeout);
 | |
|     } else {
 | |
|         esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
 | |
|         abort();
 | |
|         ret = pdFAIL;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void vPortExitCriticalCompliance(portMUX_TYPE *mux)
 | |
| {
 | |
|     if (!xPortInIsrContext()) {
 | |
|         vPortExitCriticalMultiCore(mux);
 | |
|     } else {
 | |
|         esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| #endif /* (configNUM_CORES > 1) */
 | |
| 
 | |
| void vPortEnterCritical(void)
 | |
| {
 | |
| #if (configNUM_CORES > 1)
 | |
|         esp_rom_printf("vPortEnterCritical(void) is not supported on single-core targets. Please use vPortEnterCriticalMultiCore(portMUX_TYPE *mux) instead.\n");
 | |
|         abort();
 | |
| #endif /* (configNUM_CORES > 1) */
 | |
|     BaseType_t state = portSET_INTERRUPT_MASK_FROM_ISR();
 | |
|     port_uxCriticalNesting[0]++;
 | |
| 
 | |
|     if (port_uxCriticalNesting[0] == 1) {
 | |
|         port_uxOldInterruptState[0] = state;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void vPortExitCritical(void)
 | |
| {
 | |
| #if (configNUM_CORES > 1)
 | |
|         esp_rom_printf("vPortExitCritical(void) is not supported on single-core targets. Please use vPortExitCriticalMultiCore(portMUX_TYPE *mux) instead.\n");
 | |
|         abort();
 | |
| #endif /* (configNUM_CORES > 1) */
 | |
| 
 | |
|     /* Critical section nesting count must never be negative */
 | |
|     configASSERT( port_uxCriticalNesting[0] > 0 );
 | |
| 
 | |
|     if (port_uxCriticalNesting[0] > 0) {
 | |
|         port_uxCriticalNesting[0]--;
 | |
| 
 | |
|         if (port_uxCriticalNesting[0] == 0) {
 | |
|             portCLEAR_INTERRUPT_MASK_FROM_ISR(port_uxOldInterruptState[0]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ---------------------- Yielding -------------------------
 | |
| 
 | |
| void vPortYield(void)
 | |
| {
 | |
|     BaseType_t coreID = xPortGetCoreID();
 | |
| 
 | |
|     if (port_uxInterruptNesting[coreID]) {
 | |
|         vPortYieldFromISR();
 | |
|     } else {
 | |
|         esp_crosscore_int_send_yield(coreID);
 | |
|         /* There are 3-4 instructions of latency between triggering the software
 | |
|            interrupt and the CPU interrupt happening. Make sure it happened before
 | |
|            we return, otherwise vTaskDelay() may return and execute 1-2
 | |
|            instructions before the delay actually happens.
 | |
| 
 | |
|            (We could use the WFI instruction here, but there is a chance that
 | |
|            the interrupt will happen while evaluating the other two conditions
 | |
|            for an instant yield, and if that happens then the WFI would be
 | |
|            waiting for the next interrupt to occur...)
 | |
|         */
 | |
|         while (port_xSchedulerRunning[coreID] && port_uxCriticalNesting[coreID] == 0 && crosscore_int_ll_get_state(coreID) != 0) {}
 | |
|     }
 | |
| }
 | |
| 
 | |
| void vPortYieldFromISR( void )
 | |
| {
 | |
|     traceISR_EXIT_TO_SCHEDULER();
 | |
|     BaseType_t coreID = xPortGetCoreID();
 | |
|     port_xSchedulerRunning[coreID] = 1;
 | |
|     xPortSwitchFlag[coreID] = 1;
 | |
| }
 | |
| 
 | |
| void vPortYieldOtherCore(BaseType_t coreid)
 | |
| {
 | |
|     esp_crosscore_int_send_yield(coreid);
 | |
| }
 | |
| 
 | |
| // ------------------- Hook Functions ----------------------
 | |
| 
 | |
| void __attribute__((weak)) vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName)
 | |
| {
 | |
| #define ERR_STR1 "***ERROR*** A stack overflow in task "
 | |
| #define ERR_STR2 " has been detected."
