mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 13:09:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			596 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			596 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  Tests for the spi slave hd mode
 | |
| */
 | |
| 
 | |
| #include "esp_log.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/task.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "unity.h"
 | |
| 
 | |
| #include "soc/spi_periph.h"
 | |
| #include "driver/spi_master.h"
 | |
| #include "esp_serial_slave_link/essl_spi.h"
 | |
| 
 | |
| #if !DISABLED_FOR_TARGETS(ESP32C3)
 | |
| //There is only one GPSPI controller on ESP32C3, so single-board test is disabled.
 | |
| 
 | |
| #if SOC_SPI_SUPPORT_SLAVE_HD_VER2
 | |
| #include "driver/spi_slave_hd.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "unity.h"
 | |
| #include "test/test_common_spi.h"
 | |
| 
 | |
| #define TEST_DMA_MAX_SIZE    4092
 | |
| #define TEST_BUFFER_SIZE 256     ///< buffer size of each wrdma buffer in fifo mode
 | |
| #define TEST_SEG_SIZE   25
 | |
| 
 | |
| //ESP32-S2 cannot do single board test over IOMUX+GPIO matrix
 | |
| #define TEST_MASTER_GPIO_MATRIX     1
 | |
| 
 | |
| #define SPI_SLOT_TEST_DEFAULT_CONFIG() {\
 | |
|     .spics_io_num = PIN_NUM_CS, \
 | |
|     .flags = 0, \
 | |
|     .mode = 0, \
 | |
|     .command_bits = 8,\
 | |
|     .address_bits = 8,\
 | |
|     .dummy_bits = 8,\
 | |
|     .queue_size = 10,\
 | |
| }
 | |
| 
 | |
| //context definition for the tcf framework
 | |
| typedef struct {
 | |
|     WORD_ALIGNED_ATTR uint8_t master_wrdma_buf[TEST_DMA_MAX_SIZE];
 | |
|     WORD_ALIGNED_ATTR uint8_t master_rddma_buf[TEST_DMA_MAX_SIZE];
 | |
|     WORD_ALIGNED_ATTR uint8_t slave_wrdma_buf[TEST_DMA_MAX_SIZE];
 | |
|     WORD_ALIGNED_ATTR uint8_t slave_rddma_buf[TEST_DMA_MAX_SIZE];
 | |
|     SemaphoreHandle_t ev_rdbuf;
 | |
|     SemaphoreHandle_t ev_wrbuf;
 | |
| 
 | |
|     spi_slave_hd_data_t tx_data;
 | |
|     spi_slave_hd_data_t rx_data;
 | |
| } testhd_context_t;
 | |
| 
 | |
| 
 | |
| static uint32_t get_hd_flags(void)
 | |
| {
 | |
| #if !defined(SLAVE_SUPPORT_QIO)
 | |
|     return 0;
 | |
| #endif
 | |
|     int flag_id = rand() % 5;
 | |
|     ESP_LOGI("io mode", "%d", flag_id);
 | |
| 
 | |
|     switch (flag_id) {
 | |
|         case 1:
 | |
|             return SPI_TRANS_MODE_DIO;
 | |
|         case 2:
 | |
|             return SPI_TRANS_MODE_DIO | SPI_TRANS_MODE_DIOQIO_ADDR;
 | |
|         case 3:
 | |
|             return SPI_TRANS_MODE_QIO;
 | |
|         case 4:
 | |
|             return SPI_TRANS_MODE_QIO | SPI_TRANS_MODE_DIOQIO_ADDR;
 | |
|         default:
 | |
|             return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void config_single_board_test_pin(void)
 | |
| {
 | |
