Files
esp-idf/components/efuse/esp32c5/esp_efuse_table.c
2025-05-09 09:29:31 +03:00

2029 lines
74 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* SPDX-FileCopyrightText: 2017-2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include "esp_efuse.h"
#include <assert.h>
#include "esp_efuse_table.h"
// md5_digest_table 0c453d200f282e320677c1ac46786658
// This file was generated from the file esp_efuse_table.csv. DO NOT CHANGE THIS FILE MANUALLY.
// If you want to change some fields, you need to change esp_efuse_table.csv file
// then run `efuse_common_table` or `efuse_custom_table` command it will generate this file.
// To show efuse_table run the command 'show_efuse_table'.
static const esp_efuse_desc_t WR_DIS[] = {
{EFUSE_BLK0, 0, 32}, // [] Disable programming of individual eFuses,
};
static const esp_efuse_desc_t WR_DIS_RD_DIS[] = {
{EFUSE_BLK0, 0, 1}, // [] wr_dis of RD_DIS,
};
static const esp_efuse_desc_t WR_DIS_KM_DISABLE_DEPLOY_MODE[] = {
{EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_DISABLE_DEPLOY_MODE,
};
static const esp_efuse_desc_t WR_DIS_KM_RND_SWITCH_CYCLE[] = {
{EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_RND_SWITCH_CYCLE,
};
static const esp_efuse_desc_t WR_DIS_KM_DEPLOY_ONLY_ONCE[] = {
{EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_DEPLOY_ONLY_ONCE,
};
static const esp_efuse_desc_t WR_DIS_FORCE_USE_KEY_MANAGER_KEY[] = {
{EFUSE_BLK0, 1, 1}, // [] wr_dis of FORCE_USE_KEY_MANAGER_KEY,
};
static const esp_efuse_desc_t WR_DIS_FORCE_DISABLE_SW_INIT_KEY[] = {
{EFUSE_BLK0, 1, 1}, // [] wr_dis of FORCE_DISABLE_SW_INIT_KEY,
};
static const esp_efuse_desc_t WR_DIS_KM_XTS_KEY_LENGTH_256[] = {
{EFUSE_BLK0, 1, 1}, // [] wr_dis of KM_XTS_KEY_LENGTH_256,
};
static const esp_efuse_desc_t WR_DIS_LOCK_KM_KEY[] = {
{EFUSE_BLK0, 1, 1}, // [] wr_dis of LOCK_KM_KEY,
};
static const esp_efuse_desc_t WR_DIS_DIS_ICACHE[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_ICACHE,
};
static const esp_efuse_desc_t WR_DIS_DIS_USB_JTAG[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_USB_JTAG,
};
static const esp_efuse_desc_t WR_DIS_DIS_FORCE_DOWNLOAD[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_FORCE_DOWNLOAD,
};
static const esp_efuse_desc_t WR_DIS_SPI_DOWNLOAD_MSPI_DIS[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of SPI_DOWNLOAD_MSPI_DIS,
};
static const esp_efuse_desc_t WR_DIS_DIS_TWAI[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_TWAI,
};
static const esp_efuse_desc_t WR_DIS_JTAG_SEL_ENABLE[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of JTAG_SEL_ENABLE,
};
static const esp_efuse_desc_t WR_DIS_DIS_PAD_JTAG[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_PAD_JTAG,
};
static const esp_efuse_desc_t WR_DIS_DIS_DOWNLOAD_MANUAL_ENCRYPT[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of DIS_DOWNLOAD_MANUAL_ENCRYPT,
};
static const esp_efuse_desc_t WR_DIS_HYS_EN_PAD[] = {
{EFUSE_BLK0, 2, 1}, // [] wr_dis of HYS_EN_PAD,
};
static const esp_efuse_desc_t WR_DIS_WDT_DELAY_SEL[] = {
{EFUSE_BLK0, 3, 1}, // [] wr_dis of WDT_DELAY_SEL,
};
static const esp_efuse_desc_t WR_DIS_SPI_BOOT_CRYPT_CNT[] = {
{EFUSE_BLK0, 4, 1}, // [] wr_dis of SPI_BOOT_CRYPT_CNT,
};
static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_KEY_REVOKE0[] = {
{EFUSE_BLK0, 5, 1}, // [] wr_dis of SECURE_BOOT_KEY_REVOKE0,
};
static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_KEY_REVOKE1[] = {
{EFUSE_BLK0, 6, 1}, // [] wr_dis of SECURE_BOOT_KEY_REVOKE1,
};
static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_KEY_REVOKE2[] = {
{EFUSE_BLK0, 7, 1}, // [] wr_dis of SECURE_BOOT_KEY_REVOKE2,
};
static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_0[] = {
{EFUSE_BLK0, 8, 1}, // [WR_DIS.KEY0_PURPOSE] wr_dis of KEY_PURPOSE_0,
};
static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_1[] = {
{EFUSE_BLK0, 9, 1}, // [WR_DIS.KEY1_PURPOSE] wr_dis of KEY_PURPOSE_1,
};
static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_2[] = {
{EFUSE_BLK0, 10, 1}, // [WR_DIS.KEY2_PURPOSE] wr_dis of KEY_PURPOSE_2,
};
static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_3[] = {
{EFUSE_BLK0, 11, 1}, // [WR_DIS.KEY3_PURPOSE] wr_dis of KEY_PURPOSE_3,
};
static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_4[] = {
{EFUSE_BLK0, 12, 1}, // [WR_DIS.KEY4_PURPOSE] wr_dis of KEY_PURPOSE_4,
};
static const esp_efuse_desc_t WR_DIS_KEY_PURPOSE_5[] = {
{EFUSE_BLK0, 13, 1}, // [WR_DIS.KEY5_PURPOSE] wr_dis of KEY_PURPOSE_5,
};
static const esp_efuse_desc_t WR_DIS_SEC_DPA_LEVEL[] = {
{EFUSE_BLK0, 14, 1}, // [] wr_dis of SEC_DPA_LEVEL,
};
static const esp_efuse_desc_t WR_DIS_XTS_DPA_PSEUDO_LEVEL[] = {
{EFUSE_BLK0, 14, 1}, // [] wr_dis of XTS_DPA_PSEUDO_LEVEL,
};
static const esp_efuse_desc_t WR_DIS_XTS_DPA_CLK_ENABLE[] = {
{EFUSE_BLK0, 14, 1}, // [] wr_dis of XTS_DPA_CLK_ENABLE,
};
static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_SHA384_EN[] = {
{EFUSE_BLK0, 14, 1}, // [] wr_dis of SECURE_BOOT_SHA384_EN,
};
static const esp_efuse_desc_t WR_DIS_ECC_FORCE_CONST_TIME[] = {
{EFUSE_BLK0, 14, 1}, // [] wr_dis of ECC_FORCE_CONST_TIME,
};
static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_EN[] = {
{EFUSE_BLK0, 15, 1}, // [] wr_dis of SECURE_BOOT_EN,
};
static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE[] = {
{EFUSE_BLK0, 16, 1}, // [] wr_dis of SECURE_BOOT_AGGRESSIVE_REVOKE,
};
static const esp_efuse_desc_t WR_DIS_XTAL_48M_SEL[] = {
{EFUSE_BLK0, 17, 1}, // [] wr_dis of XTAL_48M_SEL,
};
static const esp_efuse_desc_t WR_DIS_XTAL_48M_SEL_MODE[] = {
{EFUSE_BLK0, 17, 1}, // [] wr_dis of XTAL_48M_SEL_MODE,
};
static const esp_efuse_desc_t WR_DIS_FLASH_TPUW[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of FLASH_TPUW,
};
static const esp_efuse_desc_t WR_DIS_DIS_DOWNLOAD_MODE[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_DOWNLOAD_MODE,
};
static const esp_efuse_desc_t WR_DIS_DIS_DIRECT_BOOT[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_DIRECT_BOOT,
};
static const esp_efuse_desc_t WR_DIS_DIS_USB_SERIAL_JTAG_ROM_PRINT[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_USB_SERIAL_JTAG_ROM_PRINT,
};
static const esp_efuse_desc_t WR_DIS_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE,
};
static const esp_efuse_desc_t WR_DIS_ENABLE_SECURITY_DOWNLOAD[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of ENABLE_SECURITY_DOWNLOAD,
};
static const esp_efuse_desc_t WR_DIS_UART_PRINT_CONTROL[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of UART_PRINT_CONTROL,
};
static const esp_efuse_desc_t WR_DIS_FORCE_SEND_RESUME[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of FORCE_SEND_RESUME,
};
static const esp_efuse_desc_t WR_DIS_SECURE_VERSION[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of SECURE_VERSION,
};
static const esp_efuse_desc_t WR_DIS_SECURE_BOOT_DISABLE_FAST_WAKE[] = {
{EFUSE_BLK0, 18, 1}, // [] wr_dis of SECURE_BOOT_DISABLE_FAST_WAKE,
};
static const esp_efuse_desc_t WR_DIS_HUK_GEN_STATE[] = {
{EFUSE_BLK0, 19, 1}, // [] wr_dis of HUK_GEN_STATE,
};
static const esp_efuse_desc_t WR_DIS_BLK1[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of BLOCK1,
};
static const esp_efuse_desc_t WR_DIS_MAC[] = {
{EFUSE_BLK0, 20, 1}, // [WR_DIS.MAC_FACTORY] wr_dis of MAC,
};
static const esp_efuse_desc_t WR_DIS_MAC_EXT[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of MAC_EXT,
};
static const esp_efuse_desc_t WR_DIS_WAFER_VERSION_MINOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of WAFER_VERSION_MINOR,
};
static const esp_efuse_desc_t WR_DIS_WAFER_VERSION_MAJOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of WAFER_VERSION_MAJOR,
};
static const esp_efuse_desc_t WR_DIS_DISABLE_WAFER_VERSION_MAJOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of DISABLE_WAFER_VERSION_MAJOR,
};
static const esp_efuse_desc_t WR_DIS_DISABLE_BLK_VERSION_MAJOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of DISABLE_BLK_VERSION_MAJOR,
};
static const esp_efuse_desc_t WR_DIS_BLK_VERSION_MINOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of BLK_VERSION_MINOR,
};
static const esp_efuse_desc_t WR_DIS_BLK_VERSION_MAJOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of BLK_VERSION_MAJOR,
};
static const esp_efuse_desc_t WR_DIS_FLASH_CAP[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of FLASH_CAP,
};
static const esp_efuse_desc_t WR_DIS_FLASH_VENDOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of FLASH_VENDOR,
};
static const esp_efuse_desc_t WR_DIS_PSRAM_CAP[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of PSRAM_CAP,
};
static const esp_efuse_desc_t WR_DIS_PSRAM_VENDOR[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of PSRAM_VENDOR,
};
static const esp_efuse_desc_t WR_DIS_TEMP[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of TEMP,
