mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 04:59:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			380 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2020 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| 
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "unity.h"
 | |
| #include "esp32s2/rom/efuse.h"
 | |
| #include "esp32s2/rom/digital_signature.h"
 | |
| #include "esp32s2/rom/aes.h"
 | |
| #include "esp32s2/rom/sha.h"
 | |
| #include <string.h>
 | |
| 
 | |
| #include "esp_ds.h"
 | |
| 
 | |
| #define NUM_RESULTS 10
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t iv[ETS_DS_IV_LEN];
 | |
|     ets_ds_p_data_t p_data;
 | |
|     uint8_t expected_c[ETS_DS_C_LEN];
 | |
|     uint8_t hmac_key_idx;
 | |
|     uint32_t expected_results[NUM_RESULTS][4096/32];
 | |
| } encrypt_testcase_t;
 | |
| 
 | |
| // Generated header (gen_digital_signature_tests.py) defines
 | |
| // NUM_HMAC_KEYS, test_hmac_keys, NUM_MESSAGES, NUM_CASES, test_messages[], test_cases[]
 | |
| // Some adaptations were made: removed the 512 bit case and changed RSA lengths to the enums from esp_ds.h
 | |
| #include "digital_signature_test_cases.h"
 | |
| 
 | |
| _Static_assert(NUM_RESULTS == NUM_MESSAGES, "expected_results size should be the same as NUM_MESSAGES in generated header");
 | |
| 
 | |
| TEST_CASE("Digital Signature Parameter Encryption data NULL", "[hw_crypto]")
 | |
| {
 | |
|     const char iv [32];
 | |
|     esp_ds_p_data_t p_data;
 | |
|     const char key [32];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(NULL, iv, &p_data, key));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Parameter Encryption iv NULL", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t data;
 | |
|     esp_ds_p_data_t p_data;
 | |
|     const char key [32];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, NULL, &p_data, key));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Parameter Encryption p_data NULL", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t data;
 | |
|     const char iv [32];
 | |
|     const char key [32];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, NULL, key));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Parameter Encryption key NULL", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t data;
 | |
|     const char iv [32];
 | |
|     esp_ds_p_data_t p_data;
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_encrypt_params(&data, iv, &p_data, NULL));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Parameter Encryption", "[hw_crypto]")
 | |
| {
 | |
|     for (int i = 0; i < NUM_CASES; i++) {
 | |
|         printf("Encrypting test case %d...\n", i);
 | |
|         const encrypt_testcase_t *t = &test_cases[i];
 | |
|         esp_ds_data_t result = { };
 | |
|         esp_ds_p_data_t p_data;
 | |
| 
 | |
|         memcpy(p_data.Y, t->p_data.Y, 4096/8);
 | |
|         memcpy(p_data.M, t->p_data.M, 4096/8);
 | |
|         memcpy(p_data.Rb, t->p_data.Rb, 4096/8);
 | |
|         p_data.M_prime = t->p_data.M_prime;
 | |
|         p_data.length = t->p_data.length;
 | |
| 
 | |
|         esp_err_t r = esp_ds_encrypt_params(&result, t->iv, &p_data,
 | |
|                                                   test_hmac_keys[t->hmac_key_idx]);
 | |
|         printf("Encrypting test case %d done\n", i);
 | |
|         TEST_ASSERT_EQUAL(ESP_OK, r);
 | |
|         TEST_ASSERT_EQUAL(t->p_data.length, result.rsa_length);
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(t->iv, result.iv, ETS_DS_IV_LEN);
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_c, result.c, ETS_DS_C_LEN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature start Invalid message", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = { };
 | |
|     ds_data.rsa_length = ESP_DS_RSA_4096;
 | |
|     esp_ds_context_t *ctx;
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(NULL, &ds_data, HMAC_KEY1, &ctx));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature start Invalid data", "[hw_crypto]")
 | |
| {
 | |
|     const char *message = "test";
 | |
|     esp_ds_context_t *ctx;
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, NULL, HMAC_KEY1, &ctx));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature start Invalid context", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = ESP_DS_RSA_4096;
 | |
|     const char *message = "test";
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature RSA length 0", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = 0;
 | |
|     const char *message = "test";