|     esp_rom_gpio_connect_out_signal(PIN_NUM_MOSI, spi_periph_signal[TEST_SPI_HOST].spid_out, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PIN_NUM_MOSI, spi_periph_signal[TEST_SLAVE_HOST].spid_in, 0);
 | |
| 
 | |
|     esp_rom_gpio_connect_out_signal(PIN_NUM_MISO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PIN_NUM_MISO, spi_periph_signal[TEST_SPI_HOST].spiq_in, 0);
 | |
| 
 | |
|     esp_rom_gpio_connect_out_signal(PIN_NUM_CS, spi_periph_signal[TEST_SPI_HOST].spics_out[0], 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PIN_NUM_CS, spi_periph_signal[TEST_SLAVE_HOST].spics_in, 0);
 | |
| 
 | |
|     esp_rom_gpio_connect_out_signal(PIN_NUM_CLK, spi_periph_signal[TEST_SPI_HOST].spiclk_out, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PIN_NUM_CLK, spi_periph_signal[TEST_SLAVE_HOST].spiclk_in, 0);
 | |
| }
 | |
| 
 | |
| static void init_master_hd(spi_device_handle_t* spi, const spitest_param_set_t* config, int freq)
 | |
| {
 | |
|     spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
 | |
|     bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
 | |
|     bus_cfg.quadhd_io_num = PIN_NUM_HD;
 | |
|     bus_cfg.quadwp_io_num = PIN_NUM_WP;
 | |
| #if defined(TEST_MASTER_GPIO_MATRIX) && CONFIG_IDF_TARGET_ESP32S2
 | |
|     bus_cfg.flags |= SPICOMMON_BUSFLAG_GPIO_PINS;
 | |
| #endif
 | |
| 
 | |
|     TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
 | |
|     spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
 | |
|     dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
 | |
|     dev_cfg.command_bits = 8;
 | |
|     dev_cfg.address_bits = 8;
 | |
|     dev_cfg.dummy_bits = 8;
 | |
|     dev_cfg.clock_speed_hz = freq;
 | |
|     dev_cfg.mode = config->mode;
 | |
|     dev_cfg.input_delay_ns = config->slave_tv_ns;
 | |
|     TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, spi));
 | |
| }
 | |
| 
 | |
| static void init_slave_hd(int mode, bool append_mode, const spi_slave_hd_callback_config_t* callback)
 | |
| {
 | |
|     spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
 | |
|     bus_cfg.max_transfer_sz = TEST_DMA_MAX_SIZE*30;
 | |
|     bus_cfg.quadwp_io_num = -1;
 | |
|     bus_cfg.quadhd_io_num = -1;
 | |
| #ifdef TEST_SLAVE_GPIO_MATRIX
 | |
|     bus_cfg.flags |= SPICOMMON_BUSFLAG_FORCE_GPIO;
 | |
| #endif
 | |
|     spi_slave_hd_slot_config_t slave_hd_cfg = SPI_SLOT_TEST_DEFAULT_CONFIG();
 | |
|     slave_hd_cfg.mode = mode;
 | |
|     slave_hd_cfg.dma_chan = SPI_DMA_CH_AUTO;
 | |
|     if (append_mode) {
 | |
|         slave_hd_cfg.flags |= SPI_SLAVE_HD_APPEND_MODE;
 | |
|     }
 | |
|     if (callback) {
 | |
|         slave_hd_cfg.cb_config = *callback;
 | |
|     } else {
 | |
|         slave_hd_cfg.cb_config = (spi_slave_hd_callback_config_t){};
 | |
|     }
 | |
|     TEST_ESP_OK(spi_slave_hd_init(TEST_SLAVE_HOST, &bus_cfg, &slave_hd_cfg));
 | |
| }
 | |
| 
 | |
| static void test_hd_init(void** arg)