};
static const esp_efuse_desc_t WR_DIS_PKG_VERSION[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of PKG_VERSION,
};
static const esp_efuse_desc_t WR_DIS_PA_TRIM_VERSION[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of PA_TRIM_VERSION,
};
static const esp_efuse_desc_t WR_DIS_TRIM_N_BIAS[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of TRIM_N_BIAS,
};
static const esp_efuse_desc_t WR_DIS_TRIM_P_BIAS[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of TRIM_P_BIAS,
};
static const esp_efuse_desc_t WR_DIS_SYS_DATA_PART1[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of BLOCK2,
};
static const esp_efuse_desc_t WR_DIS_ACTIVE_HP_DBIAS[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of ACTIVE_HP_DBIAS,
};
static const esp_efuse_desc_t WR_DIS_ACTIVE_LP_DBIAS[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of ACTIVE_LP_DBIAS,
};
static const esp_efuse_desc_t WR_DIS_LSLP_HP_DBG[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of LSLP_HP_DBG,
};
static const esp_efuse_desc_t WR_DIS_LSLP_HP_DBIAS[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of LSLP_HP_DBIAS,
};
static const esp_efuse_desc_t WR_DIS_DSLP_LP_DBG[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of DSLP_LP_DBG,
};
static const esp_efuse_desc_t WR_DIS_DSLP_LP_DBIAS[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of DSLP_LP_DBIAS,
};
static const esp_efuse_desc_t WR_DIS_LP_HP_DBIAS_VOL_GAP[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of LP_HP_DBIAS_VOL_GAP,
};
static const esp_efuse_desc_t WR_DIS_REF_CURR_CODE[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of REF_CURR_CODE,
};
static const esp_efuse_desc_t WR_DIS_RES_TUNE_CODE[] = {
{EFUSE_BLK0, 20, 1}, // [] wr_dis of RES_TUNE_CODE,
};
static const esp_efuse_desc_t WR_DIS_OPTIONAL_UNIQUE_ID[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of OPTIONAL_UNIQUE_ID,
};
static const esp_efuse_desc_t WR_DIS_TEMPERATURE_SENSOR[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of TEMPERATURE_SENSOR,
};
static const esp_efuse_desc_t WR_DIS_OCODE[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of OCODE,
};
static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN0[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN0,
};
static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN1[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN1,
};
static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN2[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN2,
};
static const esp_efuse_desc_t WR_DIS_ADC1_AVE_INITCODE_ATTEN3[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_AVE_INITCODE_ATTEN3,
};
static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN0[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN0,
};
static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN1[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN1,
};
static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN2[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN2,
};
static const esp_efuse_desc_t WR_DIS_ADC1_HI_DOUT_ATTEN3[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_HI_DOUT_ATTEN3,
};
static const esp_efuse_desc_t WR_DIS_ADC1_CH0_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH0_ATTEN0_INITCODE_DIFF,
};
static const esp_efuse_desc_t WR_DIS_ADC1_CH1_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH1_ATTEN0_INITCODE_DIFF,
};
static const esp_efuse_desc_t WR_DIS_ADC1_CH2_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH2_ATTEN0_INITCODE_DIFF,
};
static const esp_efuse_desc_t WR_DIS_ADC1_CH3_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH3_ATTEN0_INITCODE_DIFF,
};
static const esp_efuse_desc_t WR_DIS_ADC1_CH4_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH4_ATTEN0_INITCODE_DIFF,
};
static const esp_efuse_desc_t WR_DIS_ADC1_CH5_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK0, 21, 1}, // [] wr_dis of ADC1_CH5_ATTEN0_INITCODE_DIFF,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_USR_DATA[] = {
{EFUSE_BLK0, 22, 1}, // [WR_DIS.USER_DATA] wr_dis of BLOCK_USR_DATA,
};
static const esp_efuse_desc_t WR_DIS_CUSTOM_MAC[] = {
{EFUSE_BLK0, 22, 1}, // [WR_DIS.MAC_CUSTOM WR_DIS.USER_DATA_MAC_CUSTOM] wr_dis of CUSTOM_MAC,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_KEY0[] = {
{EFUSE_BLK0, 23, 1}, // [WR_DIS.KEY0] wr_dis of BLOCK_KEY0,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_KEY1[] = {
{EFUSE_BLK0, 24, 1}, // [WR_DIS.KEY1] wr_dis of BLOCK_KEY1,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_KEY2[] = {
{EFUSE_BLK0, 25, 1}, // [WR_DIS.KEY2] wr_dis of BLOCK_KEY2,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_KEY3[] = {
{EFUSE_BLK0, 26, 1}, // [WR_DIS.KEY3] wr_dis of BLOCK_KEY3,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_KEY4[] = {
{EFUSE_BLK0, 27, 1}, // [WR_DIS.KEY4] wr_dis of BLOCK_KEY4,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_KEY5[] = {
{EFUSE_BLK0, 28, 1}, // [WR_DIS.KEY5] wr_dis of BLOCK_KEY5,
};
static const esp_efuse_desc_t WR_DIS_BLOCK_SYS_DATA2[] = {
{EFUSE_BLK0, 29, 1}, // [WR_DIS.SYS_DATA_PART2] wr_dis of BLOCK_SYS_DATA2,
};
static const esp_efuse_desc_t WR_DIS_USB_EXCHG_PINS[] = {
{EFUSE_BLK0, 30, 1}, // [] wr_dis of USB_EXCHG_PINS,
};
static const esp_efuse_desc_t WR_DIS_VDD_SPI_AS_GPIO[] = {
{EFUSE_BLK0, 30, 1}, // [] wr_dis of VDD_SPI_AS_GPIO,
};
static const esp_efuse_desc_t WR_DIS_SOFT_DIS_JTAG[] = {
{EFUSE_BLK0, 31, 1}, // [] wr_dis of SOFT_DIS_JTAG,
};
static const esp_efuse_desc_t RD_DIS[] = {
{EFUSE_BLK0, 32, 7}, // [] Disable reading from BlOCK4-10,
};
static const esp_efuse_desc_t RD_DIS_BLOCK_KEY0[] = {
{EFUSE_BLK0, 32, 1}, // [RD_DIS.KEY0] rd_dis of BLOCK_KEY0,
};
static const esp_efuse_desc_t RD_DIS_BLOCK_KEY1[] = {
{EFUSE_BLK0, 33, 1}, // [RD_DIS.KEY1] rd_dis of BLOCK_KEY1,
};
static const esp_efuse_desc_t RD_DIS_BLOCK_KEY2[] = {
{EFUSE_BLK0, 34, 1}, // [RD_DIS.KEY2] rd_dis of BLOCK_KEY2,
};
static const esp_efuse_desc_t RD_DIS_BLOCK_KEY3[] = {
{EFUSE_BLK0, 35, 1}, // [RD_DIS.KEY3] rd_dis of BLOCK_KEY3,
};
static const esp_efuse_desc_t RD_DIS_BLOCK_KEY4[] = {
{EFUSE_BLK0, 36, 1}, // [RD_DIS.KEY4] rd_dis of BLOCK_KEY4,
};
static const esp_efuse_desc_t RD_DIS_BLOCK_KEY5[] = {
{EFUSE_BLK0, 37, 1}, // [RD_DIS.KEY5] rd_dis of BLOCK_KEY5,
};
static const esp_efuse_desc_t RD_DIS_BLOCK_SYS_DATA2[] = {
{EFUSE_BLK0, 38, 1}, // [RD_DIS.SYS_DATA_PART2] rd_dis of BLOCK_SYS_DATA2,
};
static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_HI[] = {
{EFUSE_BLK0, 39, 1}, // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the high part of the field),
};
static const esp_efuse_desc_t DIS_ICACHE[] = {
{EFUSE_BLK0, 40, 1}, // [] Represents whether cache is disabled. 1: Disabled 0: Enabled,
};
static const esp_efuse_desc_t DIS_USB_JTAG[] = {
{EFUSE_BLK0, 41, 1}, // [] Represents whether the USB-to-JTAG function in USB Serial/JTAG is disabled. Note that \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} is available only when \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} is configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Disabled0: Enabled,
};
static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_EN[] = {
{EFUSE_BLK0, 42, 1}, // [] Represents whether the ani-rollback check for the 2nd stage bootloader is enabled.1: Enabled0: Disabled,
};
static const esp_efuse_desc_t DIS_FORCE_DOWNLOAD[] = {
{EFUSE_BLK0, 44, 1}, // [] Represents whether the function that forces chip into Download mode is disabled. 1: Disabled0: Enabled,
};
static const esp_efuse_desc_t SPI_DOWNLOAD_MSPI_DIS[] = {
{EFUSE_BLK0, 45, 1}, // [] Represents whether SPI0 controller during boot\_mode\_download is disabled.0: Enabled1: Disabled,
};
static const esp_efuse_desc_t DIS_TWAI[] = {
{EFUSE_BLK0, 46, 1}, // [] Represents whether TWAI$^®$ function is disabled.1: Disabled0: Enabled,
};
static const esp_efuse_desc_t JTAG_SEL_ENABLE[] = {
{EFUSE_BLK0, 47, 1}, // [] Represents whether the selection of a JTAG signal source through the strapping pin value is enabled when all of \hyperref[fielddesc:EFUSEDISPADJTAG]{EFUSE\_DIS\_PAD\_JTAG}; \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} and \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} are configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Enabled0: Disabled,
};
static const esp_efuse_desc_t SOFT_DIS_JTAG[] = {
{EFUSE_BLK0, 48, 3}, // [] Represents whether PAD JTAG is disabled in the soft way. It can be restarted via HMAC. Odd count of bits with a value of 1: DisabledEven count of bits with a value of 1: Enabled,
};
static const esp_efuse_desc_t DIS_PAD_JTAG[] = {
{EFUSE_BLK0, 51, 1}, // [] Represents whether PAD JTAG is disabled in the hard way (permanently).1: Disabled0: Enabled,