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature RSA length too long", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = 128;
 | |
|     const char *message = "test";
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY1, NULL));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature start HMAC key out of range", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = ESP_DS_RSA_4096;
 | |
|     esp_ds_context_t *ctx;
 | |
|     const char *message = "test";
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY5 + 1, &ctx));
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_start_sign(message, &ds_data, HMAC_KEY0 - 1, &ctx));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature finish Invalid signature ptr", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_context_t *ctx = NULL;
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(NULL, ctx));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature finish Invalid context", "[hw_crypto]")
 | |
| {
 | |
|     uint8_t signature_data [128 * 4];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_finish_sign(signature_data, NULL));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking Invalid message", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = { };
 | |
|     ds_data.rsa_length = ESP_DS_RSA_4096;
 | |
|     uint8_t signature_data [128 * 4];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(NULL, &ds_data, HMAC_KEY1, signature_data));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking Invalid data", "[hw_crypto]")
 | |
| {
 | |
|     const char *message = "test";
 | |
|     uint8_t signature_data [128 * 4];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, NULL, HMAC_KEY1, signature_data));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking Invalid signature ptr", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = ESP_DS_RSA_4096;
 | |
|     const char *message = "test";
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, NULL));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking RSA length 0", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = 0;
 | |
|     const char *message = "test";
 | |
|     uint8_t signature_data [128 * 4];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking RSA length too long", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = 128;
 | |
|     const char *message = "test";
 | |
|     uint8_t signature_data [128 * 4];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY1, signature_data));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking HMAC key out of range", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = 127;
 | |
|     const char *message = "test";
 | |
|     uint8_t signature_data [128 * 4];
 | |
| 
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY5 + 1, signature_data));
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, esp_ds_sign(message, &ds_data, HMAC_KEY0 - 1, signature_data));
 | |
| }
 | |
| 
 | |
| #if CONFIG_IDF_ENV_FPGA
 | |
| 
 | |
| static void burn_hmac_keys(void)
 | |
| {
 | |
|     printf("Burning %d HMAC keys to efuse...\n", NUM_HMAC_KEYS);
 | |
|     for (int i = 0; i < NUM_HMAC_KEYS; i++) {
 | |
|         // TODO: vary the purpose across the keys
 | |
|         ets_efuse_purpose_t purpose = ETS_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE;
 | |
| 
 | |
|         // starting from block 1, block 0 occupied with HMAC upstream test key
 | |
|         int ets_status = ets_efuse_write_key(ETS_EFUSE_BLOCK_KEY1 + i,
 | |
|                                              purpose,
 | |
|                                              test_hmac_keys[i], 32);
 | |
| 
 | |
|         if (ets_status == ESP_OK) {
 | |
|             printf("written DS test key to block [%d]!\n", ETS_EFUSE_BLOCK_KEY1 + i);
 | |
|         } else {
 | |
|             printf("writing DS test key to block [%d] failed, maybe written already\n", ETS_EFUSE_BLOCK_KEY1 + i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature wrong HMAC key purpose (FPGA only)", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = ESP_DS_RSA_4096;
 | |
|     esp_ds_context_t *ctx;
 | |
|     const char *message = "test";
 | |
| 
 | |
|     // HMAC fails in that case because it checks for the correct purpose
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking wrong HMAC key purpose (FPGA only)", "[hw_crypto]")
 | |
| {
 | |
|     esp_ds_data_t ds_data = {};
 | |
|     ds_data.rsa_length = ESP_DS_RSA_4096;
 | |
|     const char *message = "test";
 | |
|     uint8_t signature_data [128 * 4];
 | |
| 
 | |
|     // HMAC fails in that case because it checks for the correct purpose
