mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	 44a27d3113
			
		
	
	44a27d3113
	
	
	
		
			
			change(esp_hw_support): disable CPU wait-for-event mode on cpu start See merge request espressif/esp-idf!36388
		
			
				
	
	
		
			857 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2015-2025 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| #include <stdbool.h>
 | |
| 
 | |
| #include "esp_attr.h"
 | |
| #include "esp_err.h"
 | |
| 
 | |
| #include "esp_log.h"
 | |
| #include "esp_chip_info.h"
 | |
| #include "esp_app_format.h"
 | |
| 
 | |
| #include "esp_private/cache_err_int.h"
 | |
| #include "esp_clk_internal.h"
 | |
| 
 | |
| #include "esp_rom_uart.h"
 | |
| #include "esp_rom_sys.h"
 | |
| #include "esp_rom_caps.h"
 | |
| #include "sdkconfig.h"
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #include "soc/dport_reg.h"
 | |
| #include "esp32/rom/cache.h"
 | |
| #include "esp32/rom/secure_boot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
| #include "esp32s2/rom/cache.h"
 | |
| #include "esp32s2/rom/secure_boot.h"
 | |
| #include "esp32s2/memprot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
| #include "esp32s3/rom/cache.h"
 | |
| #include "esp32s3/rom/secure_boot.h"
 | |
| #include "esp_memprot.h"
 | |
| #include "soc/assist_debug_reg.h"
 | |
| #include "soc/system_reg.h"
 | |
| #include "esp32s3/rom/opi_flash.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C3
 | |
| #include "esp32c3/rom/cache.h"
 | |
| #include "esp32c3/rom/secure_boot.h"
 | |
| #include "esp_memprot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C6
 | |
| #include "esp32c6/rom/cache.h"
 | |
| #include "esp_memprot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C61
 | |
| #include "esp_memprot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C5
 | |
| #include "esp32c5/rom/cache.h"
 | |
| #include "esp_memprot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32H2
 | |
| #include "esp32h2/rom/cache.h"
 | |
| #include "esp_memprot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32C2
 | |
| #include "esp32c2/rom/cache.h"
 | |
| #include "esp32c2/rom/secure_boot.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32P4
 | |
| #include "soc/hp_sys_clkrst_reg.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32H21
 | |
| #include "esp_memprot.h"
 | |
| #endif
 | |
| 
 | |
| #include "esp_private/cache_utils.h"
 | |
| #include "esp_private/rtc_clk.h"
 | |
| #include "esp_rtc_time.h"
 | |
| #include "rom/rtc.h"
 | |
| 
 | |
| #if SOC_INT_CLIC_SUPPORTED
 | |
| #include "hal/interrupt_clic_ll.h"
 | |
| #endif // SOC_INT_CLIC_SUPPORTED
 | |
| 
 | |
| #include "esp_private/esp_mmu_map_private.h"
 | |
| #include "esp_private/image_process.h"
 | |
| #if CONFIG_SPIRAM
 | |
| #include "esp_psram.h"
 | |
| #include "esp_private/mmu_psram_flash.h"
 | |
| #include "esp_private/esp_psram_extram.h"
 | |
| #endif
 | |
| 
 | |
| #include "esp_private/spi_flash_os.h"
 | |
| #include "esp_private/mspi_timing_tuning.h"
 | |
| #include "bootloader_flash_config.h"
 | |
| #include "bootloader_flash.h"
 | |
| #include "esp_private/crosscore_int.h"
 | |
| 
 | |
| #include "esp_private/sleep_gpio.h"
 | |
| #include "hal/wdt_hal.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "hal/cache_hal.h"
 | |
| #include "hal/cache_ll.h"
 | |
| #include "hal/efuse_ll.h"
 | |
| #include "soc/periph_defs.h"
 | |
| #include "esp_cpu.h"
 | |
| #include "esp_private/esp_clk.h"
 | |
| 
 | |
| #if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX
 | |
| #include "esp_private/trax.h"
 | |
| #endif
 | |
| 
 | |
| #include "bootloader_mem.h"
 | |
| 
 | |
| #if CONFIG_APP_BUILD_TYPE_RAM
 | |
| #include "esp_rom_spiflash.h"
 | |
| #include "bootloader_init.h"
 | |
| #include "esp_private/bootloader_flash_internal.h"
 | |
| #include "spi_flash_mmap.h"
 | |
| #endif // CONFIG_APP_BUILD_TYPE_RAM
 | |
| 
 | |
| //This dependency will be removed in the future
 | |
| #include "soc/ext_mem_defs.h"
 | |
| 
 | |
| #include "esp_private/startup_internal.h"
 | |
| #include "esp_private/system_internal.h"
 | |
| 
 | |
| #if SOC_MEM_NON_CONTIGUOUS_SRAM
 | |
| extern int _bss_start_low, _bss_start_high;
 | |
| extern int _bss_end_low, _bss_end_high;
 | |
| #else
 | |
| extern int _bss_start;
 | |
| extern int _bss_end;
 | |
| #endif // SOC_MEM_NON_CONTIGUOUS_SRAM
 | |
| extern int _rtc_bss_start;
 | |
| extern int _rtc_bss_end;
 | |
| #if CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED
 | |
| extern int _bss_bt_start;
 | |
| extern int _bss_bt_end;
 | |
| #endif // CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED
 | |
| 
 | |
| /**
 | |
|  * If using `int`, then for CLANG, with enabled optimization when inlined function is provided with the address of external symbol, the two least bits of the constant used inside that function get cleared.