};
static const esp_efuse_desc_t DIS_DOWNLOAD_MANUAL_ENCRYPT[] = {
{EFUSE_BLK0, 52, 1}, // [] Represents whether flash encryption is disabled (except in SPI boot mode).1: Disabled0: Enabled,
};
static const esp_efuse_desc_t USB_EXCHG_PINS[] = {
{EFUSE_BLK0, 57, 1}, // [] Represents whether the D+ and D- pins is exchanged.1: Exchanged0: Not exchanged,
};
static const esp_efuse_desc_t VDD_SPI_AS_GPIO[] = {
{EFUSE_BLK0, 58, 1}, // [] Represents whether VDD SPI pin is functioned as GPIO.1: Functioned0: Not functioned,
};
static const esp_efuse_desc_t WDT_DELAY_SEL[] = {
{EFUSE_BLK0, 59, 2}, // [] Represents RTC watchdog timeout threshold.0: The originally configured STG0 threshold × 21: The originally configured STG0 threshold × 42: The originally configured STG0 threshold × 83: The originally configured STG0 threshold × 16,
};
static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_LO[] = {
{EFUSE_BLK0, 61, 3}, // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the low part of the field),
};
static const esp_efuse_desc_t KM_DISABLE_DEPLOY_MODE[] = {
{EFUSE_BLK0, 64, 4}, // [] Represents whether the new key deployment of key manager is disabled. Bit0: Represents whether the new ECDSA key deployment is disabled0: Enabled1: DisabledBit1: Represents whether the new XTS-AES (flash and PSRAM) key deployment is disabled0: Enabled1: DisabledBit2: Represents whether the new HMAC key deployment is disabled0: Enabled1: DisabledBit3: Represents whether the new DS key deployment is disabled0: Enabled1: Disabled,
};
static const esp_efuse_desc_t KM_RND_SWITCH_CYCLE[] = {
{EFUSE_BLK0, 68, 2}, // [] Represents the cycle at which the Key Manager switches random numbers.0: Controlled by the \hyperref[fielddesc:KEYMNGRNDSWITCHCYCLE]{KEYMNG\_RND\_SWITCH\_CYCLE} register. For more information; please refer to Chapter \ref{mod:keymng} \textit{\nameref{mod:keymng}}1: 8 Key Manager clock cycles2: 16 Key Manager clock cycles3: 32 Key Manager clock cycles,
};
static const esp_efuse_desc_t KM_DEPLOY_ONLY_ONCE[] = {
{EFUSE_BLK0, 70, 4}, // [] Represents whether the corresponding key can be deployed only once.Bit0: Represents whether the ECDSA key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit1: Represents whether the XTS-AES (flash and PSRAM) key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit2: Represents whether the HMAC key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit3: Represents whether the DS key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only once,
};
static const esp_efuse_desc_t FORCE_USE_KEY_MANAGER_KEY[] = {
{EFUSE_BLK0, 74, 4}, // [] Represents whether the corresponding key must come from Key Manager. Bit0: Represents whether the ECDSA key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit1: Represents whether the XTS-AES (flash and PSRAM) key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit2: Represents whether the HMAC key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit3: Represents whether the DS key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key Manager,
};
static const esp_efuse_desc_t FORCE_DISABLE_SW_INIT_KEY[] = {
{EFUSE_BLK0, 78, 1}, // [] Represents whether to disable the use of the initialization key written by software and instead force use efuse\_init\_key.0: Enable1: Disable,
};
static const esp_efuse_desc_t BOOTLOADER_ANTI_ROLLBACK_UPDATE_IN_ROM[] = {
{EFUSE_BLK0, 79, 1}, // [] Represents whether the ani-rollback SECURE_VERSION will be updated from the ROM bootloader.1: Enable0: Disable,
};
static const esp_efuse_desc_t SPI_BOOT_CRYPT_CNT[] = {
{EFUSE_BLK0, 80, 3}, // [] Enables flash encryption when 1 or 3 bits are set and disables otherwise {0: "Disable"; 1: "Enable"; 3: "Disable"; 7: "Enable"},
};
static const esp_efuse_desc_t SECURE_BOOT_KEY_REVOKE0[] = {
{EFUSE_BLK0, 83, 1}, // [] Revoke 1st secure boot key,
};
static const esp_efuse_desc_t SECURE_BOOT_KEY_REVOKE1[] = {
{EFUSE_BLK0, 84, 1}, // [] Revoke 2nd secure boot key,
};
static const esp_efuse_desc_t SECURE_BOOT_KEY_REVOKE2[] = {
{EFUSE_BLK0, 85, 1}, // [] Revoke 3rd secure boot key,
};
static const esp_efuse_desc_t KEY_PURPOSE_0[] = {
{EFUSE_BLK0, 86, 5}, // [KEY0_PURPOSE] Represents the purpose of Key0. See Table \ref{tab:efuse-key-purpose},
};
static const esp_efuse_desc_t KEY_PURPOSE_1[] = {
{EFUSE_BLK0, 91, 5}, // [KEY1_PURPOSE] Represents the purpose of Key1. See Table \ref{tab:efuse-key-purpose},
};
static const esp_efuse_desc_t KEY_PURPOSE_2[] = {
{EFUSE_BLK0, 96, 5}, // [KEY2_PURPOSE] Represents the purpose of Key2. See Table \ref{tab:efuse-key-purpose},
};
static const esp_efuse_desc_t KEY_PURPOSE_3[] = {
{EFUSE_BLK0, 101, 5}, // [KEY3_PURPOSE] Represents the purpose of Key3. See Table \ref{tab:efuse-key-purpose},
};
static const esp_efuse_desc_t KEY_PURPOSE_4[] = {
{EFUSE_BLK0, 106, 5}, // [KEY4_PURPOSE] Represents the purpose of Key4. See Table \ref{tab:efuse-key-purpose},
};
static const esp_efuse_desc_t KEY_PURPOSE_5[] = {
{EFUSE_BLK0, 111, 5}, // [KEY5_PURPOSE] Represents the purpose of Key5. See Table \ref{tab:efuse-key-purpose},
};
static const esp_efuse_desc_t SEC_DPA_LEVEL[] = {
{EFUSE_BLK0, 116, 2}, // [] Represents the security level of anti-DPA attack. The level is adjusted by configuring the clock random frequency division mode.0: Security level is SEC\_DPA\_OFF1: Security level is SEC\_DPA\_LOW2: Security level is SEC\_DPA\_MIDDLE3: Security level is SEC\_DPA\_HIGHFor more information; please refer to Chapter \ref{mod:sysreg} \textit{\nameref{mod:sysreg}} > Section \ref{sec:sysreg-anti-dpa-attack-security-control} \textit{\nameref{sec:sysreg-anti-dpa-attack-security-control}}.,
};
static const esp_efuse_desc_t RECOVERY_BOOTLOADER_FLASH_SECTOR_HI[] = {
{EFUSE_BLK0, 118, 3}, // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The high part of the field),
};
static const esp_efuse_desc_t SECURE_BOOT_EN[] = {
{EFUSE_BLK0, 121, 1}, // [] Represents whether Secure Boot is enabled.1: Enabled0: Disabled,
};
static const esp_efuse_desc_t SECURE_BOOT_AGGRESSIVE_REVOKE[] = {
{EFUSE_BLK0, 122, 1}, // [] Represents whether aggressive revocation of Secure Boot is enabled.1: Enabled0: Disabled,
};
static const esp_efuse_desc_t KM_XTS_KEY_LENGTH_256[] = {
{EFUSE_BLK0, 123, 1}, // [] Represents which key flash encryption uses.0: XTS-AES-256 key1: XTS-AES-128 key,
};
static const esp_efuse_desc_t FLASH_TPUW[] = {
{EFUSE_BLK0, 124, 4}, // [] Represents the flash waiting time after power-up. Measurement unit: ms. When the value is less than 15; the waiting time is the programmed value. Otherwise; the waiting time is a fixed value; i.e. 30 ms,
};
static const esp_efuse_desc_t DIS_DOWNLOAD_MODE[] = {
{EFUSE_BLK0, 128, 1}, // [] Represents whether Download mode is disable or enable. 1. Disable 0: Enable,
};
static const esp_efuse_desc_t DIS_DIRECT_BOOT[] = {
{EFUSE_BLK0, 129, 1}, // [] Represents whether direct boot mode is disabled or enabled. 1. Disable 0: Enable,
};
static const esp_efuse_desc_t DIS_USB_SERIAL_JTAG_ROM_PRINT[] = {
{EFUSE_BLK0, 130, 1}, // [] Represents whether print from USB-Serial-JTAG is disabled or enabled. 1. Disable 0: Enable,
};
static const esp_efuse_desc_t LOCK_KM_KEY[] = {
{EFUSE_BLK0, 131, 1}, // [] Represents whether the keys in the Key Manager are locked after deployment.0: Not locked1: Locked,
};
static const esp_efuse_desc_t DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = {
{EFUSE_BLK0, 132, 1}, // [] Represents whether the USB-Serial-JTAG download function is disabled or enabled. 1: Disable 0: Enable,
};
static const esp_efuse_desc_t ENABLE_SECURITY_DOWNLOAD[] = {
{EFUSE_BLK0, 133, 1}, // [] Represents whether security download is enabled. Only downloading into flash is supported. Reading/writing RAM or registers is not supported (i.e. stub download is not supported).1: Enabled0: Disabled,
};
static const esp_efuse_desc_t UART_PRINT_CONTROL[] = {
{EFUSE_BLK0, 134, 2}, // [] Set the default UARTboot message output mode {0: "Enable"; 1: "Enable when GPIO8 is low at reset"; 2: "Enable when GPIO8 is high at reset"; 3: "Disable"},
};
static const esp_efuse_desc_t FORCE_SEND_RESUME[] = {
{EFUSE_BLK0, 136, 1}, // [] Represents whether ROM code is forced to send a resume command during SPI boot.1: Forced. 0: Not forced.,
};
static const esp_efuse_desc_t SECURE_VERSION[] = {
{EFUSE_BLK0, 137, 9}, // [] Represents the app secure version used by ESP-IDF anti-rollback feature,
};
static const esp_efuse_desc_t SECURE_BOOT_DISABLE_FAST_WAKE[] = {
{EFUSE_BLK0, 153, 1}, // [] Represents whether FAST VERIFY ON WAKE is disabled when Secure Boot is enabled.1: Disabled0: Enabled,
};
static const esp_efuse_desc_t HYS_EN_PAD[] = {
