Files
esp-idf/components/spi_flash/spi_flash_lowlevel_api.c
2019-06-18 06:32:52 +00:00

553 lines
17 KiB
C

// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <stdio.h>
#include <sys/param.h>
#include <string.h>
#include "spi_flash_lowlevel_driver.h"
#include "spi_flash_lowlevel_generic.h"
#include "soc/spi_reg.h"
#define MAX_WRITE_CHUNK 8192 /* write in chunks */
/* Static function to notify OS of a new SPI flash operation.
If returns an error result, caller must abort. If returns FLASH_OK, caller must
call spiflash_end() before returning.
*/
static esp_flash_err_t spiflash_start(const esp_flash_chip_t *chip)
{
if (esp_flash_os_functions != NULL
&& esp_flash_os_functions->start != NULL) {
esp_flash_err_t err = esp_flash_os_functions->start(chip);
if (err != FLASH_OK) {
return err;
}
}
return FLASH_OK;
}
/* Static function to notify OS that SPI flash operation is complete.
*/
static esp_flash_err_t spiflash_end(const esp_flash_chip_t *chip, esp_flash_err_t err)
{
if (esp_flash_os_functions != NULL
&& esp_flash_os_functions->end != NULL) {
esp_flash_err_t end_err = esp_flash_os_functions->end(chip);
if (err == FLASH_OK) {
err = end_err; // Only return the 'end' error if we haven't already failed
}
}
return err;
}
/* Return true if regions 'a' and 'b' overlap at all, based on their start offsets and lengths. */
inline static bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len);
/* Top-level API functions, calling into driver functions via chip->drv */
static esp_flash_err_t detect_spi_flash_chip(esp_flash_chip_t *chip);
esp_flash_err_t esp_flash_init(esp_flash_chip_t *chip)
{
if (chip->spi == NULL) {
return FLASH_ERR_INVALID_ARG;
}
// TODO: configure SPI host clock speed, pin configuration
if (chip->drv == NULL) {
// Detect driver
esp_flash_err_t err = detect_spi_flash_chip(chip);
if (err != FLASH_OK) {
return err;
}
}
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
if (chip->size == 0) {
// Detect flash size
err = chip->drv->detect_size(chip, &chip->size);
}
if (err == FLASH_OK) {
// Try to set the flash mode to whatever default mode was chosen
// (this isn't necessary at this point for functionality, but init will fail
// if this mode can't be set on this chip.)
err = chip->drv->set_read_mode(chip);
}
// Done: all fields on 'chip' are initialised
return spiflash_end(chip, err);
}
static esp_flash_err_t detect_spi_flash_chip(esp_flash_chip_t *chip)
{
esp_flash_err_t err;
uint32_t flash_id;
int retries = 10;
do {
err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
// Send generic RDID command twice, check for a matching result and retry in case we just powered on (inner
// function fails if it sees all-ones or all-zeroes.)
err = spi_flash_generic_read_id(chip, &flash_id);
if (err == FLASH_OK) { // check we see the same ID twice, in case of transient power-on errors
uint32_t new_id;
err = spi_flash_generic_read_id(chip, &new_id);
if (err == FLASH_OK && (new_id != flash_id)) {
err = FLASH_ERR_NOT_INITIALISED;
}
}
err = spiflash_end(chip, err);
} while (err != FLASH_OK && retries-- > 0);
// Detect the chip and set the driver structure for it
const esp_flash_driver_t **drivers = esp_flash_registered_flash_drivers;
while (*drivers != NULL && chip->drv == NULL) {
chip->drv = *drivers;
// start/end SPI operation each time, for multitasking
// and also so esp_flash_registered_flash_drivers can live in flash
err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
if (chip->drv->probe(chip, flash_id) != FLASH_OK) {
chip->drv = NULL;
}
// if probe succeeded, chip->drv stays set
drivers++;
err = spiflash_end(chip, err);
if (err != FLASH_OK) {
return err;
}
}
return (chip->drv == NULL) ? FLASH_ERR_NOT_FOUND : FLASH_OK;
}
// Convenience macro for beginning of all API functions,
// check that the 'chip' parameter is properly initialised
// and supports the operation in question
#define VERIFY_OP(OP) do { \
if (chip == NULL) { \
chip = esp_flash_default_chip; \
} \
if (chip == NULL || chip->drv == NULL) { \
return FLASH_ERR_NOT_INITIALISED; \
} \
if (chip->drv->OP == NULL) { \
return FLASH_ERR_UNSUPPORTED_CHIP; \
} \
} while (0)
esp_flash_err_t esp_flash_read_id(const esp_flash_chip_t *chip, uint32_t *id)
{
printf("chip %p esp_flash_default_chip %p\n",
chip, esp_flash_default_chip);
VERIFY_OP(read_id);
if (id == NULL) {
return FLASH_ERR_INVALID_ARG;
}
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->read_id(chip, id);
