mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 04:59:55 +00:00 
			
		
		
		
	 12398c0f25
			
		
	
	12398c0f25
	
	
	
		
			
			fix(sdmmc): sdmmc_write_sectors_dma always check card status after write Closes IDF-9632 See merge request espressif/esp-idf!34132
		
			
				
	
	
		
			836 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			836 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <inttypes.h>
 | |
| #include "esp_timer.h"
 | |
| #include "sdmmc_common.h"
 | |
| 
 | |
| static const char* TAG = "sdmmc_cmd";
 | |
| 
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
 | |
| {
 | |
|     if (card->host.command_timeout_ms != 0) {
 | |
|         cmd->timeout_ms = card->host.command_timeout_ms;
 | |
|     } else if (cmd->timeout_ms == 0) {
 | |
|         cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
 | |
|     }
 | |
| 
 | |
|     int slot = card->host.slot;
 | |
|     ESP_LOGV(TAG, "sending cmd slot=%d op=%" PRIu32 " arg=%" PRIx32 " flags=%x data=%p blklen=%" PRIu32 " datalen=%" PRIu32 " timeout=%" PRIu32,
 | |
|             slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, (uint32_t) cmd->blklen, (uint32_t) cmd->datalen, cmd->timeout_ms);
 | |
|     esp_err_t err = (*card->host.do_transaction)(slot, cmd);
 | |
|     if (err != 0) {
 | |
|         ESP_LOGD(TAG, "cmd=%" PRIu32 ", sdmmc_req_run returned 0x%x", cmd->opcode, err);
 | |
|         return err;
 | |
|     }
 | |
|     int state = MMC_R1_CURRENT_STATE(cmd->response);
 | |
|     ESP_LOGV(TAG, "cmd response %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " %08" PRIx32 " err=0x%x state=%d",
 | |
|                cmd->response[0],
 | |
|                cmd->response[1],
 | |
|                cmd->response[2],
 | |
|                cmd->response[3],
 | |
|                cmd->error,
 | |
|                state);
 | |
|     return cmd->error;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
 | |
| {
 | |
|     sdmmc_command_t app_cmd = {
 | |
|         .opcode = MMC_APP_CMD,
 | |
|         .flags = SCF_CMD_AC | SCF_RSP_R1,
 | |
|         .arg = MMC_ARG_RCA(card->rca),
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
|     // Check APP_CMD status bit (only in SD mode)
 | |
|     if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
 | |
|         ESP_LOGW(TAG, "card doesn't support APP_CMD");
 | |
|         return ESP_ERR_NOT_SUPPORTED;
 | |
|     }
 | |
|     return sdmmc_send_cmd(card, cmd);
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
 | |
| {
 | |
|     sdmmc_command_t cmd = {
 | |
|         .opcode = MMC_GO_IDLE_STATE,
 | |
|         .flags = SCF_CMD_BC | SCF_RSP_R0,
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (host_is_spi(card)) {
 | |
|         /* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
 | |
|          * SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
 | |
|          * so don't expect the above command to succeed.
 | |
|          * SCF_RSP_R1 flag below tells the lower layer to expect correct R1
 | |
|          * response (in SPI mode).
 | |
|          */
 | |
|         (void) err;
 | |
|         vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
 | |
| 
 | |
|         cmd.flags |= SCF_RSP_R1;
 | |
|         err = sdmmc_send_cmd(card, &cmd);
 | |
|     }
 | |
|     if (err == ESP_OK) {
 | |
|         vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
 | |
| {
 | |
|     const uint8_t pattern = 0xaa; /* any pattern will do here */
 | |
|     sdmmc_command_t cmd = {
 | |
|         .opcode = SD_SEND_IF_COND,
 | |
|         .arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
 | |
|         .flags = SCF_CMD_BCR | SCF_RSP_R7,
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
|     uint8_t response = cmd.response[0] & 0xff;
 | |
|     if (response != pattern) {
 | |
|         ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
 | |
|         return ESP_ERR_INVALID_RESPONSE;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
 | |
| {
 | |
|     esp_err_t err;
 | |
| 
 | |
|     /* If the host supports this, keep card clock enabled
 | |
|      * from the start of ACMD41 until the card is idle.