{EFUSE_BLK0, 154, 1}, // [] Represents whether the hysteresis function of PAD0 PAD27 is enabled.1: Enabled0: Disabled,
};
static const esp_efuse_desc_t XTS_DPA_PSEUDO_LEVEL[] = {
{EFUSE_BLK0, 155, 2}, // [] Represents the pseudo round level of XTS-AES anti-DPA attack.0: Disabled1: Low2: Moderate3: High,
};
static const esp_efuse_desc_t XTS_DPA_CLK_ENABLE[] = {
{EFUSE_BLK0, 157, 1}, // [] Represents whether XTS-AES anti-DPA attack clock is enabled.0: Disable1: Enabled,
};
static const esp_efuse_desc_t SECURE_BOOT_SHA384_EN[] = {
{EFUSE_BLK0, 159, 1}, // [] Represents if the chip supports Secure Boot using SHA-384,
};
static const esp_efuse_desc_t HUK_GEN_STATE[] = {
{EFUSE_BLK0, 160, 9}, // [] Represents whether the HUK generate mode is valid.Odd count of bits with a value of 1: InvalidEven count of bits with a value of 1: Valid,
};
static const esp_efuse_desc_t XTAL_48M_SEL[] = {
{EFUSE_BLK0, 169, 3}, // [] Represents whether XTAL frequency is 48MHz or not. If not; 40MHz XTAL will be used. If this field contains Odd number bit 1: Enable 48MHz XTAL\ Even number bit 1: Enable 40MHz XTAL,
};
static const esp_efuse_desc_t XTAL_48M_SEL_MODE[] = {
{EFUSE_BLK0, 172, 1}, // [] Represents what determines the XTAL frequency in \textbf{Joint Download Boot} mode. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.0: Strapping PAD state1: \hyperref[fielddesc:EFUSEXTAL48MSEL]{EFUSE\_XTAL\_48M\_SEL} in eFuse,
};
static const esp_efuse_desc_t ECC_FORCE_CONST_TIME[] = {
{EFUSE_BLK0, 173, 1}, // [] Represents whether to force ECC to use constant-time mode for point multiplication calculation. 0: Not force1: Force,
};
static const esp_efuse_desc_t RECOVERY_BOOTLOADER_FLASH_SECTOR_LO[] = {
{EFUSE_BLK0, 174, 9}, // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The low part of the field),
};
static const esp_efuse_desc_t MAC[] = {
{EFUSE_BLK1, 40, 8}, // [MAC_FACTORY] MAC address,
{EFUSE_BLK1, 32, 8}, // [MAC_FACTORY] MAC address,
{EFUSE_BLK1, 24, 8}, // [MAC_FACTORY] MAC address,
{EFUSE_BLK1, 16, 8}, // [MAC_FACTORY] MAC address,
{EFUSE_BLK1, 8, 8}, // [MAC_FACTORY] MAC address,
{EFUSE_BLK1, 0, 8}, // [MAC_FACTORY] MAC address,
};
static const esp_efuse_desc_t MAC_EXT[] = {
{EFUSE_BLK1, 48, 16}, // [] Represents the extended bits of MAC address,
};
static const esp_efuse_desc_t WAFER_VERSION_MINOR[] = {
{EFUSE_BLK1, 64, 4}, // [] Minor chip version,
};
static const esp_efuse_desc_t WAFER_VERSION_MAJOR[] = {
{EFUSE_BLK1, 68, 2}, // [] Minor chip version,
};
static const esp_efuse_desc_t DISABLE_WAFER_VERSION_MAJOR[] = {
{EFUSE_BLK1, 70, 1}, // [] Disables check of wafer version major,
};
static const esp_efuse_desc_t DISABLE_BLK_VERSION_MAJOR[] = {
{EFUSE_BLK1, 71, 1}, // [] Disables check of blk version major,
};
static const esp_efuse_desc_t BLK_VERSION_MINOR[] = {
{EFUSE_BLK1, 72, 3}, // [] BLK_VERSION_MINOR of BLOCK2,
};
static const esp_efuse_desc_t BLK_VERSION_MAJOR[] = {
{EFUSE_BLK1, 75, 2}, // [] BLK_VERSION_MAJOR of BLOCK2,
};
static const esp_efuse_desc_t FLASH_CAP[] = {
{EFUSE_BLK1, 77, 3}, // [] Flash capacity,
};
static const esp_efuse_desc_t FLASH_VENDOR[] = {
{EFUSE_BLK1, 80, 3}, // [] Flash vendor,
};
static const esp_efuse_desc_t PSRAM_CAP[] = {
{EFUSE_BLK1, 83, 3}, // [] Psram capacity,
};
static const esp_efuse_desc_t PSRAM_VENDOR[] = {
{EFUSE_BLK1, 86, 2}, // [] Psram vendor,
};
static const esp_efuse_desc_t TEMP[] = {
{EFUSE_BLK1, 88, 2}, // [] Temp (die embedded inside),
};
static const esp_efuse_desc_t PKG_VERSION[] = {
{EFUSE_BLK1, 90, 3}, // [] Package version,
};
static const esp_efuse_desc_t PA_TRIM_VERSION[] = {
{EFUSE_BLK1, 93, 3}, // [] PADC CAL PA trim version,
};
static const esp_efuse_desc_t TRIM_N_BIAS[] = {
{EFUSE_BLK1, 96, 5}, // [] PADC CAL N bias,
};
static const esp_efuse_desc_t TRIM_P_BIAS[] = {
{EFUSE_BLK1, 101, 5}, // [] PADC CAL P bias,
};
static const esp_efuse_desc_t ACTIVE_HP_DBIAS[] = {
{EFUSE_BLK1, 106, 4}, // [] Active HP DBIAS of fixed voltage,
};
static const esp_efuse_desc_t ACTIVE_LP_DBIAS[] = {
{EFUSE_BLK1, 110, 4}, // [] Active LP DBIAS of fixed voltage,
};
static const esp_efuse_desc_t LSLP_HP_DBG[] = {
{EFUSE_BLK1, 114, 2}, // [] LSLP HP DBG of fixed voltage,
};
static const esp_efuse_desc_t LSLP_HP_DBIAS[] = {
{EFUSE_BLK1, 116, 4}, // [] LSLP HP DBIAS of fixed voltage,
};
static const esp_efuse_desc_t DSLP_LP_DBG[] = {
{EFUSE_BLK1, 120, 4}, // [] DSLP LP DBG of fixed voltage,
};
static const esp_efuse_desc_t DSLP_LP_DBIAS[] = {
{EFUSE_BLK1, 124, 5}, // [] DSLP LP DBIAS of fixed voltage,
};
static const esp_efuse_desc_t LP_HP_DBIAS_VOL_GAP[] = {
{EFUSE_BLK1, 129, 5}, // [] DBIAS gap between LP and HP,
};
static const esp_efuse_desc_t REF_CURR_CODE[] = {
{EFUSE_BLK1, 134, 4}, // [] REF PADC Calibration Curr,
};
static const esp_efuse_desc_t RES_TUNE_CODE[] = {
{EFUSE_BLK1, 138, 5}, // [] RES PADC Calibration Tune,
};
static const esp_efuse_desc_t OPTIONAL_UNIQUE_ID[] = {
{EFUSE_BLK2, 0, 128}, // [] Optional unique 128-bit ID,
};
static const esp_efuse_desc_t TEMPERATURE_SENSOR[] = {
{EFUSE_BLK2, 128, 9}, // [] Temperature calibration data,
};
static const esp_efuse_desc_t OCODE[] = {
{EFUSE_BLK2, 137, 8}, // [] ADC OCode,
};
static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN0[] = {
{EFUSE_BLK2, 145, 10}, // [] Average initcode of ADC1 atten0,
};
static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN1[] = {
{EFUSE_BLK2, 155, 10}, // [] Average initcode of ADC1 atten0,
};
static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN2[] = {
{EFUSE_BLK2, 165, 10}, // [] Average initcode of ADC1 atten0,
};
static const esp_efuse_desc_t ADC1_AVE_INITCODE_ATTEN3[] = {
{EFUSE_BLK2, 175, 10}, // [] Average initcode of ADC1 atten0,
};
static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN0[] = {
{EFUSE_BLK2, 185, 10}, // [] HI DOUT of ADC1 atten0,
};
static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN1[] = {
{EFUSE_BLK2, 195, 10}, // [] HI DOUT of ADC1 atten1,
};
static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN2[] = {
{EFUSE_BLK2, 205, 10}, // [] HI DOUT of ADC1 atten2,
};
static const esp_efuse_desc_t ADC1_HI_DOUT_ATTEN3[] = {
{EFUSE_BLK2, 215, 10}, // [] HI DOUT of ADC1 atten3,
};
static const esp_efuse_desc_t ADC1_CH0_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK2, 225, 4}, // [] Gap between ADC1 CH0 and average initcode,
};
static const esp_efuse_desc_t ADC1_CH1_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK2, 229, 4}, // [] Gap between ADC1 CH1 and average initcode,
};
static const esp_efuse_desc_t ADC1_CH2_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK2, 233, 4}, // [] Gap between ADC1 CH2 and average initcode,
};
static const esp_efuse_desc_t ADC1_CH3_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK2, 237, 4}, // [] Gap between ADC1 CH3 and average initcode,
};
static const esp_efuse_desc_t ADC1_CH4_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK2, 241, 4}, // [] Gap between ADC1 CH4 and average initcode,
};
static const esp_efuse_desc_t ADC1_CH5_ATTEN0_INITCODE_DIFF[] = {
{EFUSE_BLK2, 245, 4}, // [] Gap between ADC1 CH5 and average initcode,
};
static const esp_efuse_desc_t USER_DATA[] = {
{EFUSE_BLK3, 0, 256}, // [BLOCK_USR_DATA] User data,
};
static const esp_efuse_desc_t USER_DATA_MAC_CUSTOM[] = {
{EFUSE_BLK3, 200, 48}, // [MAC_CUSTOM CUSTOM_MAC] Custom MAC,
};
static const esp_efuse_desc_t KEY0[] = {
{EFUSE_BLK4, 0, 256}, // [BLOCK_KEY0] Key0 or user data,
};
static const esp_efuse_desc_t KEY1[] = {
{EFUSE_BLK5, 0, 256}, // [BLOCK_KEY1] Key1 or user data,
};
static const esp_efuse_desc_t KEY2[] = {
{EFUSE_BLK6, 0, 256}, // [BLOCK_KEY2] Key2 or user data,
};
static const esp_efuse_desc_t KEY3[] = {
{EFUSE_BLK7, 0, 256}, // [BLOCK_KEY3] Key3 or user data,
};
static const esp_efuse_desc_t KEY4[] = {
{EFUSE_BLK8, 0, 256}, // [BLOCK_KEY4] Key4 or user data,
};
static const esp_efuse_desc_t KEY5[] = {
{EFUSE_BLK9, 0, 256}, // [BLOCK_KEY5] Key5 or user data,
};
static const esp_efuse_desc_t SYS_DATA_PART2[] = {
{EFUSE_BLK10, 0, 256}, // [BLOCK_SYS_DATA2] System data part 2 (reserved),
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS[] = {
&WR_DIS[0], // [] Disable programming of individual eFuses
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_RD_DIS[] = {
&WR_DIS_RD_DIS[0], // [] wr_dis of RD_DIS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_DISABLE_DEPLOY_MODE[] = {
&WR_DIS_KM_DISABLE_DEPLOY_MODE[0], // [] wr_dis of KM_DISABLE_DEPLOY_MODE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_RND_SWITCH_CYCLE[] = {
&WR_DIS_KM_RND_SWITCH_CYCLE[0], // [] wr_dis of KM_RND_SWITCH_CYCLE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_DEPLOY_ONLY_ONCE[] = {