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Operation (FPGA only)", "[hw_crypto]")
 | |
| {
 | |
|     burn_hmac_keys();
 | |
| 
 | |
|     for (int i = 0; i < NUM_CASES; i++) {
 | |
|         printf("Running test case %d...\n", i);
 | |
|         const encrypt_testcase_t *t = &test_cases[i];
 | |
| 
 | |
|         // copy encrypt parameter test case into ds_data structure
 | |
|         esp_ds_data_t ds_data = { };
 | |
|         memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
 | |
|         memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
 | |
|         ds_data.rsa_length = t->p_data.length;
 | |
| 
 | |
|         for (int j = 0; j < NUM_MESSAGES; j++) {
 | |
|             uint8_t signature[4096/8] = { 0 };
 | |
|             printf(" ... message %d\n", j);
 | |
|             esp_ds_context_t *esp_ds_ctx;
 | |
| 
 | |
|             esp_err_t ds_r = esp_ds_start_sign(test_messages[j],
 | |
|                     &ds_data,
 | |
|                     t->hmac_key_idx + 1,
 | |
|                     &esp_ds_ctx);
 | |
|             TEST_ASSERT_EQUAL(ESP_OK, ds_r);
 | |
| 
 | |
|             ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
 | |
|             TEST_ASSERT_EQUAL(ESP_OK, ds_r);
 | |
| 
 | |
|             TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[j], signature, sizeof(signature));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST_CASE("Digital Signature Blocking Operation (FPGA only)", "[hw_crypto]")
 | |
| {
 | |
|     burn_hmac_keys();
 | |
| 
 | |
|     for (int i = 0; i < NUM_CASES; i++) {
 | |
|         printf("Running test case %d...\n", i);
 | |
|         const encrypt_testcase_t *t = &test_cases[i];
 | |
| 
 | |
|         // copy encrypt parameter test case into ds_data structure
 | |
|         esp_ds_data_t ds_data = { };
 | |
|         memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
 | |
|         memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
 | |
|         ds_data.rsa_length = t->p_data.length;
 | |
| 
 | |
|         uint8_t signature[4096/8] = { 0 };
 | |
|         esp_ds_context_t *esp_ds_ctx;
 | |
| 
 | |
|         esp_err_t ds_r = esp_ds_start_sign(test_messages[0],
 | |
|                 &ds_data,
 | |
|                 t->hmac_key_idx + 1,
 | |
|                 &esp_ds_ctx);
 | |
|         TEST_ASSERT_EQUAL(ESP_OK, ds_r);
 | |
| 
 | |
|         ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
 | |
|         TEST_ASSERT_EQUAL(ESP_OK, ds_r);
 | |
| 
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(t->expected_results[0], signature, sizeof(signature));
 | |
|     }
 | |
| }
 | |
| TEST_CASE("Digital Signature Invalid Data (FPGA only)", "[hw_crypto]")
 | |
| {
 | |
|     burn_hmac_keys();
 | |
| 
 | |
|     // Set up a valid test case
 | |
|     const encrypt_testcase_t *t = &test_cases[0];
 | |
|     esp_ds_data_t ds_data = { };
 | |
|     memcpy(ds_data.iv, t->iv, ETS_DS_IV_LEN);
 | |
|     memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
 | |
|     ds_data.rsa_length = t->p_data.length;
 | |
| 
 | |
|     uint8_t signature[4096/8] = { 0 };
 | |
|     const uint8_t zero[4096/8] = { 0 };
 | |
| 
 | |
|     // Corrupt the IV one bit at a time, rerun and expect failure
 | |
|     for (int bit = 0; bit < 128; bit++) {
 | |
|         printf("Corrupting IV bit %d...\n", bit);
 | |
|         ds_data.iv[bit / 8] ^= 1 << (bit % 8);
 | |
|         esp_ds_context_t *esp_ds_ctx;
 | |
| 
 | |
|         esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
 | |
|         TEST_ASSERT_EQUAL(ESP_OK, ds_r);
 | |
|         ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
 | |
|         TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, 4096/8);
 | |
| 
 | |
|         ds_data.iv[bit / 8] ^= 1 << (bit % 8);
 | |
|     }
 | |
| 
 | |
|     // Corrupt encrypted key data one bit at a time, rerun and expect failure
 | |
|     printf("Corrupting C...\n");
 | |
|     for (int bit = 0; bit < ETS_DS_C_LEN * 8; bit++) {
 | |
|         printf("Corrupting C bit %d...\n", bit);
 | |
|         ds_data.c[bit / 8] ^= 1 << (bit % 8);
 | |
|         esp_ds_context_t *esp_ds_ctx;
 | |
| 
 | |
|         esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
 | |
|         TEST_ASSERT_EQUAL(ESP_OK, ds_r);
 | |
|         ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
 | |
|         TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, 4096/8);
 | |
| 
 | |
|         ds_data.c[bit / 8] ^= 1 << (bit % 8);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // CONFIG_IDF_ENV_FPGA
 | 
