mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-25 11:23:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			280 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \brief  Multi-precision integer library, ESP-IDF hardware accelerated parts
 | |
|  *
 | |
|  *  based on mbedTLS implementation
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "soc/hwcrypto_periph.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include <mbedtls/bignum.h>
 | |
| #include "bignum_impl.h"
 | |
| #include <sys/param.h>
 | |
| #include <sys/lock.h>
 | |
| 
 | |
| static _lock_t mpi_lock;
 | |
| 
 | |
| /* Round up number of words to nearest
 | |
|    512 bit (16 word) block count.
 | |
| */
 | |
| size_t esp_mpi_hardware_words(size_t words)
 | |
| {
 | |
|     return (words + 0xF) & ~0xF;
 | |
| }
 | |
| 
 | |
| void esp_mpi_enable_hardware_hw_op( void )
 | |
| {
 | |
|     /* newlib locks lazy initialize on ESP-IDF */
 | |
|     _lock_acquire(&mpi_lock);
 | |
| 
 | |
|     /* Enable RSA hardware */
 | |
|     periph_module_enable(PERIPH_RSA_MODULE);
 | |
|     DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
 | |
| 
 | |
|     while (DPORT_REG_READ(RSA_CLEAN_REG) != 1)
 | |
|     { }
 | |
|     // Note: from enabling RSA clock to here takes about 1.3us
 | |
| }
 | |
| 
 | |
| void esp_mpi_disable_hardware_hw_op( void )
 | |
| {
 | |
|     DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
 | |
| 
 | |
|     /* Disable RSA hardware */
 | |
|     periph_module_disable(PERIPH_RSA_MODULE);
 | |
| 
 | |
|     _lock_release(&mpi_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
 | |
| 
 | |
|    If hw_words is higher than the number of words in the bignum then
 | |
|    these additional words will be zeroed in the memory buffer.
 | |
| 
 | |
| */
 | |
| static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words)
 | |
| {
 | |
|     uint32_t *pbase = (uint32_t *)mem_base;
 | |
|     uint32_t copy_words = MIN(hw_words, mpi->n);
 | |
| 
 | |
|     /* Copy MPI data to memory block registers */
 | |
|     for (uint32_t i = 0; i < copy_words; i++) {
 | |
|         pbase[i] = mpi->p[i];
 | |
|     }
 | |
| 
 | |
|     /* Zero any remaining memory block data */
 | |
|     for (uint32_t i = copy_words; i < hw_words; i++) {
 | |
|         pbase[i] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Read mbedTLS MPI bignum back from hardware memory block.
 | |
| 
 | |
|    Reads num_words words from block.
 | |
| 
 | |
|    Bignum 'x' should already be grown to at least num_words by caller (can be done while
 | |
|    calculation is in progress, to save some cycles)
 | |
| */
 | |
| static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, size_t num_words)
 | |
| {
 | |
|     assert(x->n >= num_words);
 | |
| 
 | |
|     /* Copy data from memory block registers */
 | |
|     esp_dport_access_read_buffer(x->p, mem_base, num_words);
 | |
| 
 | |
|     /* Zero any remaining limbs in the bignum, if the buffer is bigger
 | |
|        than num_words */
 | |
|     for (size_t i = num_words; i < x->n; i++) {
 | |
|         x->p[i] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Begin an RSA operation. op_reg specifies which 'START' register
 | |
|    to write to.
 | |
| */
 | |
| static inline void start_op(uint32_t op_reg)
 | |
| {
 | |
|     /* Clear interrupt status */
 | |
|     DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
 | |
| 
 | |
|     /* Note: above REG_WRITE includes a memw, so we know any writes
 | |
|        to the memory blocks are also complete. */
 | |
| 
 | |
|     DPORT_REG_WRITE(op_reg, 1);
 | |
| }
 | |
| 
 | |
| /* Wait for an RSA operation to complete.