&WR_DIS_KM_DEPLOY_ONLY_ONCE[0], // [] wr_dis of KM_DEPLOY_ONLY_ONCE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FORCE_USE_KEY_MANAGER_KEY[] = {
&WR_DIS_FORCE_USE_KEY_MANAGER_KEY[0], // [] wr_dis of FORCE_USE_KEY_MANAGER_KEY
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FORCE_DISABLE_SW_INIT_KEY[] = {
&WR_DIS_FORCE_DISABLE_SW_INIT_KEY[0], // [] wr_dis of FORCE_DISABLE_SW_INIT_KEY
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KM_XTS_KEY_LENGTH_256[] = {
&WR_DIS_KM_XTS_KEY_LENGTH_256[0], // [] wr_dis of KM_XTS_KEY_LENGTH_256
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LOCK_KM_KEY[] = {
&WR_DIS_LOCK_KM_KEY[0], // [] wr_dis of LOCK_KM_KEY
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_ICACHE[] = {
&WR_DIS_DIS_ICACHE[0], // [] wr_dis of DIS_ICACHE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_USB_JTAG[] = {
&WR_DIS_DIS_USB_JTAG[0], // [] wr_dis of DIS_USB_JTAG
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_FORCE_DOWNLOAD[] = {
&WR_DIS_DIS_FORCE_DOWNLOAD[0], // [] wr_dis of DIS_FORCE_DOWNLOAD
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SPI_DOWNLOAD_MSPI_DIS[] = {
&WR_DIS_SPI_DOWNLOAD_MSPI_DIS[0], // [] wr_dis of SPI_DOWNLOAD_MSPI_DIS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_TWAI[] = {
&WR_DIS_DIS_TWAI[0], // [] wr_dis of DIS_TWAI
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_JTAG_SEL_ENABLE[] = {
&WR_DIS_JTAG_SEL_ENABLE[0], // [] wr_dis of JTAG_SEL_ENABLE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_PAD_JTAG[] = {
&WR_DIS_DIS_PAD_JTAG[0], // [] wr_dis of DIS_PAD_JTAG
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_DOWNLOAD_MANUAL_ENCRYPT[] = {
&WR_DIS_DIS_DOWNLOAD_MANUAL_ENCRYPT[0], // [] wr_dis of DIS_DOWNLOAD_MANUAL_ENCRYPT
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_HYS_EN_PAD[] = {
&WR_DIS_HYS_EN_PAD[0], // [] wr_dis of HYS_EN_PAD
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_WDT_DELAY_SEL[] = {
&WR_DIS_WDT_DELAY_SEL[0], // [] wr_dis of WDT_DELAY_SEL
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT[] = {
&WR_DIS_SPI_BOOT_CRYPT_CNT[0], // [] wr_dis of SPI_BOOT_CRYPT_CNT
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE0[] = {
&WR_DIS_SECURE_BOOT_KEY_REVOKE0[0], // [] wr_dis of SECURE_BOOT_KEY_REVOKE0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE1[] = {
&WR_DIS_SECURE_BOOT_KEY_REVOKE1[0], // [] wr_dis of SECURE_BOOT_KEY_REVOKE1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE2[] = {
&WR_DIS_SECURE_BOOT_KEY_REVOKE2[0], // [] wr_dis of SECURE_BOOT_KEY_REVOKE2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_0[] = {
&WR_DIS_KEY_PURPOSE_0[0], // [WR_DIS.KEY0_PURPOSE] wr_dis of KEY_PURPOSE_0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_1[] = {
&WR_DIS_KEY_PURPOSE_1[0], // [WR_DIS.KEY1_PURPOSE] wr_dis of KEY_PURPOSE_1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_2[] = {
&WR_DIS_KEY_PURPOSE_2[0], // [WR_DIS.KEY2_PURPOSE] wr_dis of KEY_PURPOSE_2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_3[] = {
&WR_DIS_KEY_PURPOSE_3[0], // [WR_DIS.KEY3_PURPOSE] wr_dis of KEY_PURPOSE_3
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_4[] = {
&WR_DIS_KEY_PURPOSE_4[0], // [WR_DIS.KEY4_PURPOSE] wr_dis of KEY_PURPOSE_4
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_KEY_PURPOSE_5[] = {
&WR_DIS_KEY_PURPOSE_5[0], // [WR_DIS.KEY5_PURPOSE] wr_dis of KEY_PURPOSE_5
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SEC_DPA_LEVEL[] = {
&WR_DIS_SEC_DPA_LEVEL[0], // [] wr_dis of SEC_DPA_LEVEL
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTS_DPA_PSEUDO_LEVEL[] = {
&WR_DIS_XTS_DPA_PSEUDO_LEVEL[0], // [] wr_dis of XTS_DPA_PSEUDO_LEVEL
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTS_DPA_CLK_ENABLE[] = {
&WR_DIS_XTS_DPA_CLK_ENABLE[0], // [] wr_dis of XTS_DPA_CLK_ENABLE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_SHA384_EN[] = {
&WR_DIS_SECURE_BOOT_SHA384_EN[0], // [] wr_dis of SECURE_BOOT_SHA384_EN
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ECC_FORCE_CONST_TIME[] = {
&WR_DIS_ECC_FORCE_CONST_TIME[0], // [] wr_dis of ECC_FORCE_CONST_TIME
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_EN[] = {
&WR_DIS_SECURE_BOOT_EN[0], // [] wr_dis of SECURE_BOOT_EN
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE[] = {
&WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE[0], // [] wr_dis of SECURE_BOOT_AGGRESSIVE_REVOKE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTAL_48M_SEL[] = {
&WR_DIS_XTAL_48M_SEL[0], // [] wr_dis of XTAL_48M_SEL
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_XTAL_48M_SEL_MODE[] = {
&WR_DIS_XTAL_48M_SEL_MODE[0], // [] wr_dis of XTAL_48M_SEL_MODE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FLASH_TPUW[] = {
&WR_DIS_FLASH_TPUW[0], // [] wr_dis of FLASH_TPUW
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_DOWNLOAD_MODE[] = {
&WR_DIS_DIS_DOWNLOAD_MODE[0], // [] wr_dis of DIS_DOWNLOAD_MODE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_DIRECT_BOOT[] = {
&WR_DIS_DIS_DIRECT_BOOT[0], // [] wr_dis of DIS_DIRECT_BOOT
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_USB_SERIAL_JTAG_ROM_PRINT[] = {
&WR_DIS_DIS_USB_SERIAL_JTAG_ROM_PRINT[0], // [] wr_dis of DIS_USB_SERIAL_JTAG_ROM_PRINT
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = {
&WR_DIS_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[0], // [] wr_dis of DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ENABLE_SECURITY_DOWNLOAD[] = {
&WR_DIS_ENABLE_SECURITY_DOWNLOAD[0], // [] wr_dis of ENABLE_SECURITY_DOWNLOAD
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_UART_PRINT_CONTROL[] = {
&WR_DIS_UART_PRINT_CONTROL[0], // [] wr_dis of UART_PRINT_CONTROL
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FORCE_SEND_RESUME[] = {
&WR_DIS_FORCE_SEND_RESUME[0], // [] wr_dis of FORCE_SEND_RESUME
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_VERSION[] = {
&WR_DIS_SECURE_VERSION[0], // [] wr_dis of SECURE_VERSION
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SECURE_BOOT_DISABLE_FAST_WAKE[] = {
&WR_DIS_SECURE_BOOT_DISABLE_FAST_WAKE[0], // [] wr_dis of SECURE_BOOT_DISABLE_FAST_WAKE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_HUK_GEN_STATE[] = {
&WR_DIS_HUK_GEN_STATE[0], // [] wr_dis of HUK_GEN_STATE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLK1[] = {
&WR_DIS_BLK1[0], // [] wr_dis of BLOCK1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_MAC[] = {
&WR_DIS_MAC[0], // [WR_DIS.MAC_FACTORY] wr_dis of MAC
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_MAC_EXT[] = {
&WR_DIS_MAC_EXT[0], // [] wr_dis of MAC_EXT
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_WAFER_VERSION_MINOR[] = {
&WR_DIS_WAFER_VERSION_MINOR[0], // [] wr_dis of WAFER_VERSION_MINOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_WAFER_VERSION_MAJOR[] = {
&WR_DIS_WAFER_VERSION_MAJOR[0], // [] wr_dis of WAFER_VERSION_MAJOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DISABLE_WAFER_VERSION_MAJOR[] = {
&WR_DIS_DISABLE_WAFER_VERSION_MAJOR[0], // [] wr_dis of DISABLE_WAFER_VERSION_MAJOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DISABLE_BLK_VERSION_MAJOR[] = {
&WR_DIS_DISABLE_BLK_VERSION_MAJOR[0], // [] wr_dis of DISABLE_BLK_VERSION_MAJOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLK_VERSION_MINOR[] = {
&WR_DIS_BLK_VERSION_MINOR[0], // [] wr_dis of BLK_VERSION_MINOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLK_VERSION_MAJOR[] = {
&WR_DIS_BLK_VERSION_MAJOR[0], // [] wr_dis of BLK_VERSION_MAJOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FLASH_CAP[] = {
&WR_DIS_FLASH_CAP[0], // [] wr_dis of FLASH_CAP
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_FLASH_VENDOR[] = {
&WR_DIS_FLASH_VENDOR[0], // [] wr_dis of FLASH_VENDOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PSRAM_CAP[] = {
&WR_DIS_PSRAM_CAP[0], // [] wr_dis of PSRAM_CAP
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PSRAM_VENDOR[] = {
&WR_DIS_PSRAM_VENDOR[0], // [] wr_dis of PSRAM_VENDOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TEMP[] = {
&WR_DIS_TEMP[0], // [] wr_dis of TEMP
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PKG_VERSION[] = {
&WR_DIS_PKG_VERSION[0], // [] wr_dis of PKG_VERSION
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_PA_TRIM_VERSION[] = {
&WR_DIS_PA_TRIM_VERSION[0], // [] wr_dis of PA_TRIM_VERSION
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TRIM_N_BIAS[] = {
&WR_DIS_TRIM_N_BIAS[0], // [] wr_dis of TRIM_N_BIAS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TRIM_P_BIAS[] = {
&WR_DIS_TRIM_P_BIAS[0], // [] wr_dis of TRIM_P_BIAS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SYS_DATA_PART1[] = {
&WR_DIS_SYS_DATA_PART1[0], // [] wr_dis of BLOCK2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ACTIVE_HP_DBIAS[] = {