 | |
|      * (Ref. SD spec, section 4.4 "Clock control".)
 | |
|      */
 | |
|     if (card->host.set_cclk_always_on != NULL) {
 | |
|         err = card->host.set_cclk_always_on(card->host.slot, true);
 | |
|         if (err != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: set_cclk_always_on (1) err=0x%x", __func__, err);
 | |
|             return err;
 | |
|         }
 | |
|         ESP_LOGV(TAG, "%s: keeping clock on during ACMD41", __func__);
 | |
|     }
 | |
| 
 | |
|     sdmmc_command_t cmd = {
 | |
|             .arg = ocr,
 | |
|             .flags = SCF_CMD_BCR | SCF_RSP_R3,
 | |
|             .opcode = SD_APP_OP_COND
 | |
|     };
 | |
|     int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
 | |
|     int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
 | |
|     for (; nretries != 0; --nretries)  {
 | |
|         bzero(&cmd, sizeof cmd);
 | |
|         cmd.arg = ocr;
 | |
|         cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
 | |
|         if (!card->is_mmc) { /* SD mode */
 | |
|             cmd.opcode = SD_APP_OP_COND;
 | |
|             err = sdmmc_send_app_cmd(card, &cmd);
 | |
|         } else { /* MMC mode */
 | |
|             cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
 | |
|             cmd.arg |= MMC_OCR_SECTOR_MODE;
 | |
|             cmd.opcode = MMC_SEND_OP_COND;
 | |
|             err = sdmmc_send_cmd(card, &cmd);
 | |
|         }
 | |
| 
 | |
|         if (err != ESP_OK) {
 | |
|             if (--err_cnt == 0) {
 | |
|                 ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
 | |
|                 goto done;
 | |
|             } else {
 | |
|                 ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         // In SD protocol, card sets MEM_READY bit in OCR when it is ready.
 | |
|         // In SPI protocol, card clears IDLE_STATE bit in R1 response.
 | |
|         if (!host_is_spi(card)) {
 | |
|             if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
 | |
|                 ocr == 0) {
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         vTaskDelay(10 / portTICK_PERIOD_MS);
 | |
|     }
 | |
| 
 | |
|     if (nretries == 0) {
 | |
|         err = ESP_ERR_TIMEOUT;
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (ocrp) {
 | |
|         *ocrp = MMC_R3(cmd.response);
 | |
|     }
 | |
| 
 | |
|     err = ESP_OK;
 | |
| done:
 | |
| 
 | |
|     if (card->host.set_cclk_always_on != NULL) {
 | |
|         esp_err_t err_cclk_dis = card->host.set_cclk_always_on(card->host.slot, false);
 | |
|         if (err_cclk_dis != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: set_cclk_always_on (2) err=0x%x", __func__, err);
 | |
|             /* If we failed to disable clock, don't overwrite 'err' to return the original error */
 | |
|         }
 | |
|         ESP_LOGV(TAG, "%s: clock always-on mode disabled", __func__);
 | |
|     }
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
 | |
| {
 | |
|     assert(ocrp);
 | |
|     sdmmc_command_t cmd = {
 | |
|         .opcode = SD_READ_OCR,
 | |
|         .flags = SCF_CMD_BCR | SCF_RSP_R2
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
|     *ocrp = SD_SPI_R3(cmd.response);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
 | |
| {
 | |
|     assert(out_raw_cid);
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = MMC_ALL_SEND_CID,
 | |
|             .flags = SCF_CMD_BCR | SCF_RSP_R2
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
|     memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
 | |
| {
 | |
|     assert(out_cid);
 | |
|     assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
 | |
|     assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
 | |
|     sdmmc_response_t buf;
 | |
|     sdmmc_command_t cmd = {
 | |
|         .opcode = MMC_SEND_CID,
 | |
|         .flags = SCF_CMD_READ | SCF_CMD_ADTC,
 | |
|         .arg = 0,
 | |
|         .data = &buf[0],
 | |
|         .datalen = sizeof(buf)
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
|     sdmmc_flip_byte_order(buf, sizeof(buf));
 | |
|     return sdmmc_decode_cid(buf, out_cid);
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
 | |
| {
 | |
|     assert(out_rca);
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = SD_SEND_RELATIVE_ADDR,
 | |
|             .flags = SCF_CMD_BCR | SCF_RSP_R6
 | |
|     };
 | |
| 
 | |
|     /* MMC cards expect us to set the RCA.