 | |
|  * Optimizer assumes that address of external symbol should be aligned to 4-bytes and therefore aligns constant value used for bitwise AND operation with that address.
 | |
|  *
 | |
|  * This means `extern int _instruction_reserved_start;` can be unaligned to 4 bytes, whereas using `char` can solve this issue.
 | |
|  *
 | |
|  * As we only use these symbol address, we declare them as `char` here
 | |
|  */
 | |
| extern char _instruction_reserved_start;
 | |
| extern char _instruction_reserved_end;
 | |
| extern char _rodata_reserved_start;
 | |
| extern char _rodata_reserved_end;
 | |
| 
 | |
| extern int _vector_table;
 | |
| #if SOC_INT_CLIC_SUPPORTED
 | |
| extern int _mtvt_table;
 | |
| #endif
 | |
| 
 | |
| static const char *TAG = "cpu_start";
 | |
| 
 | |
| #ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY
 | |
| extern int _iram_bss_start;
 | |
| extern int _iram_bss_end;
 | |
| #endif
 | |
| 
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
| static volatile bool s_cpu_up[SOC_CPU_CORES_NUM] = { false };
 | |
| static volatile bool s_cpu_inited[SOC_CPU_CORES_NUM] = { false };
 | |
| 
 | |
| static volatile bool s_resume_cores;
 | |
| #endif
 | |
| 
 | |
| static void core_intr_matrix_clear(void)
 | |
| {
 | |
|     uint32_t core_id = esp_cpu_get_core_id();
 | |
| 
 | |
|     for (int i = 0; i < ETS_MAX_INTR_SOURCE; i++) {
 | |
| #if SOC_INT_CLIC_SUPPORTED
 | |
|         interrupt_clic_ll_route(core_id, i, ETS_INVALID_INUM);
 | |
| #else
 | |
|         esp_rom_route_intr_matrix(core_id, i, ETS_INVALID_INUM);
 | |
| #endif  // SOC_INT_CLIC_SUPPORTED
 | |
|     }
 | |
| 
 | |
| #if SOC_INT_CLIC_SUPPORTED
 | |
|     for (int i = 0; i < 32; i++) {
 | |
|         /* Set all the CPU interrupt lines to vectored by default, as it is on other RISC-V targets */
 | |
|         esprv_int_set_vectored(i, true);
 | |
|     }
 | |
| #endif // SOC_INT_CLIC_SUPPORTED
 | |
| }
 | |
| 
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
| void startup_resume_other_cores(void)
 | |
| {
 | |
|     s_resume_cores = true;
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR call_start_cpu1(void)
 | |
| {
 | |
| #ifdef __riscv
 | |
|     // Configure the global pointer register
 | |
|     // (This should be the first thing IDF app does, as any other piece of code could be
 | |
|     // relaxed by the linker to access something relative to __global_pointer$)
 | |
|     __asm__ __volatile__(
 | |
|         ".option push\n"
 | |
|         ".option norelax\n"
 | |
|         "la gp, __global_pointer$\n"
 | |
|         ".option pop"
 | |
|     );
 | |
| #endif  //#ifdef __riscv
 | |
| 
 | |
| #if SOC_BRANCH_PREDICTOR_SUPPORTED
 | |
|     esp_cpu_branch_prediction_enable();
 | |
| #endif  //#if SOC_BRANCH_PREDICTOR_SUPPORTED
 | |
| 
 | |
|     esp_cpu_intr_set_ivt_addr(&_vector_table);
 | |
| #if SOC_INT_CLIC_SUPPORTED
 | |
|     /* When hardware vectored interrupts are enabled in CLIC,
 | |
|      * the CPU jumps to this base address + 4 * interrupt_id.
 | |
|      */
 | |
|     esp_cpu_intr_set_mtvt_addr(&_mtvt_table);
 | |
| #endif
 | |
| #if SOC_CPU_SUPPORT_WFE
 | |
|     rv_utils_disable_wfe_mode();
 | |
| #endif
 | |
|     ets_set_appcpu_boot_addr(0);
 | |
| 
 | |
|     bootloader_init_mem();
 | |
| 
 | |
| #if CONFIG_ESP_CONSOLE_NONE
 | |
|     esp_rom_install_channel_putc(1, NULL);
 | |
|     esp_rom_install_channel_putc(2, NULL);
 | |
| #elif !CONFIG_ESP_CONSOLE_USB_CDC
 | |
|     esp_rom_install_uart_printf();
 | |
|     esp_rom_output_set_as_console(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM);
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     DPORT_REG_SET_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_PDEBUG_ENABLE | DPORT_APP_CPU_RECORD_ENABLE);
 | |
|     DPORT_REG_CLR_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_RECORD_ENABLE);
 | |
| #elif CONFIG_IDF_TARGET_ESP32P4
 | |
|     REG_SET_BIT(ASSIST_DEBUG_CORE_1_RCD_EN_REG, ASSIST_DEBUG_CORE_1_RCD_PDEBUGEN);
 | |
|     REG_SET_BIT(ASSIST_DEBUG_CORE_1_RCD_EN_REG, ASSIST_DEBUG_CORE_1_RCD_RECORDEN);
 | |
| #else
 | |
|     REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_PDEBUGENABLE_REG, 1);
 | |
|     REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_RECORDING_REG, 1);
 | |
| #endif
 | |
| 
 | |
|     s_cpu_up[1] = true;
 | |
|     ESP_EARLY_LOGD(TAG, "App cpu up");
 | |
| 
 | |
|     // Clear interrupt matrix for APP CPU core
 | |
|     core_intr_matrix_clear();
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
|     //Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler
 | |
|     //has started, but it isn't active *on this CPU* yet.