 | |
| {
 | |
|     TEST_ASSERT(*arg==NULL);
 | |
|     *arg = malloc(sizeof(testhd_context_t));
 | |
|     assert(((int)arg%4)==0);
 | |
|     testhd_context_t* context = (testhd_context_t*)*arg;
 | |
|     TEST_ASSERT(context!=NULL);
 | |
| 
 | |
|     context->ev_rdbuf = xSemaphoreCreateBinary();
 | |
|     context->ev_wrbuf = xSemaphoreCreateBinary();
 | |
| }
 | |
| 
 | |
| static void test_hd_deinit(void* arg)
 | |
| {
 | |
|     testhd_context_t *context = arg;
 | |
|     vSemaphoreDelete(context->ev_rdbuf);
 | |
|     vSemaphoreDelete(context->ev_wrbuf);
 | |
| }
 | |
| 
 | |
| esp_err_t wait_wrbuf_sig(testhd_context_t* context, TickType_t wait)
 | |
| {
 | |
|     BaseType_t r = xSemaphoreTake(context->ev_wrbuf, wait);
 | |
|     if (r==pdTRUE) {
 | |
|         return ESP_OK;
 | |
|     } else {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t wait_rdbuf_sig(testhd_context_t* context, TickType_t wait)
 | |
| {
 | |
|     BaseType_t r = xSemaphoreTake(context->ev_rdbuf, wait);
 | |
|     if (r==pdTRUE) {
 | |
|         return ESP_OK;
 | |
|     } else {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void check_no_rx(testhd_context_t* context)
 | |
| {
 | |
|     spi_slave_hd_data_t* ret_trans;
 | |
|     esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ret_trans, 0);
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_TIMEOUT, ret);
 | |
| }
 | |
| 
 | |
| static void check_no_tx(testhd_context_t* context)
 | |
| {
 | |
|     spi_slave_hd_data_t* ret_trans;
 | |
|     esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ret_trans, 0);
 | |
|     TEST_ASSERT_EQUAL(ESP_ERR_TIMEOUT, ret);
 | |
| }
 | |
| 
 | |
| bool wrbuf_cb(void* arg, spi_slave_hd_event_t* ev, BaseType_t* awoken)
 | |
| {
 | |
|     TEST_ASSERT_EQUAL(SPI_EV_BUF_RX, ev->event);
 | |
|     testhd_context_t* ctx = (testhd_context_t*)arg;
 | |
|     BaseType_t r = xSemaphoreGiveFromISR(ctx->ev_wrbuf, awoken);
 | |
|     TEST_ASSERT_TRUE(r);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool rdbuf_cb(void* arg, spi_slave_hd_event_t* ev, BaseType_t* awoken)
 | |
| {
 | |
|     TEST_ASSERT_EQUAL(SPI_EV_BUF_TX, ev->event);
 | |
|     testhd_context_t* ctx = (testhd_context_t*)arg;
 | |
|     BaseType_t r = xSemaphoreGiveFromISR(ctx->ev_rdbuf, awoken);
 | |
|     TEST_ASSERT_TRUE(r);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void test_hd_start(spi_device_handle_t *spi, int freq, const spitest_param_set_t* cfg, testhd_context_t* ctx)
 | |
| {
 | |
|     init_master_hd(spi, cfg, freq);
 | |
| 
 | |
|     spi_slave_hd_callback_config_t callback = {
 | |
|         .cb_buffer_rx = wrbuf_cb,
 | |
|         .cb_buffer_tx = rdbuf_cb,
 | |
|         .arg = ctx,
 | |
|     };
 | |
|     init_slave_hd(cfg->mode, 0, &callback);
 | |
| 
 | |
|     //when test with single board via same set of mosi, miso, clk and cs pins.