 | |
|      * Set RCA to 1 since we don't support multiple cards on the same bus, for now.
 | |
|      */
 | |
|     uint16_t mmc_rca = 1;
 | |
|     if (card->is_mmc) {
 | |
|         cmd.arg = MMC_ARG_RCA(mmc_rca);
 | |
|     }
 | |
| 
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     if (card->is_mmc) {
 | |
|         *out_rca = mmc_rca;
 | |
|     } else {
 | |
|         uint16_t response_rca = SD_R6_RCA(cmd.response);
 | |
|         if (response_rca == 0) {
 | |
|             // Try to get another RCA value if RCA value in the previous response was 0x0000
 | |
|             // The value 0x0000 is reserved to set all cards into the Stand-by State with CMD7
 | |
|             err = sdmmc_send_cmd(card, &cmd);
 | |
|             if (err != ESP_OK) {
 | |
|                 return err;
 | |
|             }
 | |
|             response_rca = SD_R6_RCA(cmd.response);
 | |
|         }
 | |
|         *out_rca = response_rca;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
 | |
| {
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = MMC_SET_BLOCKLEN,
 | |
|             .arg = csd->sector_size,
 | |
|             .flags = SCF_CMD_AC | SCF_RSP_R1
 | |
|     };
 | |
|     return sdmmc_send_cmd(card, &cmd);
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
 | |
| {
 | |
|     /* The trick with SEND_CSD is that in SPI mode, it acts as a data read
 | |
|      * command, while in SD mode it is an AC command with R2 response.
 | |
|      */
 | |
|     sdmmc_response_t spi_buf;
 | |
|     const bool is_spi = host_is_spi(card);
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = MMC_SEND_CSD,
 | |
|             .arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
 | |
|             .flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
 | |
|                     (SCF_CMD_AC | SCF_RSP_R2),
 | |
|             .data = is_spi ? &spi_buf[0] : 0,
 | |
|             .datalen = is_spi ? sizeof(spi_buf) : 0,
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
|     uint32_t* ptr = cmd.response;
 | |
|     if (is_spi) {
 | |
|         sdmmc_flip_byte_order(spi_buf,  sizeof(spi_buf));
 | |
|         ptr = spi_buf;
 | |
|     }
 | |
|     if (card->is_mmc) {
 | |
|         err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
 | |
|     } else {
 | |
|         err = sdmmc_decode_csd(ptr, out_csd);
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
 | |
| {
 | |
|     /* Don't expect to see a response when de-selecting a card */
 | |
|     uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = MMC_SELECT_CARD,
 | |
|             .arg = MMC_ARG_RCA(rca),
 | |
|             .flags = SCF_CMD_AC | response
 | |
|     };
 | |
|     return sdmmc_send_cmd(card, &cmd);
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
 | |
| {
 | |
|     size_t datalen = 8;
 | |
|     esp_err_t err = ESP_FAIL;
 | |
|     void *buf = NULL;
 | |
|     size_t actual_size = 0;
 | |
|     esp_dma_mem_info_t dma_mem_info;
 | |
|     card->host.get_dma_info(card->host.slot, &dma_mem_info);
 | |
