components/os: Move ETS_T1_WDT_INUM, ETS_CACHEERR_INUM and ETS_DPORT_INUM to l5 interrupt components/os: high level interrupt(5) components/os: hli_api: meta queue: fix out of bounds access, check for overflow components/os: hli: don't spill registers, instead save them to a separate region Level 4 interrupt has a chance of preempting a window overflow or underflow exception. Therefore it is not possible to use standard context save functions, as the SP on entry to Level 4 interrupt may be invalid (e.g. in WindowUnderflow4). Instead, mask window overflows and save the entire general purpose register file, plus some of the special registers. Then clear WindowStart, allowing the C handler to execute without spilling the old windows. On exit from the interrupt handler, do everything in reverse. components/bt: using high level interrupt in lc components/os: Add DRAM_ATTR to avoid feature `Allow .bss segment placed in external memory` components/bt: optimize code structure components/os: Modify the BT assert process to adapt to coredump and HLI components/os: Disable exception mode after saving special registers To store some registers first, avoid stuck due to live lock after disabling exception mode components/os: using dport instead of AHB in BT to fix live lock components/bt: Fix hli queue send error components/bt: Fix CI fail # Conflicts: # components/bt/CMakeLists.txt # components/bt/component.mk # components/bt/controller/bt.c # components/bt/controller/lib # components/esp_common/src/int_wdt.c # components/esp_system/port/soc/esp32/dport_panic_highint_hdl.S # components/soc/esp32/include/soc/soc.h
System Notes
Timekeeping
The following are the timekeeping mechanisms available and their differences:
- System time (
esp_system_get_time)
Time with the origin at g_startup_time. The implementation is not handled by esp_system,
but it does provide a default implementation using RTC timer. Currently, esp_timer
provides system time, since the hardware timers are under the control of that
component. However, no matter the underlying timer, the system time provider
should maintain the definition of having the origin point at g_startup_time.
esp_timertime (esp_timer_get_time)
This is the time read from an underlying hardware timer, controlled through config. Origin is at the point where the underlying timer starts counting.
newlibtime (gettimeofday)
Timekeeping function in standard library. Can be set (settimeofday) or moved forward/backward (adjtime);
with the possibility of the changes being made persistent through config.
Currently implemented in terms of system time, as the point of origin is fixed.
If persistence is enabled, RTC time is also used in conjuction with system time.
- RTC time (
esp_rtc_get_time_us)
Time read from RTC timer.