 | |
|     const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};
 | |
| 
 | |
|     char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = {0};
 | |
| 
 | |
|     char *dest = buf;
 | |
|     for (int i = 0; i < sizeof(str) / sizeof(str[0]); i++) {
 | |
|         dest = strcat(dest, str[i]);
 | |
|     }
 | |
|     esp_system_abort(buf);
 | |
| }
 | |
| 
 | |
| // ----------------------- System --------------------------
 | |
| 
 | |
| uint32_t xPortGetTickRateHz(void)
 | |
| {
 | |
|     return (uint32_t)configTICK_RATE_HZ;
 | |
| }
 | |
| 
 | |
| #define STACK_WATCH_AREA_SIZE 32
 | |
| #define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1)
 | |
| 
 | |
| void vPortSetStackWatchpoint(void *pxStackStart)
 | |
| {
 | |
|     uint32_t addr = (uint32_t)pxStackStart;
 | |
|     addr = (addr + (STACK_WATCH_AREA_SIZE - 1)) & (~(STACK_WATCH_AREA_SIZE - 1));
 | |
|     esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, STACK_WATCH_AREA_SIZE, ESP_CPU_WATCHPOINT_STORE);
 | |
| }
 | |
| 
 | |
| // --------------------- TCB Cleanup -----------------------
 | |
| 
 | |
| #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
 | |
| static void vPortTLSPointersDelCb( void *pxTCB )
 | |
| {
 | |
|     /* Typecast pxTCB to StaticTask_t type to access TCB struct members.
 | |
|      * pvDummy15 corresponds to pvThreadLocalStoragePointers member of the TCB.
 | |
|      */
 | |
|     StaticTask_t *tcb = ( StaticTask_t * )pxTCB;
 | |
| 
 | |
|     /* The TLSP deletion callbacks are stored at an offset of (configNUM_THREAD_LOCAL_STORAGE_POINTERS/2) */
 | |
|     TlsDeleteCallbackFunction_t *pvThreadLocalStoragePointersDelCallback = ( TlsDeleteCallbackFunction_t * )( &( tcb->pvDummy15[ ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ] ) );
 | |
| 
 | |
|     /* We need to iterate over half the depth of the pvThreadLocalStoragePointers area
 | |
|      * to access all TLS pointers and their respective TLS deletion callbacks.
 | |
|      */
 | |
|     for ( int x = 0; x < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ); x++ ) {
 | |
|         if ( pvThreadLocalStoragePointersDelCallback[ x ] != NULL ) {  //If del cb is set
 | |
|             /* In case the TLSP deletion callback has been overwritten by a TLS pointer, gracefully abort. */
 | |
|             if ( !esp_ptr_executable( pvThreadLocalStoragePointersDelCallback[ x ] ) ) {
 | |
|                 ESP_EARLY_LOGE("FreeRTOS", "Fatal error: TLSP deletion callback at index %d overwritten with non-excutable pointer %p", x, pvThreadLocalStoragePointersDelCallback[ x ]);
 | |
|                 abort();
 | |
|             }
 | |
| 
 | |
|             pvThreadLocalStoragePointersDelCallback[ x ]( x, tcb->pvDummy15[ x ] );   //Call del cb
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */
 | |
| 
 | |
| void vPortTCBPreDeleteHook( void *pxTCB )
 | |
| {
 | |
|     #if ( CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK )
 | |
|         /* Call the user defined task pre-deletion hook */
 | |
|         extern void vTaskPreDeletionHook( void * pxTCB );
 | |
|         vTaskPreDeletionHook( pxTCB );
 | |
|     #endif /* CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK */
 | |
| 
 | |
|     #if ( CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP )
 | |
|         /*
 | |
|          * If the user is using the legacy task pre-deletion hook, call it.
 | |
|          * Todo: Will be removed in IDF-8097
 | |
|          */
 | |
|         #warning "CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP is deprecated. Use CONFIG_FREERTOS_TASK_PRE_DELETION_HOOK instead."