|     err = esp_dma_capable_malloc(datalen, &dma_mem_info, &buf, &actual_size);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     sdmmc_command_t cmd = {
 | |
|             .data = buf,
 | |
|             .datalen = datalen,
 | |
|             .buflen = actual_size,
 | |
|             .blklen = datalen,
 | |
|             .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
 | |
|             .opcode = SD_APP_SEND_SCR
 | |
|     };
 | |
|     err = sdmmc_send_app_cmd(card, &cmd);
 | |
|     if (err == ESP_OK) {
 | |
|         err = sdmmc_decode_scr(buf, out_scr);
 | |
|     }
 | |
|     free(buf);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
 | |
| {
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = SD_APP_SET_BUS_WIDTH,
 | |
|             .flags = SCF_RSP_R1 | SCF_CMD_AC,
 | |
|             .arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
 | |
|     };
 | |
| 
 | |
|     return sdmmc_send_app_cmd(card, &cmd);
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
 | |
| {
 | |
|     assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = SD_CRC_ON_OFF,
 | |
|             .arg = crc_enable ? 1 : 0,
 | |
|             .flags = SCF_CMD_AC | SCF_RSP_R1
 | |
|     };
 | |
|     return sdmmc_send_cmd(card, &cmd);
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
 | |
| {
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = MMC_SEND_STATUS,
 | |
|             .arg = MMC_ARG_RCA(card->rca),
 | |
|             .flags = SCF_CMD_AC | SCF_RSP_R1
 | |
|     };
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
|     if (out_status) {
 | |
|         if (host_is_spi(card)) {
 | |
|             *out_status = SD_SPI_R2(cmd.response);
 | |
|         } else {
 | |
|             *out_status = MMC_R1(cmd.response);
 | |
|         }
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
 | |
|         size_t start_block, size_t block_count)
 | |
| {
 | |
|     if (block_count == 0) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
| 
 | |
|     esp_err_t err = ESP_OK;
 | |
|     size_t block_size = card->csd.sector_size;
 | |
|     esp_dma_mem_info_t dma_mem_info;
 | |
|     card->host.get_dma_info(card->host.slot, &dma_mem_info);
 | |
| #ifdef SOC_SDMMC_PSRAM_DMA_CAPABLE
 | |
|     dma_mem_info.extra_heap_caps |= MALLOC_CAP_SPIRAM;
 | |
| #endif
 | |
|     if (esp_dma_is_buffer_alignment_satisfied(src, block_size * block_count, dma_mem_info)
 | |
|         #if !SOC_SDMMC_PSRAM_DMA_CAPABLE
 | |
|             && !esp_ptr_external_ram(src)
 | |
|         #endif
 | |
|     ) {
 | |
|         err = sdmmc_write_sectors_dma(card, src, start_block, block_count, block_size * block_count);
 | |
|     } else {
 | |
|         // SDMMC peripheral needs DMA-capable buffers. Split the write into
 | |
|         // separate single block writes, if needed, and allocate a temporary
 | |
|         // DMA-capable buffer.
 | |
|         void *tmp_buf = NULL;
 | |
|         size_t actual_size = 0;
 | |
|         // Clear the SPIRAM flag. We don't want to force the allocation into SPIRAM, the allocator
 | |
|         // will decide based on the buffer size and memory availability.