 | |
|     esp_cache_err_int_init();
 | |
| #endif
 | |
| 
 | |
| #if (CONFIG_IDF_TARGET_ESP32 && CONFIG_ESP32_TRAX_TWOBANKS) || \
 | |
|     (CONFIG_IDF_TARGET_ESP32S3 && CONFIG_ESP32S3_TRAX_TWOBANKS)
 | |
|     trax_start_trace(TRAX_DOWNCOUNT_WORDS);
 | |
| #endif
 | |
| 
 | |
|     s_cpu_inited[1] = true;
 | |
| 
 | |
|     while (!s_resume_cores) {
 | |
|         esp_rom_delay_us(100);
 | |
|     }
 | |
| 
 | |
|     SYS_STARTUP_FN();
 | |
| }
 | |
| 
 | |
| static void start_other_core(void)
 | |
| {
 | |
|     esp_chip_info_t chip_info;
 | |
|     esp_chip_info(&chip_info);
 | |
| 
 | |
|     // If not the single core variant of a target - check this since there is
 | |
|     // no separate soc_caps.h for the single core variant.
 | |
|     if (!(chip_info.cores > 1)) {
 | |
|         ESP_EARLY_LOGE(TAG, "Running on single core variant of a chip, but app is built with multi-core support.");
 | |
|         ESP_EARLY_LOGE(TAG, "Check that CONFIG_FREERTOS_UNICORE is enabled in menuconfig");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     ESP_EARLY_LOGD(TAG, "Starting app cpu, entry point is %p", call_start_cpu1);
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32 && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
|     Cache_Flush(1);
 | |
|     Cache_Read_Enable(1);
 | |
| #endif // #if CONFIG_IDF_TARGET_ESP32 && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
| 
 | |
|     esp_cpu_unstall(1);
 | |
| 
 | |
|     // Enable clock and reset APP CPU. Note that OpenOCD may have already
 | |
|     // enabled clock and taken APP CPU out of reset. In this case don't reset
 | |
|     // APP CPU again, as that will clear the breakpoints which may have already
 | |
|     // been set.
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) {
 | |
|         DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
 | |
|         DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
 | |
|         DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
 | |
|         DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
|     if (!REG_GET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN)) {
 | |
|         REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN);
 | |
|         REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL);
 | |
|         REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING);
 | |
|         REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING);
 | |
|     }
 | |
| #elif CONFIG_IDF_TARGET_ESP32P4
 | |
|     if (!REG_GET_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_CORE1_CPU_CLK_EN)) {
 | |
|         REG_SET_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_CORE1_CPU_CLK_EN);
 | |
|     }
 | |
|     if (REG_GET_BIT(HP_SYS_CLKRST_HP_RST_EN0_REG, HP_SYS_CLKRST_REG_RST_EN_CORE1_GLOBAL)) {
 | |
|         REG_CLR_BIT(HP_SYS_CLKRST_HP_RST_EN0_REG, HP_SYS_CLKRST_REG_RST_EN_CORE1_GLOBAL);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1);
 | |
| 
 | |
|     bool cpus_up = false;
 | |
| 
 | |
|     while (!cpus_up) {
 | |
|         cpus_up = true;
 | |
|         for (int i = 0; i < SOC_CPU_CORES_NUM; i++) {
 | |
|             cpus_up &= s_cpu_up[i];
 | |
|         }
 | |
|         esp_rom_delay_us(100);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| static void restore_app_mmu_from_pro_mmu(void)
 | |
| {
 | |
|     const int mmu_reg_num = 2048;
 | |
|     volatile uint32_t* from = (uint32_t*)DR_REG_FLASH_MMU_TABLE_PRO;
 | |
|     volatile uint32_t* to = (uint32_t*)DR_REG_FLASH_MMU_TABLE_APP;
 | |
|     for (int i = 0; i < mmu_reg_num; i++) {
 | |
|         *(to++) = *(from++);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| // This function is needed to make the multicore app runnable on a unicore bootloader (built with FREERTOS UNICORE).
 | |
| // It does some cache settings for other CPUs.
 | |
| void IRAM_ATTR do_multicore_settings(void)
 | |
| {
 | |
|     // We intentionally do not check the cache settings before changing them,
 | |
|     // because it helps to get the application to run on older bootloaders.