 | |
| */
 | |
| static inline void wait_op_complete(void)
 | |
| {
 | |
|     while (DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
 | |
|     { }
 | |
| 
 | |
|     /* clear the interrupt */
 | |
|     DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
 | |
| }
 | |
| 
 | |
| /* Read result from last MPI operation */
 | |
| void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
 | |
| {
 | |
|     wait_op_complete();
 | |
|     mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
 | |
| }
 | |
| 
 | |
| /* Z = (X * Y) mod M */
 | |
| void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words)
 | |
| {
 | |
|     /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
 | |
|     mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
 | |
|     mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | |
|     mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, hw_words);
 | |
|     DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
 | |
| 
 | |
|     /* "mode" register loaded with number of 512-bit blocks, minus 1 */
 | |
|     DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
 | |
| 
 | |
|     /* Execute first stage montgomery multiplication */
 | |
|     start_op(RSA_MULT_START_REG);
 | |
| 
 | |
|     wait_op_complete();
 | |
| 
 | |
|     /* execute second stage */
 | |
|     /* Load Y to X input memory block, rerun */
 | |
|     mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
 | |
| 
 | |
|     start_op(RSA_MULT_START_REG);
 | |
| }
 | |
| 
 | |
| /* Z = X * Y */
 | |
| void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words)
 | |
| {
 | |
|     /* Copy X (right-extended) & Y (left-extended) to memory block */
 | |
|     mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | |
|     mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words);
 | |
|     /* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
 | |
|        This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
 | |
|     */
 | |
| 
 | |
|     DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
 | |
| 
 | |
|     /* "mode" register loaded with number of 512-bit blocks in result,
 | |
|        plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
 | |
|     */
 | |
|     DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7);
 | |
| 
 | |
|     start_op(RSA_MULT_START_REG);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
 | |
|                    mbedtls_mpi_uint Mprime,
 | |
|                    size_t hw_words,
 | |
|                    bool again)
 | |
| {
 | |
|     // Note Z may be the same pointer as X or Y
 | |
|     int ret = 0;
 | |
| 
 | |
|     // montgomery mult prepare
 | |
|     if (again == false) {
 | |
|         mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
 | |
|         DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
 | |
|         DPORT_REG_WRITE(RSA_MULT_MODE_REG, hw_words / 16 - 1);
 | |
|     }
 | |
| 
 | |
|     mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | |
|     mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words);
 | |
| 
 | |
|     start_op(RSA_MULT_START_REG);
 | |
|     Z->s = 1; // The sign of Z will be = M->s (but M->s is always 1)
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
 | |
| 
 | |
|     wait_op_complete();
 | |
| 
 | |
|     /* Read back the result */
 | |
|     mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words);
 | |
| 
 | |
| 
 | |
|     /* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
 | |
|     if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
 | |
|     }
 | |
| cleanup:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
 | |
|    multiplication to calculate an mbedtls_mpi_mult_mpi result where either
 | |
|    A or B are >2048 bits so can't use the standard multiplication method.
 | |
| 
 | |
|    Result (z_words, based on A bits + B bits) must still be less than 4096 bits.
 | |
| 
 | |
|    This case is simpler than the general case modulo multiply of
 | |
|    esp_mpi_mul_mpi_mod() because we can control the other arguments:
 | |
| 
 | |
|    * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
 | |
|    isn't actually modulo anything.
 | |
|    * Mprime and Rinv are therefore predictable as follows:
 | |
|    Mprime = 1
 | |
|    Rinv = 1
 | |
| 
 | |
|    (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | |
| */
 | |
| void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
 | |
| {
 | |
|     size_t hw_words = num_words;
 | |
| 
 | |
|     /* M = 2^num_words - 1, so block is entirely FF */
 | |
|     for (size_t i = 0; i < hw_words; i++) {
 | |
|         DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
 | |
|     }
 | |
|     /* Mprime = 1 */
 | |
|     DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
 | |
| 
 | |
|     /* "mode" register loaded with number of 512-bit blocks, minus 1 */
 | |
|     DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
 | |
| 
 | |
|     /* Load X */
 | |
|     mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | |
| 
 | |
|     /* Rinv = 1, write first word */
 | |
|     DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
 | |
| 
 | |
|     /* Zero out rest of the Rinv words */
 | |
|     for (size_t i = 1; i < hw_words; i++) {
 | |
|         DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
 | |
|     }
 | |
| 
 | |
|     start_op(RSA_MULT_START_REG);
 | |
| 
 | |
|     wait_op_complete();
 | |
| 
 | |
|     /* finish the modular multiplication */
 | |
|     /* Load Y to X input memory block, rerun */
 | |
|     mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
 | |
| 
 | |
|     start_op(RSA_MULT_START_REG);
 | |
| 
 | |
| }
 | 