 | |
|         dma_mem_info.extra_heap_caps &= ~MALLOC_CAP_SPIRAM;
 | |
|         err = esp_dma_capable_malloc(block_size, &dma_mem_info, &tmp_buf, &actual_size);
 | |
|         if (err != ESP_OK) {
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         const uint8_t* cur_src = (const uint8_t*) src;
 | |
|         for (size_t i = 0; i < block_count; ++i) {
 | |
|             memcpy(tmp_buf, cur_src, block_size);
 | |
|             cur_src += block_size;
 | |
|             err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size);
 | |
|             if (err != ESP_OK) {
 | |
|                 ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
 | |
|                         __func__, err, start_block, i);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         free(tmp_buf);
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| static bool sdmmc_ready_for_data(uint32_t status)
 | |
| {
 | |
|     return (status & MMC_R1_READY_FOR_DATA) && (MMC_R1_CURRENT_STATE_STATUS(status) == MMC_R1_CURRENT_STATE_TRAN);
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
 | |
|         size_t start_block, size_t block_count, size_t buffer_len)
 | |
| {
 | |
|     if (start_block + block_count > card->csd.capacity) {
 | |
|         return ESP_ERR_INVALID_SIZE;
 | |
|     }
 | |
|     size_t block_size = card->csd.sector_size;
 | |
|     sdmmc_command_t cmd = {
 | |
|             .flags = SCF_CMD_ADTC | SCF_RSP_R1,
 | |
|             .blklen = block_size,
 | |
|             .data = (void*) src,
 | |
|             .datalen = block_count * block_size,
 | |
|             .buflen = buffer_len,
 | |
|             .timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
 | |
|     };
 | |
|     if (block_count == 1) {
 | |
|         cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
 | |
|     } else {
 | |
|         cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
 | |
|     }
 | |
|     if (card->ocr & SD_OCR_SDHC_CAP) {
 | |
|         cmd.arg = start_block;
 | |
|     } else {
 | |
|         cmd.arg = start_block * block_size;
 | |
|     }
 | |
| 
 | |
|     uint32_t status = 0;
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     esp_err_t err_cmd13 = sdmmc_send_cmd_send_status(card, &status);
 | |
| 
 | |
|     if (err != ESP_OK) {
 | |
|         if (err_cmd13 == ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x, status 0x%" PRIx32, __func__, err, status);
 | |
|         } else {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x, failed to get status (0x%x)", __func__, err, err_cmd13);
 | |
|         }
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     size_t count = 0;
 | |
|     int64_t yield_delay_us = 100 * 1000; // initially 100ms
 | |
|     int64_t t0 = esp_timer_get_time();
 | |
|     int64_t t1 = 0;
 | |
|     /* SD mode: wait for the card to become idle based on R1 status */
 | |
|     while (!host_is_spi(card) && !sdmmc_ready_for_data(status)) {
 | |
|         t1 = esp_timer_get_time();
 | |
|         if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) {
 | |
|             ESP_LOGE(TAG, "write sectors dma - timeout");
 | |
|             return ESP_ERR_TIMEOUT;
 | |
|         }
 | |
|         if (t1 - t0 > yield_delay_us) {
 | |
|             yield_delay_us *= 2;
 | |
|             vTaskDelay(1);
 | |
|         }
 | |
|         err = sdmmc_send_cmd_send_status(card, &status);
 | |
|         if (err != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
 | |
|             return err;
 | |
|         }
 | |
|         if (++count % 16 == 0) {
 | |
|             ESP_LOGV(TAG, "waiting for card to become ready (%" PRIu32 ")", (uint32_t) count);
 | |
|         }
 | |
|     }
 | |
|     /* SPI mode: although card busy indication is based on the busy token,
 | |
|      * SD spec recommends that the host checks the results of programming by sending
 | |
|      * SEND_STATUS command. Some of the conditions reported in SEND_STATUS are not
 | |
|      * reported via a data error token.