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_detect_size(const esp_flash_chip_t *chip, uint32_t *size)
{
VERIFY_OP(detect_size);
if (size == NULL) {
return FLASH_ERR_INVALID_ARG;
}
*size = 0;
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->detect_size(chip, size);
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_erase_chip(const esp_flash_chip_t *chip)
{
VERIFY_OP(erase_chip);
bool write_protect = false;
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = esp_flash_get_chip_write_protect(chip, &write_protect);
if (err == FLASH_OK && write_protect) {
err = FLASH_ERR_PROTECTED;
}
if (err == FLASH_OK) {
err = chip->drv->erase_chip(chip);
}
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_erase_region(const esp_flash_chip_t *chip, uint32_t start, uint32_t len)
{
VERIFY_OP(erase_sector);
uint32_t block_erase_size = chip->drv->erase_block == NULL ? 0 : chip->drv->block_erase_size;
uint32_t sector_size = chip->drv->sector_size;
bool write_protect = false;
if (sector_size == 0 || (block_erase_size % sector_size) != 0) {
return FLASH_ERR_NOT_INITIALISED;
}
if (start > chip->size || start + len > chip->size) {
return FLASH_ERR_INVALID_ARG;
}
if ((start % chip->drv->sector_size) != 0 || (len % chip->drv->sector_size) != 0) {
// Can only erase multiples of the sector size, starting at sector boundary
return FLASH_ERR_INVALID_ARG;
}
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
// Check for write protection on whole chip
if (chip->drv->get_chip_write_protect != NULL) {
err = chip->drv->get_chip_write_protect(chip, &write_protect);
if (err == FLASH_OK && write_protect) {
err = FLASH_ERR_PROTECTED;
}
}
// Check for write protected regions overlapping the erase region
if (err == FLASH_OK && chip->drv->get_protected_regions != NULL && chip->drv->num_protectable_regions > 0) {
uint64_t protected = 0;
err = chip->drv->get_protected_regions(chip, &protected);
if (protected != 0) {
for (int i = 0; i < chip->drv->num_protectable_regions && err == FLASH_OK; i++) {
const esp_flash_region_t *region = &chip->drv->protectable_regions[i];
if ((protected & (1LL << i))
&& regions_overlap(start, len, region->offset, region->size)) {
err = FLASH_ERR_PROTECTED;
}
}
}
}
// Don't lock the SPI flash for the entire erase, as this may be very long
err = spiflash_end(chip, err);
while (err == FLASH_OK && len >= sector_size) {
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
// If possible erase an entire multi-sector block
if (block_erase_size > 0 && len >= block_erase_size && (start % block_erase_size) == 0) {
err = chip->drv->erase_block(chip, start);
start += block_erase_size;
len -= block_erase_size;
}
else {
// Otherwise erase individual sector only
err = chip->drv->erase_sector(chip, start);
start += sector_size;
len -= sector_size;
}
err = spiflash_end(chip, err);
}
return err;
}
esp_flash_err_t esp_flash_get_chip_write_protect(const esp_flash_chip_t *chip, bool *write_protected)
{
VERIFY_OP(get_chip_write_protect);
if (write_protected == NULL) {
return FLASH_ERR_INVALID_ARG;
}
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->get_chip_write_protect(chip, write_protected);
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_set_chip_write_protect(const esp_flash_chip_t *chip, bool write_protect_chip)
{
VERIFY_OP(set_chip_write_protect);
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->set_chip_write_protect(chip, write_protect_chip);
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_get_protectable_regions(const esp_flash_chip_t *chip, const esp_flash_region_t **regions, uint32_t *num_regions)
{
if(num_regions != NULL) {
*num_regions = 0; // In case caller doesn't check result
}
VERIFY_OP(get_protected_regions);
if(regions == NULL || num_regions == NULL) {
return FLASH_ERR_INVALID_ARG;
}
*num_regions = chip->drv->num_protectable_regions;
*regions = chip->drv->protectable_regions;
return FLASH_OK;
}
static esp_flash_err_t find_region(const esp_flash_chip_t *chip, const esp_flash_region_t *region, uint8_t *index)
{
if (region == NULL) {
return FLASH_ERR_INVALID_ARG;
}
for(*index = 0; *index < chip->drv->num_protectable_regions; (*index)++) {
if (memcmp(&chip->drv->protectable_regions[*index],
region, sizeof(esp_flash_region_t)) == 0) {
return FLASH_OK;
}
}
return FLASH_ERR_NOT_FOUND;
}
esp_flash_err_t esp_flash_get_protected_region(const esp_flash_chip_t *chip, const esp_flash_region_t *region, bool *protected)