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     if (!efuse_ll_get_disable_app_cpu()) {
 | |
|         Cache_Read_Disable(1);
 | |
|         Cache_Flush(1);
 | |
|         DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
 | |
|         mmu_init(1);
 | |
|         DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
 | |
|         // We do not enable cache for CPU1 now because it will be done later in start_other_core().
 | |
|     }
 | |
|     restore_app_mmu_from_pro_mmu();
 | |
| #endif
 | |
| 
 | |
|     cache_bus_mask_t cache_bus_mask_core0 = cache_ll_l1_get_enabled_bus(0);
 | |
| #ifndef CONFIG_IDF_TARGET_ESP32
 | |
|     // 1. disable the cache before changing its settings.
 | |
|     cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
 | |
| #endif
 | |
|     for (unsigned core = 1; core < SOC_CPU_CORES_NUM; core++) {
 | |
|         // 2. change cache settings. All cores must have the same settings.
 | |
|         cache_ll_l1_enable_bus(core, cache_bus_mask_core0);
 | |
|     }
 | |
| #ifndef CONFIG_IDF_TARGET_ESP32
 | |
|     // 3. enable the cache after changing its settings.
 | |
|     cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
 | |
| #endif
 | |
| }
 | |
| #endif // !SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
 | |
| #endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
| 
 | |
| /*
 | |
|  * We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
 | |
|  * and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
 | |
|  */
 | |
| void IRAM_ATTR call_start_cpu0(void)
 | |
| {
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
|     soc_reset_reason_t rst_reas[SOC_CPU_CORES_NUM];
 | |
| #else
 | |
|     soc_reset_reason_t __attribute__((unused)) rst_reas[1];
 | |
| #endif
 | |
| 
 | |
| #ifdef __riscv
 | |
|     if (esp_cpu_dbgr_is_attached()) {
 | |
|         /* Let debugger some time to detect that target started, halt it, enable ebreaks and resume.
 | |
|            500ms should be enough. */
 | |
|         for (uint32_t ms_num = 0; ms_num < 2; ms_num++) {
 | |
|             esp_rom_delay_us(100000);
 | |
|         }
 | |
|     }
 | |
|     // Configure the global pointer register
 | |
|     // (This should be the first thing IDF app does, as any other piece of code could be
 | |
|     // relaxed by the linker to access something relative to __global_pointer$)
 | |
|     __asm__ __volatile__(
 | |
|         ".option push\n"
 | |
|         ".option norelax\n"
 | |
|         "la gp, __global_pointer$\n"
 | |
|         ".option pop"
 | |
|     );
 | |
| #endif
 | |
| 
 | |
| #if SOC_BRANCH_PREDICTOR_SUPPORTED
 | |
|     esp_cpu_branch_prediction_enable();
 | |
| #endif
 | |
|     // Move exception vectors to IRAM
 | |
|     esp_cpu_intr_set_ivt_addr(&_vector_table);
 | |
| #if SOC_INT_CLIC_SUPPORTED
 | |
|     /* When hardware vectored interrupts are enabled in CLIC,
 | |
|      * the CPU jumps to this base address + 4 * interrupt_id.
 | |
|      */
 | |
|     esp_cpu_intr_set_mtvt_addr(&_mtvt_table);
 | |
| #endif
 | |
| #if SOC_CPU_SUPPORT_WFE
 | |
|     rv_utils_disable_wfe_mode();
 | |
| #endif
 | |
| 
 | |
|     /* NOTE: When ESP-TEE is enabled, this sets up the callback function
 | |
|      * which redirects all the interrupt management for the REE (user app)
 | |
|      * to the TEE by raising the appropriate service calls.
 | |
|      */
 | |
| #if CONFIG_SECURE_ENABLE_TEE
 | |
|     extern uint32_t esp_tee_service_call(int argc, ...);
 | |
|     esprv_int_setup_mgmt_cb((void *)esp_tee_service_call);
 | |
| #endif
 | |
| 
 | |
|     rst_reas[0] = esp_rom_get_reset_reason(0);
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
|     rst_reas[1] = esp_rom_get_reset_reason(1);
 | |
| #endif
 | |
| 
 | |
|     //Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this.
 | |
| #if SOC_MEM_NON_CONTIGUOUS_SRAM
 | |
|     memset(&_bss_start_low, 0, (&_bss_end_low - &_bss_start_low) * sizeof(_bss_start_low));
 | |
|     memset(&_bss_start_high, 0, (&_bss_end_high - &_bss_start_high) * sizeof(_bss_start_high));
 | |
| #else
 | |
|     memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
 | |
| #endif // SOC_MEM_NON_CONTIGUOUS_SRAM
 | |
| 
 | |
| #if CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED
 | |
|     // Clear Bluetooth bss
 | |
|     memset(&_bss_bt_start, 0, (&_bss_bt_end - &_bss_bt_start) * sizeof(_bss_bt_start));
 | |
| #endif // CONFIG_BT_LE_RELEASE_IRAM_SUPPORTED
 | |
| 
 | |
| #if defined(CONFIG_IDF_TARGET_ESP32) && defined(CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY)
 | |
|     // Clear IRAM BSS
 | |
|     memset(&_iram_bss_start, 0, (&_iram_bss_end - &_iram_bss_start) * sizeof(_iram_bss_start));
 | |
| #endif
 | |
| 
 | |
| #if SOC_RTC_FAST_MEM_SUPPORTED || SOC_RTC_SLOW_MEM_SUPPORTED
 | |
|     /* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */
 | |
|     if (rst_reas[0] != RESET_REASON_CORE_DEEP_SLEEP) {
 | |
|         memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP && !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE && !SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
 | |
|     // It helps to fix missed cache settings for other cores. It happens when bootloader is unicore.