 | |
|      */
 | |
|     if (host_is_spi(card)) {
 | |
|         err = sdmmc_send_cmd_send_status(card, &status);
 | |
|         if (err != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
 | |
|             return err;
 | |
|         }
 | |
|         if (status & SD_SPI_R2_CARD_LOCKED) {
 | |
|             ESP_LOGE(TAG, "%s: write failed, card is locked: r2=0x%04" PRIx32,
 | |
|                      __func__, status);
 | |
|             return ESP_ERR_INVALID_STATE;
 | |
|         }
 | |
|         if (status != 0) {
 | |
|             ESP_LOGE(TAG, "%s: card status indicates an error after write operation: r2=0x%04" PRIx32,
 | |
|                      __func__, status);
 | |
|             return ESP_ERR_INVALID_RESPONSE;
 | |
|         }
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
 | |
|         size_t start_block, size_t block_count)
 | |
| {
 | |
|     if (block_count == 0) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
| 
 | |
|     esp_err_t err = ESP_OK;
 | |
|     size_t block_size = card->csd.sector_size;
 | |
|     esp_dma_mem_info_t dma_mem_info;
 | |
|     card->host.get_dma_info(card->host.slot, &dma_mem_info);
 | |
|     if (esp_dma_is_buffer_alignment_satisfied(dst, block_size * block_count, dma_mem_info)
 | |
|         #if !SOC_SDMMC_PSRAM_DMA_CAPABLE
 | |
|             && !esp_ptr_external_ram(dst)
 | |
|         #endif
 | |
|     ) {
 | |
|         err = sdmmc_read_sectors_dma(card, dst, start_block, block_count, block_size * block_count);
 | |
|     } else {
 | |
|         // SDMMC peripheral needs DMA-capable buffers. Split the read into
 | |
|         // separate single block reads, if needed, and allocate a temporary
 | |
|         // DMA-capable buffer.
 | |
|         void *tmp_buf = NULL;
 | |
|         size_t actual_size = 0;
 | |
|         err = esp_dma_capable_malloc(block_size, &dma_mem_info, &tmp_buf, &actual_size);
 | |
|         if (err != ESP_OK) {
 | |
|             return err;
 | |
|         }
 | |
|         uint8_t* cur_dst = (uint8_t*) dst;
 | |
|         for (size_t i = 0; i < block_count; ++i) {
 | |
|             err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1, actual_size);
 | |
|             if (err != ESP_OK) {
 | |
|                 ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
 | |
|                         __func__, err, start_block, i);
 | |
|                 break;
 | |
|             }
 | |
|             memcpy(cur_dst, tmp_buf, block_size);
 | |
|             cur_dst += block_size;
 | |
|         }
 | |
|         free(tmp_buf);
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
 | |
|         size_t start_block, size_t block_count, size_t buffer_len)
 | |
| {
 | |
|     if (start_block + block_count > card->csd.capacity) {
 | |
|         return ESP_ERR_INVALID_SIZE;
 | |
|     }
 | |
|     size_t block_size = card->csd.sector_size;
 | |
|     sdmmc_command_t cmd = {
 | |
|             .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
 | |
|             .blklen = block_size,
 | |
|             .data = (void*) dst,
 | |
|             .datalen = block_count * block_size,
 | |
|             .buflen = buffer_len,
 | |
|     };
 | |
|     if (block_count == 1) {
 | |
|         cmd.opcode = MMC_READ_BLOCK_SINGLE;
 | |
|     } else {
 | |
|         cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
 | |
|     }
 | |
|     if (card->ocr & SD_OCR_SDHC_CAP) {
 | |
|         cmd.arg = start_block;
 | |
|     } else {
 | |
|         cmd.arg = start_block * block_size;
 | |
|     }
 | |
| 
 | |
|     uint32_t status = 0;
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     esp_err_t err_cmd13 = sdmmc_send_cmd_send_status(card, &status);
 | |
| 
 | |
|     if (err != ESP_OK) {
 | |
|         if (err_cmd13 == ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x, status 0x%" PRIx32, __func__, err, status);
 | |