 | |
|         extern void vPortCleanUpTCB( void * pxTCB );
 | |
|         vPortCleanUpTCB( pxTCB );
 | |
|     #endif /* CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP */
 | |
| 
 | |
|     #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS )
 | |
|         /* Call TLS pointers deletion callbacks */
 | |
|         vPortTLSPointersDelCb( pxTCB );
 | |
|     #endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */
 | |
| 
 | |
|     #if ( SOC_CPU_COPROC_NUM > 0 )
 | |
|         /* Cleanup coproc save area */
 | |
|         vPortCleanUpCoprocArea( pxTCB );
 | |
|     #endif /* SOC_CPU_COPROC_NUM > 0 */
 | |
| }
 | |
| 
 | |
| 
 | |
| #if ( SOC_CPU_COPROC_NUM > 0 )
 | |
| 
 | |
| // ----------------------- Coprocessors --------------------------
 | |
| 
 | |
| /**
 | |
|  * @brief Pin the given task to the given core
 | |
|  *
 | |
|  * This function is called when a task uses a coprocessor. Since the coprocessors registers
 | |
|  * are saved lazily, as soon as a task starts using one, it must always be scheduled on the core
 | |
|  * it is currently executing on.
 | |
|  */
 | |
| #if ( configNUM_CORES > 1 )
 | |
| void vPortTaskPinToCore(StaticTask_t* task, int coreid)
 | |
| {
 | |
|     task->xDummyCoreID = coreid;
 | |
| }
 | |
| #endif /* configNUM_CORES > 1 */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief Function to call to simulate an `abort()` occurring in a different context than the one it's called from.
 | |
|  */
 | |
| extern void xt_unhandled_exception(void *frame);
 | |
| 
 | |
| /**
 | |
|  * @brief Get coprocessor save area out of the given task. If the coprocessor area is not created,
 | |
|  *        it shall be allocated.
 | |
|  *
 | |
|  * @param task Task to get the coprocessor save area of
 | |
|  * @param allocate When true, memory will be allocated for the coprocessor if it hasn't been allocated yet.
 | |
|  *                 When false, the coprocessor memory will be left as NULL if not allocated.
 | |
|  * @param coproc Coprocessor number to allocate memory for
 | |
|  */
 | |
| RvCoprocSaveArea* pxPortGetCoprocArea(StaticTask_t* task, bool allocate, int coproc)
 | |
| {
 | |
|     assert(coproc < SOC_CPU_COPROC_NUM);
 | |
| 
 | |
|     const UBaseType_t bottomstack = (UBaseType_t) task->pxDummy8;
 | |
|     RvCoprocSaveArea* sa = pxRetrieveCoprocSaveAreaFromStackPointer(bottomstack);
 | |
|     /* Check if the allocator is NULL. Since we don't have a way to get the end of the stack
 | |
|      * during its initialization, we have to do this here */
 | |
|     if (sa->sa_allocator == 0) {
 | |
|         /* Since the lowest stack address shall not be used as `sp` anymore, we will modify it */
 | |
|         sa->sa_tcbstack = task->pxDummy6;
 | |
|         sa->sa_allocator = (UBaseType_t) task->pxDummy6;
 | |
|     }
 | |
| 
 | |
|     /* Check if coprocessor area is allocated */
 | |
|     if (allocate && sa->sa_coprocs[coproc] == NULL) {
 | |
|         const uint32_t coproc_sa_sizes[] = {
 | |
|             RV_COPROC0_SIZE, RV_COPROC1_SIZE, RV_COPROC2_SIZE
 | |
|         };
 | |
|         const uint32_t coproc_sa_align[] = {
 | |
|             RV_COPROC0_ALIGN, RV_COPROC1_ALIGN, RV_COPROC2_ALIGN
 | |
|         };
 | |
|         /* The allocator points to a usable part of the stack, use it for the coprocessor.