 | |
|     do_multicore_settings();
 | |
| #endif
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
|     //cache hal ctx needs to be initialised
 | |
|     cache_hal_init();
 | |
| #endif
 | |
| 
 | |
|     // When the APP is loaded into ram for execution, some hardware initialization behaviors
 | |
|     // in the bootloader are still necessary
 | |
| #if CONFIG_APP_BUILD_TYPE_RAM
 | |
|     bootloader_init();
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
|     bootloader_flash_hardware_init();
 | |
| #endif  //#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
| #endif  //#if CONFIG_APP_BUILD_TYPE_RAM
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32P4
 | |
| #define RWDT_RESET           RESET_REASON_CORE_RWDT
 | |
| #define MWDT_RESET           RESET_REASON_CORE_MWDT
 | |
| #else
 | |
| #define RWDT_RESET           RESET_REASON_CORE_RTC_WDT
 | |
| #define MWDT_RESET           RESET_REASON_CORE_MWDT0
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_BOOTLOADER_WDT_ENABLE
 | |
|     // from panic handler we can be reset by RWDT or TG0WDT
 | |
|     if (rst_reas[0] == RWDT_RESET || rst_reas[0] == MWDT_RESET
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
|             || rst_reas[1] == RWDT_RESET || rst_reas[1] == MWDT_RESET
 | |
| #endif
 | |
|        ) {
 | |
|         wdt_hal_context_t rtc_wdt_ctx = RWDT_HAL_CONTEXT_DEFAULT();
 | |
|         wdt_hal_write_protect_disable(&rtc_wdt_ctx);
 | |
|         wdt_hal_disable(&rtc_wdt_ctx);
 | |
|         wdt_hal_write_protect_enable(&rtc_wdt_ctx);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
|     /* Configure the mode of instruction cache : cache size, cache associated ways, cache line size. */
 | |
|     extern void esp_config_instruction_cache_mode(void);
 | |
|     esp_config_instruction_cache_mode();
 | |
| 
 | |
|     /* If we need use SPIRAM, we should use data cache, or if we want to access rodata, we also should use data cache.
 | |
|        Configure the mode of data : cache size, cache associated ways, cache line size.
 | |
|        Enable data cache, so if we don't use SPIRAM, it just works. */
 | |
|     extern void esp_config_data_cache_mode(void);
 | |
|     esp_config_data_cache_mode();
 | |
|     Cache_Enable_DCache(0);
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S3
 | |
|     /* Configure the mode of instruction cache : cache size, cache line size. */
 | |
|     extern void rom_config_instruction_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size);
 | |
|     rom_config_instruction_cache_mode(CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE, CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE);
 | |
| 
 | |
|     /* If we need use SPIRAM, we should use data cache.
 | |
|        Configure the mode of data : cache size, cache line size.*/
 | |
|     Cache_Suspend_DCache();
 | |
|     extern void rom_config_data_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size);
 | |
|     rom_config_data_cache_mode(CONFIG_ESP32S3_DATA_CACHE_SIZE, CONFIG_ESP32S3_DCACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_DATA_CACHE_LINE_SIZE);
 | |
|     Cache_Resume_DCache(0);
 | |
| #endif // CONFIG_IDF_TARGET_ESP32S3
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32P4
 | |
|     //TODO: IDF-5670, add cache init API
 | |
|     extern void esp_config_l2_cache_mode(void);
 | |
|     esp_config_l2_cache_mode();
 | |
| #endif
 | |
| 
 | |
| #if ESP_ROM_NEEDS_SET_CACHE_MMU_SIZE
 | |
| #if CONFIG_APP_BUILD_TYPE_ELF_RAM
 | |
|     // For RAM loadable ELF case, we don't need to reserve IROM/DROM as instructions and data
 | |
|     // are all in internal RAM. If the RAM loadable ELF has any requirement to memory map the
 | |
|     // external flash then it should use flash or partition mmap APIs.
 | |
|     uint32_t cache_mmu_irom_size = 0;
 | |
|     __attribute__((unused)) uint32_t cache_mmu_drom_size = 0;
 | |
| #else // CONFIG_APP_BUILD_TYPE_ELF_RAM
 | |
|     uint32_t _instruction_size = (uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start;
 | |
|     uint32_t cache_mmu_irom_size = ((_instruction_size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE) * sizeof(uint32_t);
 | |
| 
 | |
|     uint32_t _rodata_size = (uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start;
 | |
|     __attribute__((unused)) uint32_t cache_mmu_drom_size = ((_rodata_size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE) * sizeof(uint32_t);
 | |
| #endif // !CONFIG_APP_BUILD_TYPE_ELF_RAM
 | |
| 
 | |
|     /* Configure the Cache MMU size for instruction and rodata in flash. */
 | |
|     Cache_Set_IDROM_MMU_Size(cache_mmu_irom_size, CACHE_DROM_MMU_MAX_END - cache_mmu_irom_size);
 | |
| #endif // ESP_ROM_NEEDS_SET_CACHE_MMU_SIZE
 | |
| 
 | |
| #if CONFIG_ESPTOOLPY_OCT_FLASH && !CONFIG_ESPTOOLPY_FLASH_MODE_AUTO_DETECT
 | |
|     bool efuse_opflash_en = efuse_ll_get_flash_type();
 | |
|     if (!efuse_opflash_en) {
 | |
|         ESP_DRAM_LOGE(TAG, "Octal Flash option selected, but EFUSE not configured!");
 | |
|         abort();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     esp_mspi_pin_init();
 | |
|     // For Octal flash, it's hard to implement a read_id function in OPI mode for all vendors.