|         } else {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x, failed to get status (0x%x)", __func__, err, err_cmd13);
 | |
|         }
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     size_t count = 0;
 | |
|     int64_t yield_delay_us = 100 * 1000; // initially 100ms
 | |
|     int64_t t0 = esp_timer_get_time();
 | |
|     int64_t t1 = 0;
 | |
|     /* SD mode: wait for the card to become idle based on R1 status */
 | |
|     while (!host_is_spi(card) && !sdmmc_ready_for_data(status)) {
 | |
|         t1 = esp_timer_get_time();
 | |
|         if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) {
 | |
|             ESP_LOGE(TAG, "read sectors dma - timeout");
 | |
|             return ESP_ERR_TIMEOUT;
 | |
|         }
 | |
|         if (t1 - t0 > yield_delay_us) {
 | |
|             yield_delay_us *= 2;
 | |
|             vTaskDelay(1);
 | |
|         }
 | |
|         err = sdmmc_send_cmd_send_status(card, &status);
 | |
|         if (err != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
 | |
|             return err;
 | |
|         }
 | |
|         if (++count % 16 == 0) {
 | |
|             ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
 | |
|         }
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_erase_sectors(sdmmc_card_t* card, size_t start_sector,
 | |
|         size_t sector_count, sdmmc_erase_arg_t arg)
 | |
| {
 | |
|     if (sector_count == 0) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
| 
 | |
|     if (start_sector + sector_count > card->csd.capacity) {
 | |
|         return ESP_ERR_INVALID_SIZE;
 | |
|     }
 | |
| 
 | |
|     uint32_t cmd38_arg;
 | |
|     if (arg == SDMMC_ERASE_ARG) {
 | |
|         cmd38_arg = card->is_mmc ? SDMMC_MMC_TRIM_ARG : SDMMC_SD_ERASE_ARG;
 | |
|     } else {
 | |
|         cmd38_arg = card->is_mmc ? SDMMC_MMC_DISCARD_ARG : SDMMC_SD_DISCARD_ARG;
 | |
|     }
 | |
| 
 | |
|     /* validate the CMD38 argument against card supported features */
 | |
|     if (card->is_mmc) {
 | |
|         if ((cmd38_arg == SDMMC_MMC_TRIM_ARG) && (sdmmc_can_trim(card) != ESP_OK)) {
 | |
|             return ESP_ERR_NOT_SUPPORTED;
 | |
|         }
 | |
|         if ((cmd38_arg == SDMMC_MMC_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
 | |
|             return ESP_ERR_NOT_SUPPORTED;
 | |
|         }
 | |
|     } else { // SD card
 | |
|         if ((cmd38_arg == SDMMC_SD_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
 | |
|             return ESP_ERR_NOT_SUPPORTED;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* default as block unit address */
 | |
|     size_t addr_unit_mult = 1;
 | |
| 
 | |
|     if (!(card->ocr & SD_OCR_SDHC_CAP)) {
 | |
|         addr_unit_mult = card->csd.sector_size;
 | |
|     }
 | |
| 
 | |
|     /* prepare command to set the start address */
 | |
|     sdmmc_command_t cmd = {
 | |
|             .flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_WAIT_BUSY,
 | |
|             .opcode = card->is_mmc ? MMC_ERASE_GROUP_START :
 | |
|                     SD_ERASE_GROUP_START,
 | |
|             .arg = (start_sector * addr_unit_mult),
 | |
|     };
 | |
| 
 | |
|     esp_err_t err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_START) returned 0x%x", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     /* prepare command to set the end address */
 | |
|     cmd.opcode = card->is_mmc ? MMC_ERASE_GROUP_END : SD_ERASE_GROUP_END;
 | |
|     cmd.arg = ((start_sector + (sector_count - 1)) * addr_unit_mult);
 | |
| 
 | |
|     err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_END) returned 0x%x", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     /* issue erase command */
 | |
|     memset((void *)&cmd, 0 , sizeof(sdmmc_command_t));
 | |
|     cmd.flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_WAIT_BUSY;
 | |
|     cmd.opcode = MMC_ERASE;
 | |
|     cmd.arg = cmd38_arg;
 | |