&WR_DIS_ACTIVE_HP_DBIAS[0], // [] wr_dis of ACTIVE_HP_DBIAS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ACTIVE_LP_DBIAS[] = {
&WR_DIS_ACTIVE_LP_DBIAS[0], // [] wr_dis of ACTIVE_LP_DBIAS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LSLP_HP_DBG[] = {
&WR_DIS_LSLP_HP_DBG[0], // [] wr_dis of LSLP_HP_DBG
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LSLP_HP_DBIAS[] = {
&WR_DIS_LSLP_HP_DBIAS[0], // [] wr_dis of LSLP_HP_DBIAS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DSLP_LP_DBG[] = {
&WR_DIS_DSLP_LP_DBG[0], // [] wr_dis of DSLP_LP_DBG
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_DSLP_LP_DBIAS[] = {
&WR_DIS_DSLP_LP_DBIAS[0], // [] wr_dis of DSLP_LP_DBIAS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_LP_HP_DBIAS_VOL_GAP[] = {
&WR_DIS_LP_HP_DBIAS_VOL_GAP[0], // [] wr_dis of LP_HP_DBIAS_VOL_GAP
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_REF_CURR_CODE[] = {
&WR_DIS_REF_CURR_CODE[0], // [] wr_dis of REF_CURR_CODE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_RES_TUNE_CODE[] = {
&WR_DIS_RES_TUNE_CODE[0], // [] wr_dis of RES_TUNE_CODE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_OPTIONAL_UNIQUE_ID[] = {
&WR_DIS_OPTIONAL_UNIQUE_ID[0], // [] wr_dis of OPTIONAL_UNIQUE_ID
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_TEMPERATURE_SENSOR[] = {
&WR_DIS_TEMPERATURE_SENSOR[0], // [] wr_dis of TEMPERATURE_SENSOR
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_OCODE[] = {
&WR_DIS_OCODE[0], // [] wr_dis of OCODE
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN0[] = {
&WR_DIS_ADC1_AVE_INITCODE_ATTEN0[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN1[] = {
&WR_DIS_ADC1_AVE_INITCODE_ATTEN1[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN2[] = {
&WR_DIS_ADC1_AVE_INITCODE_ATTEN2[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_AVE_INITCODE_ATTEN3[] = {
&WR_DIS_ADC1_AVE_INITCODE_ATTEN3[0], // [] wr_dis of ADC1_AVE_INITCODE_ATTEN3
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN0[] = {
&WR_DIS_ADC1_HI_DOUT_ATTEN0[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN1[] = {
&WR_DIS_ADC1_HI_DOUT_ATTEN1[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN2[] = {
&WR_DIS_ADC1_HI_DOUT_ATTEN2[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_HI_DOUT_ATTEN3[] = {
&WR_DIS_ADC1_HI_DOUT_ATTEN3[0], // [] wr_dis of ADC1_HI_DOUT_ATTEN3
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH0_ATTEN0_INITCODE_DIFF[] = {
&WR_DIS_ADC1_CH0_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH0_ATTEN0_INITCODE_DIFF
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH1_ATTEN0_INITCODE_DIFF[] = {
&WR_DIS_ADC1_CH1_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH1_ATTEN0_INITCODE_DIFF
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH2_ATTEN0_INITCODE_DIFF[] = {
&WR_DIS_ADC1_CH2_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH2_ATTEN0_INITCODE_DIFF
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH3_ATTEN0_INITCODE_DIFF[] = {
&WR_DIS_ADC1_CH3_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH3_ATTEN0_INITCODE_DIFF
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH4_ATTEN0_INITCODE_DIFF[] = {
&WR_DIS_ADC1_CH4_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH4_ATTEN0_INITCODE_DIFF
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_ADC1_CH5_ATTEN0_INITCODE_DIFF[] = {
&WR_DIS_ADC1_CH5_ATTEN0_INITCODE_DIFF[0], // [] wr_dis of ADC1_CH5_ATTEN0_INITCODE_DIFF
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_USR_DATA[] = {
&WR_DIS_BLOCK_USR_DATA[0], // [WR_DIS.USER_DATA] wr_dis of BLOCK_USR_DATA
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_CUSTOM_MAC[] = {
&WR_DIS_CUSTOM_MAC[0], // [WR_DIS.MAC_CUSTOM WR_DIS.USER_DATA_MAC_CUSTOM] wr_dis of CUSTOM_MAC
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY0[] = {
&WR_DIS_BLOCK_KEY0[0], // [WR_DIS.KEY0] wr_dis of BLOCK_KEY0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY1[] = {
&WR_DIS_BLOCK_KEY1[0], // [WR_DIS.KEY1] wr_dis of BLOCK_KEY1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY2[] = {
&WR_DIS_BLOCK_KEY2[0], // [WR_DIS.KEY2] wr_dis of BLOCK_KEY2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY3[] = {
&WR_DIS_BLOCK_KEY3[0], // [WR_DIS.KEY3] wr_dis of BLOCK_KEY3
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY4[] = {
&WR_DIS_BLOCK_KEY4[0], // [WR_DIS.KEY4] wr_dis of BLOCK_KEY4
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_KEY5[] = {
&WR_DIS_BLOCK_KEY5[0], // [WR_DIS.KEY5] wr_dis of BLOCK_KEY5
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_BLOCK_SYS_DATA2[] = {
&WR_DIS_BLOCK_SYS_DATA2[0], // [WR_DIS.SYS_DATA_PART2] wr_dis of BLOCK_SYS_DATA2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_USB_EXCHG_PINS[] = {
&WR_DIS_USB_EXCHG_PINS[0], // [] wr_dis of USB_EXCHG_PINS
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_VDD_SPI_AS_GPIO[] = {
&WR_DIS_VDD_SPI_AS_GPIO[0], // [] wr_dis of VDD_SPI_AS_GPIO
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WR_DIS_SOFT_DIS_JTAG[] = {
&WR_DIS_SOFT_DIS_JTAG[0], // [] wr_dis of SOFT_DIS_JTAG
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS[] = {
&RD_DIS[0], // [] Disable reading from BlOCK4-10
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY0[] = {
&RD_DIS_BLOCK_KEY0[0], // [RD_DIS.KEY0] rd_dis of BLOCK_KEY0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY1[] = {
&RD_DIS_BLOCK_KEY1[0], // [RD_DIS.KEY1] rd_dis of BLOCK_KEY1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY2[] = {
&RD_DIS_BLOCK_KEY2[0], // [RD_DIS.KEY2] rd_dis of BLOCK_KEY2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY3[] = {
&RD_DIS_BLOCK_KEY3[0], // [RD_DIS.KEY3] rd_dis of BLOCK_KEY3
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY4[] = {
&RD_DIS_BLOCK_KEY4[0], // [RD_DIS.KEY4] rd_dis of BLOCK_KEY4
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_KEY5[] = {
&RD_DIS_BLOCK_KEY5[0], // [RD_DIS.KEY5] rd_dis of BLOCK_KEY5
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RD_DIS_BLOCK_SYS_DATA2[] = {
&RD_DIS_BLOCK_SYS_DATA2[0], // [RD_DIS.SYS_DATA_PART2] rd_dis of BLOCK_SYS_DATA2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_HI[] = {
&BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_HI[0], // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the high part of the field)
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_ICACHE[] = {
&DIS_ICACHE[0], // [] Represents whether cache is disabled. 1: Disabled 0: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_USB_JTAG[] = {
&DIS_USB_JTAG[0], // [] Represents whether the USB-to-JTAG function in USB Serial/JTAG is disabled. Note that \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} is available only when \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} is configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Disabled0: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_EN[] = {
&BOOTLOADER_ANTI_ROLLBACK_EN[0], // [] Represents whether the ani-rollback check for the 2nd stage bootloader is enabled.1: Enabled0: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_FORCE_DOWNLOAD[] = {
&DIS_FORCE_DOWNLOAD[0], // [] Represents whether the function that forces chip into Download mode is disabled. 1: Disabled0: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SPI_DOWNLOAD_MSPI_DIS[] = {
&SPI_DOWNLOAD_MSPI_DIS[0], // [] Represents whether SPI0 controller during boot\_mode\_download is disabled.0: Enabled1: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_TWAI[] = {
&DIS_TWAI[0], // [] Represents whether TWAI$^®$ function is disabled.1: Disabled0: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_JTAG_SEL_ENABLE[] = {
&JTAG_SEL_ENABLE[0], // [] Represents whether the selection of a JTAG signal source through the strapping pin value is enabled when all of \hyperref[fielddesc:EFUSEDISPADJTAG]{EFUSE\_DIS\_PAD\_JTAG}; \hyperref[fielddesc:EFUSEDISUSBJTAG]{EFUSE\_DIS\_USB\_JTAG} and \hyperref[fielddesc:EFUSEDISUSBSERIALJTAG]{EFUSE\_DIS\_USB\_SERIAL\_JTAG} are configured to 0. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.1: Enabled0: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SOFT_DIS_JTAG[] = {
&SOFT_DIS_JTAG[0], // [] Represents whether PAD JTAG is disabled in the soft way. It can be restarted via HMAC. Odd count of bits with a value of 1: DisabledEven count of bits with a value of 1: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_PAD_JTAG[] = {
&DIS_PAD_JTAG[0], // [] Represents whether PAD JTAG is disabled in the hard way (permanently).1: Disabled0: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT[] = {
&DIS_DOWNLOAD_MANUAL_ENCRYPT[0], // [] Represents whether flash encryption is disabled (except in SPI boot mode).1: Disabled0: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_USB_EXCHG_PINS[] = {