 | |
|     // So we have to read it here in SPI mode, before entering the OPI mode.
 | |
|     bootloader_flash_update_id();
 | |
| 
 | |
|     // Configure the power related stuff. After this the MSPI timing tuning can be done.
 | |
|     esp_rtc_init();
 | |
| 
 | |
|     /**
 | |
|      * This function initialise the Flash chip to the user-defined settings.
 | |
|      *
 | |
|      * In bootloader, we only init Flash (and MSPI) to a preliminary state, for being flexible to
 | |
|      * different chips.
 | |
|      * In this stage, we re-configure the Flash (and MSPI) to required configuration
 | |
|      */
 | |
|     spi_flash_init_chip_state();
 | |
| #if SOC_MEMSPI_SRC_FREQ_120M_SUPPORTED
 | |
|     // This function needs to be called when PLL is enabled. Needs to be called after spi_flash_init_chip_state in case
 | |
|     // some state of flash is modified.
 | |
|     mspi_timing_flash_tuning();
 | |
| #endif
 | |
| 
 | |
|     esp_mmu_map_init();
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_ELF_RAM
 | |
| #if CONFIG_SPIRAM_FLASH_LOAD_TO_PSRAM
 | |
|     ESP_ERROR_CHECK(image_process());
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_SPIRAM_BOOT_INIT
 | |
|     if (esp_psram_init() != ESP_OK) {
 | |
| #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
 | |
|         ESP_DRAM_LOGE(TAG, "Failed to init external RAM, needed for external .bss segment");
 | |
|         abort();
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_SPIRAM_IGNORE_NOTFOUND
 | |
|         ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it.");
 | |
| #else
 | |
|         ESP_DRAM_LOGE(TAG, "Failed to init external RAM!");
 | |
|         abort();
 | |
| #endif
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     //----------------------------------Separator-----------------------------//
 | |
|     /**
 | |
|      * @note
 | |
|      * After this stage, you can access the flash through the cache, i.e. run code which is not placed in IRAM
 | |
|      * or print string which locates on flash
 | |
|      */
 | |
|     esp_mspi_pin_reserve();
 | |
| 
 | |
| #endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
| 
 | |
| #if CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
|     ESP_EARLY_LOGI(TAG, "Unicore app");
 | |
| #else
 | |
|     ESP_EARLY_LOGI(TAG, "Multicore app");
 | |
| #endif
 | |
|     /* NOTE: When ESP-TEE is enabled, it configures its own memory protection
 | |
|      * scheme using the CPU-inherent features PMP and PMA and the APM peripheral.
 | |
|      */
 | |
| #if !CONFIG_SECURE_ENABLE_TEE
 | |
|     bootloader_init_mem();
 | |
| #endif
 | |
| 
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
|     s_cpu_up[0] = true;
 | |
| #endif
 | |
| 
 | |
|     ESP_EARLY_LOGD(TAG, "Pro cpu up");
 | |
| 
 | |
| #if SOC_CPU_CORES_NUM > 1 // there is no 'single-core mode' for natively single-core processors
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
|     start_other_core();
 | |
| #else
 | |
|     ESP_EARLY_LOGI(TAG, "Single core mode");
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN); // stop the other core
 | |
| #elif CONFIG_IDF_TARGET_ESP32S3
 | |
|     REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN);
 | |
| #if SOC_APPCPU_HAS_CLOCK_GATING_BUG
 | |
|     /* The clock gating signal of the App core is invalid. We use RUNSTALL and RESETTING
 | |
|        signals to ensure that the App core stops running in single-core mode. */
 | |
|     REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL);
 | |
|     REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING);
 | |
| #endif
 | |
| #elif CONFIG_IDF_TARGET_ESP32P4
 | |
|     REG_CLR_BIT(HP_SYS_CLKRST_SOC_CLK_CTRL0_REG, HP_SYS_CLKRST_REG_CORE1_CPU_CLK_EN);
 | |
|     REG_SET_BIT(HP_SYS_CLKRST_HP_RST_EN0_REG, HP_SYS_CLKRST_REG_RST_EN_CORE1_GLOBAL);
 | |
| #endif // CONFIG_IDF_TARGET_ESP32
 | |
| #endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
| #endif // SOC_CPU_CORES_NUM > 1
 | |
| 