 | |
|     config_single_board_test_pin();
 | |
| 
 | |
|     wait_wrbuf_sig(ctx, 0);
 | |
|     wait_rdbuf_sig(ctx, 0);
 | |
|     check_no_rx(ctx);
 | |
|     check_no_tx(ctx);
 | |
| 
 | |
| 
 | |
|     srand(9322);
 | |
|     for (int i = 0; i < TEST_DMA_MAX_SIZE; i++) ctx->slave_rddma_buf[i] = rand();
 | |
|     for (int i = 0; i < TEST_DMA_MAX_SIZE; i++) ctx->master_wrdma_buf[i] = rand();
 | |
| 
 | |
|     int pos  = rand() % TEST_DMA_MAX_SIZE;
 | |
|     int len = rand() % TEST_DMA_MAX_SIZE + 1;
 | |
|     if (pos + len > TEST_DMA_MAX_SIZE) len = TEST_DMA_MAX_SIZE - pos;
 | |
| 
 | |
|     ESP_LOGI("rddma_load_len", "%d", len);
 | |
|     ctx->tx_data = (spi_slave_hd_data_t) {
 | |
|         .data = &ctx->slave_rddma_buf[pos],
 | |
|         .len = len,
 | |
|     };
 | |
|     esp_err_t err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ctx->tx_data, portMAX_DELAY);
 | |
|     TEST_ESP_OK(err);
 | |
| 
 | |
|     ctx->rx_data = (spi_slave_hd_data_t) {
 | |
|         .data = ctx->slave_wrdma_buf,
 | |
|         .len = TEST_DMA_MAX_SIZE,
 | |
|     };
 | |
|     err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ctx->rx_data, portMAX_DELAY);
 | |
|     TEST_ESP_OK(err);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define REG_REGION_SIZE SOC_SPI_MAXIMUM_BUFFER_SIZE
 | |
| 
 | |
| void check_no_signal(testhd_context_t* context)
 | |
| {
 | |
|     vTaskDelay(1);
 | |
|     TEST_ASSERT(wait_wrbuf_sig(context, 0) == ESP_ERR_TIMEOUT);
 | |
|     TEST_ASSERT(wait_rdbuf_sig(context, 0) == ESP_ERR_TIMEOUT);
 | |
|     check_no_rx(context);
 | |
|     check_no_tx(context);
 | |
| }
 | |
| 
 | |
| void test_wrdma(testhd_context_t* ctx, const spitest_param_set_t *cfg, spi_device_handle_t spi)
 | |
| {
 | |
|     int pos = rand() % TEST_DMA_MAX_SIZE;
 | |
|     int len = rand() % TEST_DMA_MAX_SIZE+1;
 | |
|     if (pos+len > TEST_DMA_MAX_SIZE) len = TEST_DMA_MAX_SIZE - pos;
 | |
| 
 | |
|     int test_seg_size = len;//TEST_SEG_SIZE;
 | |
|     ESP_LOGW("test_wrdma", "len: %d, seg_size: %d\n", len, test_seg_size);
 | |
|     TEST_ESP_OK(essl_spi_wrdma(spi, &ctx->master_wrdma_buf[pos], len, test_seg_size, get_hd_flags()));
 | |
| 
 | |
|     spi_slave_hd_data_t* ret_trans;
 | |
|     esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ret_trans, portMAX_DELAY);
 | |
|     TEST_ESP_OK(ret);
 | |
|     TEST_ASSERT_EQUAL(&ctx->rx_data, ret_trans);
 | |
|     TEST_ASSERT_EQUAL(len, ret_trans->trans_len);
 | |
| 
 | |
|     TEST_ASSERT_EQUAL_HEX8_ARRAY(&ctx->master_wrdma_buf[pos], ctx->slave_wrdma_buf, len);
 | |
| 
 | |
|     ctx->rx_data = (spi_slave_hd_data_t) {
 | |
|         .data = ctx->slave_wrdma_buf,
 | |
|         .len = TEST_DMA_MAX_SIZE,
 | |
|     };
 | |
|     esp_err_t err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ctx->rx_data, portMAX_DELAY);
 | |
|     TEST_ESP_OK(err);
 | |
| }
 | |
| 
 | |
| void test_rddma(testhd_context_t* ctx, const spitest_param_set_t* cfg, spi_device_handle_t spi)
 | |
| {
 | |
|     uint8_t* data_expected = ctx->tx_data.data;
 | |
|     int len;
 | |
|     int test_seg_size;
 | |
| 
 | |
| 
 | |
|     len = ctx->tx_data.len;
 | |
|     test_seg_size = TEST_SEG_SIZE;
 | |
| 
 | |