&USB_EXCHG_PINS[0], // [] Represents whether the D+ and D- pins is exchanged.1: Exchanged0: Not exchanged
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_VDD_SPI_AS_GPIO[] = {
&VDD_SPI_AS_GPIO[0], // [] Represents whether VDD SPI pin is functioned as GPIO.1: Functioned0: Not functioned
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WDT_DELAY_SEL[] = {
&WDT_DELAY_SEL[0], // [] Represents RTC watchdog timeout threshold.0: The originally configured STG0 threshold × 21: The originally configured STG0 threshold × 42: The originally configured STG0 threshold × 83: The originally configured STG0 threshold × 16
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_LO[] = {
&BOOTLOADER_ANTI_ROLLBACK_SECURE_VERSION_LO[0], // [] Represents the anti-rollback secure version of the 2nd stage bootloader used by the ROM bootloader (the low part of the field)
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KM_DISABLE_DEPLOY_MODE[] = {
&KM_DISABLE_DEPLOY_MODE[0], // [] Represents whether the new key deployment of key manager is disabled. Bit0: Represents whether the new ECDSA key deployment is disabled0: Enabled1: DisabledBit1: Represents whether the new XTS-AES (flash and PSRAM) key deployment is disabled0: Enabled1: DisabledBit2: Represents whether the new HMAC key deployment is disabled0: Enabled1: DisabledBit3: Represents whether the new DS key deployment is disabled0: Enabled1: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KM_RND_SWITCH_CYCLE[] = {
&KM_RND_SWITCH_CYCLE[0], // [] Represents the cycle at which the Key Manager switches random numbers.0: Controlled by the \hyperref[fielddesc:KEYMNGRNDSWITCHCYCLE]{KEYMNG\_RND\_SWITCH\_CYCLE} register. For more information; please refer to Chapter \ref{mod:keymng} \textit{\nameref{mod:keymng}}1: 8 Key Manager clock cycles2: 16 Key Manager clock cycles3: 32 Key Manager clock cycles
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KM_DEPLOY_ONLY_ONCE[] = {
&KM_DEPLOY_ONLY_ONCE[0], // [] Represents whether the corresponding key can be deployed only once.Bit0: Represents whether the ECDSA key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit1: Represents whether the XTS-AES (flash and PSRAM) key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit2: Represents whether the HMAC key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only onceBit3: Represents whether the DS key can be deployed only once0: The key can be deployed multiple times1: The key can be deployed only once
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_FORCE_USE_KEY_MANAGER_KEY[] = {
&FORCE_USE_KEY_MANAGER_KEY[0], // [] Represents whether the corresponding key must come from Key Manager. Bit0: Represents whether the ECDSA key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit1: Represents whether the XTS-AES (flash and PSRAM) key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit2: Represents whether the HMAC key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key ManagerBit3: Represents whether the DS key must come from Key Manager.0: The key does not need to come from Key Manager1: The key must come from Key Manager
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_FORCE_DISABLE_SW_INIT_KEY[] = {
&FORCE_DISABLE_SW_INIT_KEY[0], // [] Represents whether to disable the use of the initialization key written by software and instead force use efuse\_init\_key.0: Enable1: Disable
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_BOOTLOADER_ANTI_ROLLBACK_UPDATE_IN_ROM[] = {
&BOOTLOADER_ANTI_ROLLBACK_UPDATE_IN_ROM[0], // [] Represents whether the ani-rollback SECURE_VERSION will be updated from the ROM bootloader.1: Enable0: Disable
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SPI_BOOT_CRYPT_CNT[] = {
&SPI_BOOT_CRYPT_CNT[0], // [] Enables flash encryption when 1 or 3 bits are set and disables otherwise {0: "Disable"; 1: "Enable"; 3: "Disable"; 7: "Enable"}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_KEY_REVOKE0[] = {
&SECURE_BOOT_KEY_REVOKE0[0], // [] Revoke 1st secure boot key
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_KEY_REVOKE1[] = {
&SECURE_BOOT_KEY_REVOKE1[0], // [] Revoke 2nd secure boot key
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_KEY_REVOKE2[] = {
&SECURE_BOOT_KEY_REVOKE2[0], // [] Revoke 3rd secure boot key
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_0[] = {
&KEY_PURPOSE_0[0], // [KEY0_PURPOSE] Represents the purpose of Key0. See Table \ref{tab:efuse-key-purpose}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_1[] = {
&KEY_PURPOSE_1[0], // [KEY1_PURPOSE] Represents the purpose of Key1. See Table \ref{tab:efuse-key-purpose}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_2[] = {
&KEY_PURPOSE_2[0], // [KEY2_PURPOSE] Represents the purpose of Key2. See Table \ref{tab:efuse-key-purpose}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_3[] = {
&KEY_PURPOSE_3[0], // [KEY3_PURPOSE] Represents the purpose of Key3. See Table \ref{tab:efuse-key-purpose}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_4[] = {
&KEY_PURPOSE_4[0], // [KEY4_PURPOSE] Represents the purpose of Key4. See Table \ref{tab:efuse-key-purpose}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY_PURPOSE_5[] = {
&KEY_PURPOSE_5[0], // [KEY5_PURPOSE] Represents the purpose of Key5. See Table \ref{tab:efuse-key-purpose}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SEC_DPA_LEVEL[] = {
&SEC_DPA_LEVEL[0], // [] Represents the security level of anti-DPA attack. The level is adjusted by configuring the clock random frequency division mode.0: Security level is SEC\_DPA\_OFF1: Security level is SEC\_DPA\_LOW2: Security level is SEC\_DPA\_MIDDLE3: Security level is SEC\_DPA\_HIGHFor more information; please refer to Chapter \ref{mod:sysreg} \textit{\nameref{mod:sysreg}} > Section \ref{sec:sysreg-anti-dpa-attack-security-control} \textit{\nameref{sec:sysreg-anti-dpa-attack-security-control}}.
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RECOVERY_BOOTLOADER_FLASH_SECTOR_HI[] = {
&RECOVERY_BOOTLOADER_FLASH_SECTOR_HI[0], // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The high part of the field)
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_EN[] = {
&SECURE_BOOT_EN[0], // [] Represents whether Secure Boot is enabled.1: Enabled0: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_AGGRESSIVE_REVOKE[] = {
&SECURE_BOOT_AGGRESSIVE_REVOKE[0], // [] Represents whether aggressive revocation of Secure Boot is enabled.1: Enabled0: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KM_XTS_KEY_LENGTH_256[] = {
&KM_XTS_KEY_LENGTH_256[0], // [] Represents which key flash encryption uses.0: XTS-AES-256 key1: XTS-AES-128 key
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_FLASH_TPUW[] = {
&FLASH_TPUW[0], // [] Represents the flash waiting time after power-up. Measurement unit: ms. When the value is less than 15; the waiting time is the programmed value. Otherwise; the waiting time is a fixed value; i.e. 30 ms
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_DOWNLOAD_MODE[] = {
&DIS_DOWNLOAD_MODE[0], // [] Represents whether Download mode is disable or enable. 1. Disable 0: Enable
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_DIRECT_BOOT[] = {
&DIS_DIRECT_BOOT[0], // [] Represents whether direct boot mode is disabled or enabled. 1. Disable 0: Enable
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT[] = {
&DIS_USB_SERIAL_JTAG_ROM_PRINT[0], // [] Represents whether print from USB-Serial-JTAG is disabled or enabled. 1. Disable 0: Enable
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_LOCK_KM_KEY[] = {
&LOCK_KM_KEY[0], // [] Represents whether the keys in the Key Manager are locked after deployment.0: Not locked1: Locked
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[] = {
&DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE[0], // [] Represents whether the USB-Serial-JTAG download function is disabled or enabled. 1: Disable 0: Enable
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ENABLE_SECURITY_DOWNLOAD[] = {
&ENABLE_SECURITY_DOWNLOAD[0], // [] Represents whether security download is enabled. Only downloading into flash is supported. Reading/writing RAM or registers is not supported (i.e. stub download is not supported).1: Enabled0: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_UART_PRINT_CONTROL[] = {
&UART_PRINT_CONTROL[0], // [] Set the default UARTboot message output mode {0: "Enable"; 1: "Enable when GPIO8 is low at reset"; 2: "Enable when GPIO8 is high at reset"; 3: "Disable"}
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_FORCE_SEND_RESUME[] = {
&FORCE_SEND_RESUME[0], // [] Represents whether ROM code is forced to send a resume command during SPI boot.1: Forced. 0: Not forced.