 | |
| #if CONFIG_SPIRAM_MEMTEST
 | |
|     if (esp_psram_is_initialized()) {
 | |
|         bool ext_ram_ok = esp_psram_extram_test();
 | |
|         if (!ext_ram_ok) {
 | |
|             ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| #endif  //CONFIG_SPIRAM_MEMTEST
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
| //TODO: IDF-5023, replace with MMU driver
 | |
| #if CONFIG_IDF_TARGET_ESP32S3
 | |
|     int s_instr_flash2spiram_off = 0;
 | |
|     int s_rodata_flash2spiram_off = 0;
 | |
| #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
 | |
|     s_instr_flash2spiram_off = instruction_flash2spiram_offset();
 | |
| #endif
 | |
| #if CONFIG_SPIRAM_RODATA
 | |
|     s_rodata_flash2spiram_off = rodata_flash2spiram_offset();
 | |
| #endif
 | |
|     Cache_Set_IDROM_MMU_Info(cache_mmu_irom_size / sizeof(uint32_t), \
 | |
|                              cache_mmu_drom_size / sizeof(uint32_t), \
 | |
|                              (uint32_t)&_rodata_reserved_start, \
 | |
|                              (uint32_t)&_rodata_reserved_end, \
 | |
|                              s_instr_flash2spiram_off, \
 | |
|                              s_rodata_flash2spiram_off);
 | |
| #endif // CONFIG_IDF_TARGET_ESP32S3
 | |
| 
 | |
| #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S2_DATA_CACHE_WRAP || \
 | |
|     CONFIG_ESP32S3_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S3_DATA_CACHE_WRAP
 | |
|     uint32_t icache_wrap_enable = 0, dcache_wrap_enable = 0;
 | |
| #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S3_INSTRUCTION_CACHE_WRAP
 | |
|     icache_wrap_enable = 1;
 | |
| #endif
 | |
| #if CONFIG_ESP32S2_DATA_CACHE_WRAP || CONFIG_ESP32S3_DATA_CACHE_WRAP
 | |
|     dcache_wrap_enable = 1;
 | |
| #endif
 | |
|     esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable);
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_ESP32S3_DATA_CACHE_16KB
 | |
|     Cache_Invalidate_DCache_All();
 | |
|     Cache_Occupy_Addr(SOC_DROM_LOW, 0x4000);
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32C2
 | |
| // TODO : IDF-5020
 | |
| #if CONFIG_ESP32C2_INSTRUCTION_CACHE_WRAP
 | |
|     esp_enable_cache_wrap(1);
 | |
| #endif
 | |
| #endif
 | |
| #endif // !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
| 
 | |
| #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
 | |
|     esp_psram_bss_init();
 | |
| #endif
 | |
| 
 | |
| //Enable trace memory and immediately start trace.
 | |
| #if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX
 | |
| #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S3
 | |
| #if CONFIG_ESP32_TRAX_TWOBANKS || CONFIG_ESP32S3_TRAX_TWOBANKS
 | |
|     trax_enable(TRAX_ENA_PRO_APP);
 | |
| #else
 | |
|     trax_enable(TRAX_ENA_PRO);
 | |
| #endif
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     trax_enable(TRAX_ENA_PRO);
 | |
| #endif
 | |
|     trax_start_trace(TRAX_DOWNCOUNT_WORDS);
 | |
| #endif // CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX || CONFIG_ESP32S3_TRAX
 | |
| 
 | |
|     esp_clk_init();
 | |
|     esp_perip_clk_init();
 | |
| 
 | |
|     // Now that the clocks have been set-up, set the startup time from RTC
 | |
|     // and default RTC-backed system time provider.
 | |
|     g_startup_time = esp_rtc_get_time_us();
 | |
| 
 | |
|     // Clear interrupt matrix for PRO CPU core
 | |
|     core_intr_matrix_clear();
 | |
| 
 | |
| #ifndef CONFIG_IDF_ENV_FPGA // TODO: on FPGA it should be possible to configure this, not currently working with APB_CLK_FREQ changed
 | |
| #ifdef CONFIG_ESP_CONSOLE_UART
 | |
|     uint32_t clock_hz = esp_clk_apb_freq();
 | |
| #if ESP_ROM_UART_CLK_IS_XTAL
 | |
|     clock_hz = esp_clk_xtal_freq(); // From esp32-s3 on, UART clock source is selected to XTAL in ROM
 | |
| #endif
 | |
|     esp_rom_output_tx_wait_idle(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM);
 | |
| 
 | |
|     // In a single thread mode, the freertos is not started yet. So don't have to use a critical section.