|     ESP_LOGW("test_rddma", "pos: %d, len: %d, slave_tx: %d, seg_size: %d\n", data_expected - ctx->slave_rddma_buf, len, ctx->tx_data.len, test_seg_size);
 | |
| 
 | |
|     TEST_ESP_OK(essl_spi_rddma(spi, ctx->master_rddma_buf, len, test_seg_size, get_hd_flags()));
 | |
| 
 | |
|     spi_slave_hd_data_t* ret_trans;
 | |
|     esp_err_t ret = spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ret_trans, portMAX_DELAY);
 | |
|     TEST_ESP_OK(ret);
 | |
|     TEST_ASSERT_EQUAL(&ctx->tx_data, ret_trans);
 | |
| 
 | |
|     spitest_cmp_or_dump(data_expected, ctx->master_rddma_buf, len);
 | |
| 
 | |
|     int pos = rand() % TEST_DMA_MAX_SIZE;
 | |
|     len = rand() % TEST_DMA_MAX_SIZE+1;
 | |
|     if (pos + len > TEST_DMA_MAX_SIZE) len = TEST_DMA_MAX_SIZE - pos;
 | |
| 
 | |
|     ctx->tx_data = (spi_slave_hd_data_t) {
 | |
|         .data = &ctx->slave_rddma_buf[pos],
 | |
|         .len = len,
 | |
|     };
 | |
|     esp_err_t err = spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ctx->tx_data, portMAX_DELAY);
 | |
|     TEST_ESP_OK(err);
 | |
| }
 | |
| 
 | |
| static void test_hd_loop(const void* arg1, void* arg2)
 | |
| {
 | |
|     const spitest_param_set_t *test_cfg = arg1;
 | |
|     testhd_context_t *context = arg2;
 | |
|     const int *timing_speed_array = test_cfg->freq_list;
 | |
| 
 | |
|     ESP_LOGI(MASTER_TAG, "****************** %s ***************", test_cfg->pset_name);
 | |
|     for (int j = 0; ; j++) {
 | |
|         spi_device_handle_t spi;
 | |
|         const int freq = timing_speed_array[j];
 | |
|         if (freq==0) break;
 | |
|         if (test_cfg->freq_limit && freq > test_cfg->freq_limit) break;
 | |
| 
 | |
|         ESP_LOGI(MASTER_TAG, "======> %dk", freq / 1000);
 | |
| 
 | |
|         test_hd_start(&spi, freq, test_cfg, context);
 | |
| 
 | |
|         uint8_t* mem_ptr;
 | |
|         uint8_t slave_mem[REG_REGION_SIZE];
 | |
|         uint8_t recv_buffer[REG_REGION_SIZE];
 | |
| 
 | |
|         srand(123);
 | |
|         uint32_t mem[(REG_REGION_SIZE/4)];
 | |
|         for (int i = 0; i < (REG_REGION_SIZE/4); i++) {
 | |
|             mem[i] = rand();
 | |
|         }
 | |
|         mem_ptr = (uint8_t*)mem;
 | |
| 
 | |
|         check_no_signal(context);
 | |
| 
 | |
|         spi_slave_hd_write_buffer(TEST_SLAVE_HOST, 0, (uint8_t *) mem, SOC_SPI_MAXIMUM_BUFFER_SIZE);
 | |
| 
 | |
|         srand(123);
 | |
|         for (int i = 0; i < (REG_REGION_SIZE/4); i++) {
 | |
|             TEST_ASSERT(mem[i] == rand());
 | |
|         }
 | |
|         check_no_signal(context);
 | |
|         test_rddma(context, test_cfg, spi);
 | |
| 
 | |
|         for (int i = 0; i < 128; i ++) {
 | |
|             int pos = rand()%REG_REGION_SIZE;
 | |
|             int len = rand()%REG_REGION_SIZE+1;
 | |
|             if (len+pos>REG_REGION_SIZE) len = REG_REGION_SIZE-pos;
 | |
| 
 | |
|             memset(recv_buffer, 0xcc, sizeof(recv_buffer));
 | |
| 
 | |
|             check_no_signal(context);
 | |
|             test_wrdma(context, test_cfg, spi);
 | |
|             check_no_signal(context);
 | |
|             test_rddma(context, test_cfg, spi);
 | |
| 
 | |
|             check_no_signal(context);
 | |
|             TEST_ESP_OK(essl_spi_rdbuf(spi, recv_buffer, pos, len, get_hd_flags()));