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_VERSION[] = {
&SECURE_VERSION[0], // [] Represents the app secure version used by ESP-IDF anti-rollback feature
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_DISABLE_FAST_WAKE[] = {
&SECURE_BOOT_DISABLE_FAST_WAKE[0], // [] Represents whether FAST VERIFY ON WAKE is disabled when Secure Boot is enabled.1: Disabled0: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_HYS_EN_PAD[] = {
&HYS_EN_PAD[0], // [] Represents whether the hysteresis function of PAD0 PAD27 is enabled.1: Enabled0: Disabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_XTS_DPA_PSEUDO_LEVEL[] = {
&XTS_DPA_PSEUDO_LEVEL[0], // [] Represents the pseudo round level of XTS-AES anti-DPA attack.0: Disabled1: Low2: Moderate3: High
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_XTS_DPA_CLK_ENABLE[] = {
&XTS_DPA_CLK_ENABLE[0], // [] Represents whether XTS-AES anti-DPA attack clock is enabled.0: Disable1: Enabled
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SECURE_BOOT_SHA384_EN[] = {
&SECURE_BOOT_SHA384_EN[0], // [] Represents if the chip supports Secure Boot using SHA-384
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_HUK_GEN_STATE[] = {
&HUK_GEN_STATE[0], // [] Represents whether the HUK generate mode is valid.Odd count of bits with a value of 1: InvalidEven count of bits with a value of 1: Valid
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_XTAL_48M_SEL[] = {
&XTAL_48M_SEL[0], // [] Represents whether XTAL frequency is 48MHz or not. If not; 40MHz XTAL will be used. If this field contains Odd number bit 1: Enable 48MHz XTAL\ Even number bit 1: Enable 40MHz XTAL
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_XTAL_48M_SEL_MODE[] = {
&XTAL_48M_SEL_MODE[0], // [] Represents what determines the XTAL frequency in \textbf{Joint Download Boot} mode. For more information; please refer to Chapter \ref{mod:bootctrl} \textit{\nameref{mod:bootctrl}}.0: Strapping PAD state1: \hyperref[fielddesc:EFUSEXTAL48MSEL]{EFUSE\_XTAL\_48M\_SEL} in eFuse
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ECC_FORCE_CONST_TIME[] = {
&ECC_FORCE_CONST_TIME[0], // [] Represents whether to force ECC to use constant-time mode for point multiplication calculation. 0: Not force1: Force
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RECOVERY_BOOTLOADER_FLASH_SECTOR_LO[] = {
&RECOVERY_BOOTLOADER_FLASH_SECTOR_LO[0], // [] Represents the starting flash sector (flash sector size is 0x1000) of the recovery bootloader used by the ROM bootloader If the primary bootloader fails. 0 and 0xFFF - this feature is disabled. (The low part of the field)
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_MAC[] = {
&MAC[0], // [MAC_FACTORY] MAC address
&MAC[1], // [MAC_FACTORY] MAC address
&MAC[2], // [MAC_FACTORY] MAC address
&MAC[3], // [MAC_FACTORY] MAC address
&MAC[4], // [MAC_FACTORY] MAC address
&MAC[5], // [MAC_FACTORY] MAC address
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_MAC_EXT[] = {
&MAC_EXT[0], // [] Represents the extended bits of MAC address
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WAFER_VERSION_MINOR[] = {
&WAFER_VERSION_MINOR[0], // [] Minor chip version
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_WAFER_VERSION_MAJOR[] = {
&WAFER_VERSION_MAJOR[0], // [] Minor chip version
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DISABLE_WAFER_VERSION_MAJOR[] = {
&DISABLE_WAFER_VERSION_MAJOR[0], // [] Disables check of wafer version major
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DISABLE_BLK_VERSION_MAJOR[] = {
&DISABLE_BLK_VERSION_MAJOR[0], // [] Disables check of blk version major
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_BLK_VERSION_MINOR[] = {
&BLK_VERSION_MINOR[0], // [] BLK_VERSION_MINOR of BLOCK2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_BLK_VERSION_MAJOR[] = {
&BLK_VERSION_MAJOR[0], // [] BLK_VERSION_MAJOR of BLOCK2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_FLASH_CAP[] = {
&FLASH_CAP[0], // [] Flash capacity
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_FLASH_VENDOR[] = {
&FLASH_VENDOR[0], // [] Flash vendor
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_PSRAM_CAP[] = {
&PSRAM_CAP[0], // [] Psram capacity
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_PSRAM_VENDOR[] = {
&PSRAM_VENDOR[0], // [] Psram vendor
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_TEMP[] = {
&TEMP[0], // [] Temp (die embedded inside)
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_PKG_VERSION[] = {
&PKG_VERSION[0], // [] Package version
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_PA_TRIM_VERSION[] = {
&PA_TRIM_VERSION[0], // [] PADC CAL PA trim version
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_TRIM_N_BIAS[] = {
&TRIM_N_BIAS[0], // [] PADC CAL N bias
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_TRIM_P_BIAS[] = {
&TRIM_P_BIAS[0], // [] PADC CAL P bias
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ACTIVE_HP_DBIAS[] = {
&ACTIVE_HP_DBIAS[0], // [] Active HP DBIAS of fixed voltage
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ACTIVE_LP_DBIAS[] = {
&ACTIVE_LP_DBIAS[0], // [] Active LP DBIAS of fixed voltage
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_LSLP_HP_DBG[] = {
&LSLP_HP_DBG[0], // [] LSLP HP DBG of fixed voltage
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_LSLP_HP_DBIAS[] = {
&LSLP_HP_DBIAS[0], // [] LSLP HP DBIAS of fixed voltage
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DSLP_LP_DBG[] = {
&DSLP_LP_DBG[0], // [] DSLP LP DBG of fixed voltage
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_DSLP_LP_DBIAS[] = {
&DSLP_LP_DBIAS[0], // [] DSLP LP DBIAS of fixed voltage
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_LP_HP_DBIAS_VOL_GAP[] = {
&LP_HP_DBIAS_VOL_GAP[0], // [] DBIAS gap between LP and HP
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_REF_CURR_CODE[] = {
&REF_CURR_CODE[0], // [] REF PADC Calibration Curr
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_RES_TUNE_CODE[] = {
&RES_TUNE_CODE[0], // [] RES PADC Calibration Tune
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_OPTIONAL_UNIQUE_ID[] = {
&OPTIONAL_UNIQUE_ID[0], // [] Optional unique 128-bit ID
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_TEMPERATURE_SENSOR[] = {
&TEMPERATURE_SENSOR[0], // [] Temperature calibration data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_OCODE[] = {
&OCODE[0], // [] ADC OCode
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN0[] = {
&ADC1_AVE_INITCODE_ATTEN0[0], // [] Average initcode of ADC1 atten0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN1[] = {
&ADC1_AVE_INITCODE_ATTEN1[0], // [] Average initcode of ADC1 atten0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN2[] = {
&ADC1_AVE_INITCODE_ATTEN2[0], // [] Average initcode of ADC1 atten0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_AVE_INITCODE_ATTEN3[] = {
&ADC1_AVE_INITCODE_ATTEN3[0], // [] Average initcode of ADC1 atten0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN0[] = {
&ADC1_HI_DOUT_ATTEN0[0], // [] HI DOUT of ADC1 atten0
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN1[] = {
&ADC1_HI_DOUT_ATTEN1[0], // [] HI DOUT of ADC1 atten1
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN2[] = {
&ADC1_HI_DOUT_ATTEN2[0], // [] HI DOUT of ADC1 atten2
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_HI_DOUT_ATTEN3[] = {
&ADC1_HI_DOUT_ATTEN3[0], // [] HI DOUT of ADC1 atten3
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH0_ATTEN0_INITCODE_DIFF[] = {
&ADC1_CH0_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH0 and average initcode
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH1_ATTEN0_INITCODE_DIFF[] = {
&ADC1_CH1_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH1 and average initcode
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH2_ATTEN0_INITCODE_DIFF[] = {
&ADC1_CH2_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH2 and average initcode
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH3_ATTEN0_INITCODE_DIFF[] = {
&ADC1_CH3_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH3 and average initcode
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH4_ATTEN0_INITCODE_DIFF[] = {
&ADC1_CH4_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH4 and average initcode
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CH5_ATTEN0_INITCODE_DIFF[] = {
&ADC1_CH5_ATTEN0_INITCODE_DIFF[0], // [] Gap between ADC1 CH5 and average initcode
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_USER_DATA[] = {
&USER_DATA[0], // [BLOCK_USR_DATA] User data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_USER_DATA_MAC_CUSTOM[] = {
&USER_DATA_MAC_CUSTOM[0], // [MAC_CUSTOM CUSTOM_MAC] Custom MAC
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY0[] = {
&KEY0[0], // [BLOCK_KEY0] Key0 or user data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY1[] = {
&KEY1[0], // [BLOCK_KEY1] Key1 or user data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY2[] = {
&KEY2[0], // [BLOCK_KEY2] Key2 or user data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY3[] = {
&KEY3[0], // [BLOCK_KEY3] Key3 or user data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY4[] = {
&KEY4[0], // [BLOCK_KEY4] Key4 or user data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_KEY5[] = {
&KEY5[0], // [BLOCK_KEY5] Key5 or user data
NULL
};
const esp_efuse_desc_t* ESP_EFUSE_SYS_DATA_PART2[] = {
&SYS_DATA_PART2[0], // [BLOCK_SYS_DATA2] System data part 2 (reserved)
NULL
};