{
VERIFY_OP(get_protected_regions);
if (protected == NULL) {
return FLASH_ERR_INVALID_ARG;
}
uint8_t index;
esp_flash_err_t err = find_region(chip, region, &index);
if (err != FLASH_OK) {
return err;
}
uint64_t protection_mask = 0;
err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->get_protected_regions(chip, &protection_mask);
if (err == FLASH_OK) {
*protected = protection_mask & (1LL << index);
}
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_set_protected_region(const esp_flash_chip_t *chip, const esp_flash_region_t *region, bool protected)
{
VERIFY_OP(set_protected_regions);
uint8_t index;
esp_flash_err_t err = find_region(chip, region, &index);
if (err != FLASH_OK) {
return err;
}
uint64_t protection_mask = 0;
err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->get_protected_regions(chip, &protection_mask);
if (err == FLASH_OK) {
if (protected) {
protection_mask |= (1LL << index);
} else {
protection_mask &= ~(1LL << index);
}
err = chip->drv->set_protected_regions(chip, protection_mask);
}
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_read(const esp_flash_chip_t *chip, void *buffer, uint32_t address, uint32_t length)
{
VERIFY_OP(read);
if (buffer == NULL || address > chip->size || address+length > chip->size) {
return FLASH_ERR_INVALID_ARG;
}
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
if (err == FLASH_OK) {
err = chip->drv->set_read_mode(chip);
}
if (err == FLASH_OK) {
err = chip->drv->read(chip, buffer, address, length);
}
return spiflash_end(chip, err);
}
esp_flash_err_t esp_flash_write(const esp_flash_chip_t *chip, uint32_t address, const void *buffer, uint32_t length)
{
VERIFY_OP(write);
if (buffer == NULL || address > chip->size || address+length > chip->size) {
return FLASH_ERR_INVALID_ARG;
}
/* If 'chip' is connected to the main SPI bus, we can only write directly from regions that are accessible
with cache disabled. */
#ifdef ESP_PLATFORM
bool direct_write = ( chip->spi != &SPI1
|| ( (uintptr_t) address >= 0x3FFAE000
&& (uintptr_t) address < 0x40000000 ) );
#else
bool direct_write = true;
#endif
esp_flash_err_t err = FLASH_OK;
/* Write output in chunks, either by buffering on stack or
by artificially cutting into MAX_WRITE_CHUNK parts (in an OS
environment, this prevents writing from causing interrupt or higher priority task
starvation.) */
while(err == FLASH_OK && length > 0) {
uint32_t write_len;
const void *write_buf;
if (direct_write) {
write_len = MIN(length, MAX_WRITE_CHUNK);
write_buf = buffer;
} else {
uint32_t buf[8];
write_len = MIN(length, sizeof(buf));
memcpy(buf, buffer, write_len);
write_buf = buf;
}
err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->write(chip, address, write_buf, write_len);
address += write_len;
buffer = (void *)((intptr_t)buffer + write_len);
length -= write_len;
err = spiflash_end(chip, err);
}
return err;
}
esp_flash_err_t esp_flash_write_encrypted(const esp_flash_chip_t *chip, uint32_t address, const void *buffer, uint32_t length)
{
VERIFY_OP(write_encrypted);
if (chip->spi != 0) {
// Encrypted operations have to use SPI0
return FLASH_ERR_UNSUPPORTED_HOST;
}
if (buffer == NULL || address > chip->size || address+length > chip->size) {
return FLASH_ERR_INVALID_ARG;
}
esp_flash_err_t err = spiflash_start(chip);
if (err != FLASH_OK) {
return err;
}
err = chip->drv->write_encrypted(chip, address, buffer, length);
return spiflash_end(chip, err);
}
inline static bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len)
{
uint32_t a_end = a_start + a_len;
uint32_t b_end = b_start + b_len;
return ((a_start >= b_start && a_start <= b_end)
|| (a_end >= b_start && a_end <= b_end)
|| (b_start >= a_start && b_start <= a_end)
|| (b_end >= a_start && b_end <= a_end));
}
const esp_flash_chip_t *esp_flash_default_chip;
static esp_flash_chip_t default_chip;
esp_flash_err_t esp_flash_init_default_chip()
{
default_chip.spi = &SPI1;
default_chip.read_mode = ESP_FLASH_FASTRD; // TODO: initialise properly
default_chip.speed = ESP_FLASH_20MHZ; // TODO: initialise properly
// ROM TODO: account for non-standard default pins in efuse
// ROM TODO: to account for chips which are slow to power on, maybe keep probing in a loop here
esp_flash_err_t err = esp_flash_init(&default_chip);
if (err != FLASH_OK) {
return err;
}
esp_flash_default_chip = &default_chip;
return FLASH_OK;
}
const esp_flash_os_functions_t *esp_flash_os_functions = &esp_flash_noos_functions;