 | |
|             wait_rdbuf_sig(context, portMAX_DELAY);
 | |
| 
 | |
|             ESP_LOGI("mem", "pos: %d, len: %d", pos, len);
 | |
|             // ESP_LOG_BUFFER_HEX("recv_buffer", recv_buffer, len);
 | |
|             // ESP_LOG_BUFFER_HEX("mem", &mem_ptr[pos], len);
 | |
|             TEST_ASSERT_EQUAL_HEX8_ARRAY(&mem_ptr[pos], recv_buffer, len);
 | |
|         }
 | |
| 
 | |
|         check_no_signal(context);
 | |
| 
 | |
|         //clear slave buffer
 | |
|         memset(mem, 0xcc, REG_REGION_SIZE);
 | |
|         memcpy(slave_mem, mem, REG_REGION_SIZE);
 | |
| 
 | |
|         TEST_ESP_OK(essl_spi_wrbuf(spi, mem_ptr, 0, REG_REGION_SIZE, get_hd_flags()));
 | |
|         wait_wrbuf_sig(context, portMAX_DELAY);
 | |
| 
 | |
|         TEST_ESP_OK(essl_spi_rdbuf(spi, recv_buffer, 0, REG_REGION_SIZE, get_hd_flags()));
 | |
|         wait_rdbuf_sig(context, portMAX_DELAY);
 | |
| 
 | |
|         TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_mem, recv_buffer, REG_REGION_SIZE);
 | |
| 
 | |
|         srand(466);
 | |
|         for (int i = 0; i < 64; i ++) {
 | |
|             ESP_LOGI("temp_i", "^^^^^^^^^^^^^^^^ %d ^^^^^^^^^^", i);
 | |
|             for (int j = 0; j < (REG_REGION_SIZE/4); j++) {
 | |
|                 mem[j] = rand();
 | |
|             }
 | |
|             for (int k = 0; k < 2; k++) {
 | |
|                 int pos = rand() % REG_REGION_SIZE;
 | |
|                 int len = rand() % REG_REGION_SIZE + 1;
 | |
|                 if (len + pos > REG_REGION_SIZE) len = REG_REGION_SIZE - pos;
 | |
| 
 | |
|                 printf("pos: %d, len: %d\n", pos, len);
 | |
| 
 | |
|                 TEST_ESP_OK(essl_spi_wrbuf(spi, &mem_ptr[pos], pos, len, get_hd_flags()));
 | |
|                 wait_wrbuf_sig(context, portMAX_DELAY);
 | |
|                 memcpy(&slave_mem[pos], &mem_ptr[pos], len);
 | |
|             }
 | |
| 
 | |
|             check_no_signal(context);
 | |
|             test_rddma(context, test_cfg, spi);
 | |
| 
 | |
|             check_no_signal(context);
 | |
|             test_wrdma(context, test_cfg, spi);
 | |
| 
 | |
|             TEST_ESP_OK(essl_spi_rdbuf(spi, recv_buffer, 0, REG_REGION_SIZE, get_hd_flags()));
 | |
| 
 | |
|             wait_rdbuf_sig(context, portMAX_DELAY);
 | |
| 
 | |
|             check_no_signal(context);
 | |
| 
 | |
|             TEST_ASSERT_EQUAL_HEX8_ARRAY(&slave_mem, recv_buffer, REG_REGION_SIZE);
 | |
|         }
 | |
| 
 | |
|         master_free_device_bus(spi);
 | |
|         spi_slave_hd_deinit(TEST_SLAVE_HOST);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const ptest_func_t hd_test_func = {
 | |
|     .pre_test = test_hd_init,
 | |
|     .post_test = test_hd_deinit,
 | |
|     .loop = test_hd_loop,
 | |
|     .def_param = spitest_def_param,
 | |
| };
 | |
| 
 | |
| #define TEST_SPI_HD(name, test_set) \
 | |
|     PARAM_GROUP_DECLARE(name, test_set) \
 | |
|     TEST_SINGLE_BOARD(name, test_set, "[spi][timeout=120]", &hd_test_func)
 | |
| 
 | |
| static int test_freq_hd[] = {
 | |
|     // 100*1000,
 | |
|     // SPI_MASTER_FREQ_10M, //maximum freq MISO stable before next latch edge
 | |
|     // SPI_MASTER_FREQ_20M, //maximum freq MISO stable before next latch edge
