Files
esp-idf/components/esp_system
baohongde d1db2df316 components/bt: High level interrupt in bluetooth
components/os: Move ETS_T1_WDT_INUM, ETS_CACHEERR_INUM and ETS_DPORT_INUM to l5 interrupt

components/os: high level interrupt(5)

components/os: hli_api: meta queue: fix out of bounds access, check for overflow

components/os: hli: don't spill registers, instead save them to a separate region

Level 4 interrupt has a chance of preempting a window overflow or underflow exception.
Therefore it is not possible to use standard context save functions,
as the SP on entry to Level 4 interrupt may be invalid (e.g. in WindowUnderflow4).

Instead, mask window overflows and save the entire general purpose register file,
plus some of the special registers.
Then clear WindowStart, allowing the C handler to execute without spilling the old windows.
On exit from the interrupt handler, do everything in reverse.

components/bt: using high level interrupt in lc

components/os: Add DRAM_ATTR to avoid feature `Allow .bss segment placed in external memory`

components/bt: optimize code structure

components/os: Modify the BT assert process to adapt to coredump and HLI

components/os: Disable exception mode after saving special registers

To store some registers first, avoid stuck due to live lock after disabling exception mode

components/os: using dport instead of AHB in BT to fix live lock

components/bt: Fix hli queue send error

components/bt: Fix CI fail

# Conflicts:
#	components/bt/CMakeLists.txt
#	components/bt/component.mk
#	components/bt/controller/bt.c
#	components/bt/controller/lib
#	components/esp_common/src/int_wdt.c
#	components/esp_system/port/soc/esp32/dport_panic_highint_hdl.S
#	components/soc/esp32/include/soc/soc.h
2021-09-09 11:29:06 +08:00
..
2021-07-16 20:14:27 +08:00
2021-03-31 19:17:33 +08:00
2021-08-20 15:00:55 +08:00
2021-02-24 12:16:37 +08:00
2021-08-05 11:09:22 +05:30
2021-03-25 16:09:33 +08:00

System Notes

Timekeeping

The following are the timekeeping mechanisms available and their differences:

  1. System time (esp_system_get_time)

Time with the origin at g_startup_time. The implementation is not handled by esp_system, but it does provide a default implementation using RTC timer. Currently, esp_timer provides system time, since the hardware timers are under the control of that component. However, no matter the underlying timer, the system time provider should maintain the definition of having the origin point at g_startup_time.

  1. esp_timer time (esp_timer_get_time)

This is the time read from an underlying hardware timer, controlled through config. Origin is at the point where the underlying timer starts counting.

  1. newlib time (gettimeofday)

Timekeeping function in standard library. Can be set (settimeofday) or moved forward/backward (adjtime); with the possibility of the changes being made persistent through config. Currently implemented in terms of system time, as the point of origin is fixed. If persistence is enabled, RTC time is also used in conjuction with system time.

  1. RTC time (esp_rtc_get_time_us)

Time read from RTC timer.