 | |
|     int __DECLARE_RCC_ATOMIC_ENV __attribute__((unused));  // To avoid build errors about spinlock's __DECLARE_RCC_ATOMIC_ENV
 | |
|     esp_rom_uart_set_clock_baudrate(CONFIG_ESP_CONSOLE_ROM_SERIAL_PORT_NUM, clock_hz, CONFIG_ESP_CONSOLE_UART_BAUDRATE);
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if SOC_DEEP_SLEEP_SUPPORTED
 | |
|     // Need to unhold the IOs that were hold right before entering deep sleep, which are used as wakeup pins
 | |
|     if (rst_reas[0] == RESET_REASON_CORE_DEEP_SLEEP) {
 | |
|         esp_deep_sleep_wakeup_io_reset();
 | |
|     }
 | |
| #endif  //#if SOC_DEEP_SLEEP_SUPPORTED
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
|     esp_cache_err_int_init();
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && !CONFIG_ESP_SYSTEM_MEMPROT_TEST
 | |
|     // Memprot cannot be locked during OS startup as the lock-on prevents any PMS changes until a next reboot
 | |
|     // If such a situation appears, it is likely an malicious attempt to bypass the system safety setup -> print error & reset
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
|     if (esp_memprot_is_locked_any()) {
 | |
| #else
 | |
|     bool is_locked = false;
 | |
|     if (esp_mprot_is_conf_locked_any(&is_locked) != ESP_OK || is_locked) {
 | |
| #endif
 | |
|         ESP_EARLY_LOGE(TAG, "Memprot feature locked after the system reset! Potential safety corruption, rebooting.");
 | |
|         esp_restart_noos();
 | |
|     }
 | |
| 
 | |
|     //default configuration of PMS Memprot
 | |
|     esp_err_t memp_err = ESP_OK;
 | |
| #if CONFIG_IDF_TARGET_ESP32S2 //specific for ESP32S2 unless IDF-3024 is merged
 | |
| #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK
 | |
|     memp_err = esp_memprot_set_prot(PANIC_HNDL_ON, MEMPROT_LOCK, NULL);
 | |
| #else
 | |
|     memp_err = esp_memprot_set_prot(PANIC_HNDL_ON, MEMPROT_UNLOCK, NULL);
 | |
| #endif
 | |
| #else //CONFIG_IDF_TARGET_ESP32S2 specific end
 | |
|     esp_memp_config_t memp_cfg = ESP_MEMPROT_DEFAULT_CONFIG();
 | |
| #if !CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK
 | |
|     memp_cfg.lock_feature = false;
 | |
| #endif
 | |
|     memp_err = esp_mprot_set_prot(&memp_cfg);
 | |
| #endif //other IDF_TARGETS end
 | |
| 
 | |
|     if (memp_err != ESP_OK) {
 | |
|         ESP_EARLY_LOGE(TAG, "Failed to set Memprot feature (0x%08X: %s), rebooting.", memp_err, esp_err_to_name(memp_err));
 | |
|         esp_restart_noos();
 | |
|     }
 | |
| #endif //CONFIG_ESP_SYSTEM_MEMPROT_FEATURE && !CONFIG_ESP_SYSTEM_MEMPROT_TEST
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
|     // External devices (including SPI0/1, cache) should be initialized
 | |
| 
 | |
| #if !CONFIG_APP_BUILD_TYPE_RAM
 | |
|     // Normal startup flow. We arrive here with the help of 1st, 2nd bootloader. There are valid headers (app/bootloader)
 | |
| 
 | |
|     // Read the application binary image header. This will also decrypt the header if the image is encrypted.
 | |
|     __attribute__((unused)) esp_image_header_t fhdr = {0};
 | |
| 
 | |
|     // We can access the image header through the cache by reading from the memory-mapped virtual DROM start offset
 | |
|     uint32_t fhdr_src_addr = (uint32_t)(&_rodata_reserved_start) - sizeof(esp_image_header_t) - sizeof(esp_image_segment_header_t);
 | |
|     hal_memcpy(&fhdr, (void *) fhdr_src_addr, sizeof(fhdr));
 | |
|     if (fhdr.magic != ESP_IMAGE_HEADER_MAGIC) {
 | |
|         ESP_EARLY_LOGE(TAG, "Invalid app image header");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| #if !CONFIG_SPIRAM_BOOT_INIT
 | |
|     // If psram is uninitialized, we need to improve some flash configuration.
 | |
|     bootloader_flash_clock_config(&fhdr);
 | |
|     bootloader_flash_gpio_config(&fhdr);
 | |
|     bootloader_flash_dummy_config(&fhdr);
 | |
|     bootloader_flash_cs_timing_config();
 | |
| #endif //!CONFIG_SPIRAM_BOOT_INIT
 | |
| #endif //CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
| #if CONFIG_SPI_FLASH_SIZE_OVERRIDE
 | |
|     int app_flash_size = esp_image_get_flash_size(fhdr.spi_size);
 | |
|     if (app_flash_size < 1 * 1024 * 1024) {
 | |
|         ESP_EARLY_LOGE(TAG, "Invalid flash size in app image header.");
 | |
|         abort();
 | |
|     }
 | |
|     bootloader_flash_update_size(app_flash_size);
 | |
| #endif //CONFIG_SPI_FLASH_SIZE_OVERRIDE
 | |
| #else
 | |
|     // CONFIG_APP_BUILD_TYPE_RAM && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
|     bootloader_flash_unlock();
 | |
| #endif
 | |
| #endif //!CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
 | |
| 
 | |
| #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
 | |
|     s_cpu_inited[0] = true;
 | |
| 
 | |
|     volatile bool cpus_inited = false;
 | |
| 
 | |
|     while (!cpus_inited) {
 | |
|         cpus_inited = true;
 | |
|         for (int i = 0; i < SOC_CPU_CORES_NUM; i++) {
 | |
|             cpus_inited &= s_cpu_inited[i];
 | |
|         }
 | |
|         esp_rom_delay_us(100);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     SYS_STARTUP_FN();
 | |
| }
 |