 | |
|     SPI_MASTER_FREQ_40M, //maximum freq MISO stable before next latch edge
 | |
|     0,
 | |
| };
 | |
| 
 | |
| #define TEST_HD_IN_CONTINUOUS_MODE  true
 | |
| 
 | |
| static spitest_param_set_t hd_conf[] = {
 | |
|     { .pset_name = "MODE0",
 | |
|         .freq_list = test_freq_hd,
 | |
|       .dup = FULL_DUPLEX,
 | |
|       .master_iomux = false,
 | |
|       .slave_iomux = false,
 | |
|       .slave_tv_ns = TV_WITH_ESP_SLAVE,
 | |
|       .mode = 0,
 | |
|     },
 | |
|     { .pset_name = "MODE1",
 | |
|         .freq_list = test_freq_hd,
 | |
|       .dup = FULL_DUPLEX,
 | |
|       .master_iomux = false,
 | |
|       .slave_iomux = false,
 | |
|       .slave_tv_ns = TV_WITH_ESP_SLAVE,
 | |
|       .mode = 1,
 | |
|     },
 | |
|     { .pset_name = "MODE2",
 | |
|         .freq_list = test_freq_hd,
 | |
|       .dup = FULL_DUPLEX,
 | |
|       .master_iomux = false,
 | |
|       .slave_iomux = false,
 | |
|       .slave_tv_ns = TV_WITH_ESP_SLAVE,
 | |
|       .mode = 2,
 | |
|     },
 | |
|     { .pset_name = "MODE3",
 | |
|         .freq_list = test_freq_hd,
 | |
|       .dup = FULL_DUPLEX,
 | |
|       .master_iomux = false,
 | |
|       .slave_iomux = false,
 | |
|       .slave_tv_ns = TV_WITH_ESP_SLAVE,
 | |
|       .mode = 3,
 | |
|     },
 | |
| };
 | |
| TEST_SPI_HD(HD, hd_conf);
 | |
| 
 | |
| /*
 | |
|  * When the previous transaction of master exceeds the length of slave prepared too long, the
 | |
|  * interrupt of slave will be triggered in side that transaction. In the ISR slave has to prepare
 | |
|  * for the next transaction, while the master is still sending the previous one.
 | |
|  *
 | |
|  * This test checks that the previous trans will not influence the data slave prepared for the next transaction.
 | |
|  */
 | |
| TEST_CASE("test spi slave hd segment mode, master too long", "[spi][spi_slv_hd]")
 | |
| {
 | |
|     spi_device_handle_t spi;
 | |
|     spitest_param_set_t *cfg = &hd_conf[0];
 | |
|     int freq = 100*1000; // the frequency should be small enough for the slave to prepare new trans
 | |
| 
 | |
|     init_master_hd(&spi, cfg, freq);
 | |
| 
 | |
|     //no callback needed
 | |
|     init_slave_hd(cfg->mode, 0, NULL);
 | |
| 
 | |
|     //Use GPIO matrix to connect signal of master and slave via same set of pins on one board.
 | |
|     config_single_board_test_pin();
 | |
| 
 | |
|     const int send_buf_size = 1024;
 | |
| 
 | |
|     WORD_ALIGNED_ATTR uint8_t* slave_send_buf = malloc(send_buf_size * 2);
 | |
|     WORD_ALIGNED_ATTR uint8_t* master_send_buf = malloc(send_buf_size * 2);
 | |
|     WORD_ALIGNED_ATTR uint8_t* slave_recv_buf = malloc(send_buf_size * 2);
 | |
|     WORD_ALIGNED_ATTR uint8_t* master_recv_buf = malloc(send_buf_size * 2);
 | |
| 
 | |
|     memset(slave_recv_buf, 0xcc, send_buf_size * 2);
 | |
|     memset(master_recv_buf, 0xcc, send_buf_size * 2);
 | |
|     srand (939);
 | |
|     for (int i = 0; i< send_buf_size * 2; i++) {
 | |
|         master_send_buf[i] = rand();
 | |
|         slave_send_buf[i] = rand();
 | |
|     }
 | |
| 
 | |
|     //make the first transaction short, so that the second one will be loaded while the master is
 | |
|     //still doing the first transaction.