 | |
|          * Align it up to the coprocessor save area requirement */
 | |
|         sa->sa_allocator = (sa->sa_allocator + coproc_sa_align[coproc] - 1) & ~(coproc_sa_align[coproc] - 1);
 | |
|         sa->sa_coprocs[coproc] = (void*) (sa->sa_allocator);
 | |
|         sa->sa_allocator += coproc_sa_sizes[coproc];
 | |
|         /* Update the lowest address of the stack to prevent FreeRTOS performing overflow/watermark checks on the coprocessors contexts */
 | |
|         task->pxDummy6 = (void*) (sa->sa_allocator);
 | |
|         /* Make sure the Task stack pointer is not pointing to the coprocessor context area, in other words, make
 | |
|          * sure we don't have a stack overflow */
 | |
|         void* task_sp = task->pxDummy1;
 | |
|         if (task_sp <= task->pxDummy6) {
 | |
|             /* In theory we need to call vApplicationStackOverflowHook to trigger the stack overflow callback,
 | |
|              * but in practice, since we are already in an exception handler, this won't work, so let's manually
 | |
|              * trigger an exception with the previous coprocessor owner's TCB */
 | |
|             g_panic_abort = true;
 | |
|             g_panic_abort_details = (char *) "ERROR: Stack overflow while saving coprocessor context!\n";
 | |
|             xt_unhandled_exception(task_sp);
 | |
|         }
 | |
|     }
 | |
|     return sa;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief Update given coprocessor owner and get the address of former owner's save area.
 | |
|  *
 | |
|  * This function is called when the current running task has poked a coprocessor's register which
 | |
|  * was used by a previous task. We have to save the coprocessor context (registers) inside the
 | |
|  * current owner's save area and change the ownership. The coprocessor will be marked as used in
 | |
|  * the new owner's coprocessor save area.
 | |
|  *
 | |
|  * @param coreid    Current core
 | |
|  * @param coproc    Coprocessor to save context of
 | |
|  *
 | |
|  * @returns Coprocessor former owner's save area, can be NULL if there was no owner yet, can be -1 if
 | |
|  *          the former owner is the same as the new owner.
 | |
|  */
 | |
| RvCoprocSaveArea* pxPortUpdateCoprocOwner(int coreid, int coproc, StaticTask_t* owner)
 | |
| {
 | |
|     RvCoprocSaveArea* sa = NULL;
 | |
|     /* Address of coprocessor owner */
 | |
|     StaticTask_t** owner_addr = &port_uxCoprocOwner[ coreid ][ coproc ];
 | |
|     /* Atomically exchange former owner with the new one */
 | |
|     StaticTask_t* former = Atomic_SwapPointers_p32((void**) owner_addr, owner);
 | |
|     /* Get the save area of former owner. small optimization here, if the former owner is the new owner,
 | |
|      * return -1. This will simplify the assembly code while making it faster. */
 | |
|     if (former == owner) {
 | |
|         sa = (void*) -1;
 | |
|     } else if (former != NULL) {
 | |
|         /* Allocate coprocessor memory if not available yet */
 | |
|         sa = pxPortGetCoprocArea(former, true, coproc);
 | |
|     }
 | |
|     return sa;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief Aborts execution when a coprocessor was used in an ISR context
 | |
|  */
 | |
| void vPortCoprocUsedInISR(void* frame)
 | |
| {
 | |
|     /* Since this function is called from an exception handler, the interrupts are disabled,
 | |
|      * as such, it is not possible to trigger another exception as would `abort` do.
 | |
|      * Simulate an abort without actually triggering an exception. */
 | |
|     g_panic_abort = true;
 | |
|     g_panic_abort_details = (char *) "ERROR: Coprocessors must not be used in ISRs!\n";
 | |
|     xt_unhandled_exception(frame);
 | |
| }
 | |
| 
 | |
| #endif /* SOC_CPU_COPROC_NUM > 0 */
 | |
| 
 | |
| /* ---------------------------------------------- Misc Implementations -------------------------------------------------
 | |
|  *
 | |
|  * ------------------------------------------------------------------------------------------------------------------ */
 | 