|     cmd.timeout_ms = sdmmc_get_erase_timeout_ms(card, cmd38_arg, sector_count * card->csd.sector_size / 1024);
 | |
| 
 | |
|     err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE) returned 0x%x", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     if (host_is_spi(card)) {
 | |
|         uint32_t status;
 | |
|         err = sdmmc_send_cmd_send_status(card, &status);
 | |
|         if (err != ESP_OK) {
 | |
|             ESP_LOGE(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, err);
 | |
|             return err;
 | |
|         }
 | |
|         if (status != 0) {
 | |
|             ESP_LOGE(TAG, "%s: card status indicates an error after erase operation: r2=0x%04" PRIx32,
 | |
|                      __func__, status);
 | |
|             return ESP_ERR_INVALID_RESPONSE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_can_discard(sdmmc_card_t* card)
 | |
| {
 | |
|     if ((card->is_mmc) && (card->ext_csd.rev >= EXT_CSD_REV_1_6)) {
 | |
|          return ESP_OK;
 | |
|     }
 | |
|     // SD card
 | |
|     if ((!card->is_mmc) && !host_is_spi(card) && (card->ssr.discard_support == 1)) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     return ESP_FAIL;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_can_trim(sdmmc_card_t* card)
 | |
| {
 | |
|     if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_GB_CL_EN)) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     return ESP_FAIL;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_mmc_can_sanitize(sdmmc_card_t* card)
 | |
| {
 | |
|     if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_SANITIZE)) {
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     return ESP_FAIL;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_mmc_sanitize(sdmmc_card_t* card, uint32_t timeout_ms)
 | |
| {
 | |
|     esp_err_t err;
 | |
|     uint8_t index = EXT_CSD_SANITIZE_START;
 | |
|     uint8_t set = EXT_CSD_CMD_SET_NORMAL;
 | |
|     uint8_t value = 0x01;
 | |
| 
 | |
|     if (sdmmc_mmc_can_sanitize(card) != ESP_OK) {
 | |
|         return ESP_ERR_NOT_SUPPORTED;
 | |
|     }
 | |
|     /*
 | |
|      * A Sanitize operation is initiated by writing a value to the extended
 | |
|      * CSD[165] SANITIZE_START. While the device is performing the sanitize
 | |
|      * operation, the busy line is asserted.
 | |
|      * SWITCH command is used to write the EXT_CSD register.
 | |
|      */
 | |
|     sdmmc_command_t cmd = {
 | |
|             .opcode = MMC_SWITCH,
 | |
|             .arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set,
 | |
|             .flags = SCF_RSP_R1B | SCF_CMD_AC | SCF_WAIT_BUSY,
 | |
|             .timeout_ms = timeout_ms,
 | |
|     };
 | |
|     err = sdmmc_send_cmd(card, &cmd);
 | |
|     if (err == ESP_OK) {
 | |
|         //check response bit to see that switch was accepted
 | |
|         if (MMC_R1(cmd.response) & MMC_R1_SWITCH_ERROR) {
 | |
|             err = ESP_ERR_INVALID_RESPONSE;
 | |
|         }
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_full_erase(sdmmc_card_t* card)
 | |
| {
 | |
|     sdmmc_erase_arg_t arg = SDMMC_SD_ERASE_ARG; // erase by default for SD card
 | |
|     esp_err_t err;
 | |
|     if (card->is_mmc) {
 | |
|         arg = sdmmc_mmc_can_sanitize(card) == ESP_OK ? SDMMC_MMC_DISCARD_ARG: SDMMC_MMC_TRIM_ARG;
 | |
|     }
 | |
|     err = sdmmc_erase_sectors(card, 0, card->csd.capacity, arg);
 | |
|     if ((err == ESP_OK) && (arg == SDMMC_MMC_DISCARD_ARG)) {
 | |
|         uint32_t timeout_ms = sdmmc_get_erase_timeout_ms(card, SDMMC_MMC_DISCARD_ARG, card->csd.capacity * ((uint64_t) card->csd.sector_size) / 1024);
 | |
|         return sdmmc_mmc_sanitize(card, timeout_ms);
 | |
|     }
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t sdmmc_get_status(sdmmc_card_t* card)
 | |
| {
 | |
|     uint32_t stat;
 | |
|     return sdmmc_send_cmd_send_status(card, &stat);
 | |
| }
 |