 | |
|     int trans_len[] = {5, send_buf_size};
 | |
|     spi_slave_hd_data_t slave_trans[4] = {
 | |
|         //recv, the buffer size should be aligned to 4
 | |
|         {
 | |
|             .data = slave_recv_buf,
 | |
|             .len = (trans_len[0] + 3) & (~3),
 | |
|         },
 | |
|         {
 | |
|             .data = slave_recv_buf + send_buf_size,
 | |
|             .len = (trans_len[1] + 3) & (~3),
 | |
|         },
 | |
|         //send
 | |
|         {
 | |
|             .data = slave_send_buf,
 | |
|             .len = trans_len[0],
 | |
|         },
 | |
|         {
 | |
|             .data = slave_send_buf + send_buf_size,
 | |
|             .len = trans_len[1],
 | |
|         },
 | |
|     };
 | |
| 
 | |
|     for (int i = 0; i < 2; i ++) {
 | |
|         TEST_ESP_OK(spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &slave_trans[i], portMAX_DELAY));
 | |
|     }
 | |
|     for (int i = 2; i < 4; i ++) {
 | |
|         TEST_ESP_OK(spi_slave_hd_queue_trans(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &slave_trans[i], portMAX_DELAY));
 | |
|     }
 | |
| 
 | |
|     essl_spi_wrdma(spi, master_send_buf, send_buf_size, -1, 0);
 | |
|     essl_spi_wrdma(spi, master_send_buf + send_buf_size, send_buf_size, 5, 0);
 | |
| 
 | |
|     essl_spi_rddma(spi, master_recv_buf, send_buf_size, -1, 0);
 | |
|     essl_spi_rddma(spi, master_recv_buf + send_buf_size, send_buf_size, 5, 0);
 | |
| 
 | |
|     for (int i = 0; i < 2; i ++) {
 | |
|         spi_slave_hd_data_t *ret_trans;
 | |
|         TEST_ESP_OK(spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_RX, &ret_trans, portMAX_DELAY));
 | |
|         TEST_ASSERT(ret_trans == &slave_trans[i]);
 | |
|         TEST_ASSERT_EQUAL(slave_trans[i].len, ret_trans->trans_len);
 | |
|     }
 | |
| 
 | |
|     for (int i = 2; i < 4; i ++) {
 | |
|         spi_slave_hd_data_t *ret_trans;
 | |
|         TEST_ESP_OK(spi_slave_hd_get_trans_res(TEST_SLAVE_HOST, SPI_SLAVE_CHAN_TX, &ret_trans, portMAX_DELAY));
 | |
|         TEST_ASSERT(ret_trans == &slave_trans[i]);
 | |
|     }
 | |
| 
 | |
|     spitest_cmp_or_dump(slave_send_buf, master_recv_buf, trans_len[0]);
 | |
|     spitest_cmp_or_dump(slave_send_buf + send_buf_size, master_recv_buf + send_buf_size, trans_len[1]);
 | |
| 
 | |
|     spitest_cmp_or_dump(master_send_buf, slave_recv_buf, trans_len[0]);
 | |
|     spitest_cmp_or_dump(master_send_buf + send_buf_size, slave_recv_buf + send_buf_size, trans_len[1]);
 | |
| 
 | |
|     free(master_recv_buf);
 | |
|     free(slave_recv_buf);
 | |
|     free(master_send_buf);
 | |
|     free(slave_send_buf);
 | |
|     spi_slave_hd_deinit(TEST_SLAVE_HOST);
 | |
|     master_free_device_bus(spi);
 | |
| }
 | |
| 
 | |
| #endif  //SOC_SPI_SUPPORT_SLAVE_HD_VER2
 | |
| 
 | |
| #endif  //#if !DISABLED_FOR_TARGETS(ESP32C3)
 | 
