Files
esp-idf/components/hal/include/hal/hal_utils.h

187 lines
6.3 KiB
C

/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Integer division operation
*
*/
typedef enum {
HAL_DIV_ROUND_DOWN, /*!< Round the division down to the floor integer */
HAL_DIV_ROUND_UP, /*!< Round the division up to the ceiling integer */
HAL_DIV_ROUND, /*!< Round the division to the nearest integer (round up if fraction >= 1/2, round down if fraction < 1/2) */
} hal_utils_div_round_opt_t;
/**
* @brief Clock information
*
*/
typedef struct {
uint32_t src_freq_hz; /*!< Source clock frequency, unit: Hz */
uint32_t exp_freq_hz; /*!< Expected output clock frequency, unit: Hz */
uint32_t max_integ; /*!< The max value of the integral part */
uint32_t min_integ; /*!< The min value of the integral part, integer range: [min_integ, max_integ) */
union {
uint32_t max_fract; /*!< The max value of the denominator and numerator, numerator range: [0, max_fract), denominator range: [1, max_fract)
* Please make sure max_fract > 2 when calculate the division with fractal part */
hal_utils_div_round_opt_t round_opt; /*!< Integer division operation. For the case that doesn't have fractal part, set this field to the to specify the rounding method */
};
} hal_utils_clk_info_t;
/**
* @brief Members of clock division
*
*/
typedef struct {
uint32_t integer; /*!< Integer part of division */
uint32_t denominator; /*!< Denominator part of division */
uint32_t numerator; /*!< Numerator part of division */
} hal_utils_clk_div_t;
/**
* @brief Calculate the clock division with fractal part fast
* @note Speed first algorithm, Time complexity O(log n).
* About 8~10 times faster than the accurate algorithm
*
* @param[in] clk_info The clock information
* @param[out] clk_div The clock division with integral and fractal part
* @return
* - 0: Failed to get the result because the division is out of range
* - others: The real output clock frequency
*/
uint32_t hal_utils_calc_clk_div_frac_fast(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div);
/**
* @brief Calculate the clock division with fractal part accurately
* @note Accuracy first algorithm, Time complexity O(n).
* About 1~hundreds times more accurate than the fast algorithm
*
* @param[in] clk_info The clock information
* @param[out] clk_div The clock division with integral and fractal part
* @return
* - 0: Failed to get the result because the division is out of range
* - others: The real output clock frequency
*/
uint32_t hal_utils_calc_clk_div_frac_accurate(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div);
/**
* @brief Calculate the clock division without fractal part
*
* @param[in] clk_info The clock information
* @param[out] int_div The clock integral division
* @return
* - 0: Failed to get the result because the division is out of range,
* but parameter `int_div` will still be assigned to min/max division that given in `clk_info`,
* in case the caller still want to use the min/max division in this case.
* - others: The real output clock frequency
*/
uint32_t hal_utils_calc_clk_div_integer(const hal_utils_clk_info_t *clk_info, uint32_t *int_div);
/**
* @brief Reverse the bit order of an 8-bit unsigned integer
*
* @param n The 8-bit unsigned integer to be reversed
* @return The 8-bit unsigned integer after reversing
*/
__attribute__((always_inline))
static inline uint8_t hal_utils_bitwise_reverse8(uint8_t n)
{
n = ((n & 0xf0) >> 4) | ((n & 0x0f) << 4);
n = ((n & 0xcc) >> 2) | ((n & 0x33) << 2);
n = ((n & 0xaa) >> 1) | ((n & 0x55) << 1);
return n;
}
/**
* @brief Helper function to calculate the GCD between two numbers using the Euclidean algorithm.
* Calculate the Greatest Common Divisor (GDC) of two unsigned numbers
*
* @param num_1 First number
* @param num_2 Second number
* @return GCD of 'a' and 'b'
*/
__attribute__((always_inline))
static inline uint32_t hal_utils_gcd(uint32_t num_1, uint32_t num_2)
{
uint32_t a, b, rem;
// Always mod larger number by smaller number
if (num_1 > num_2) {
a = num_1;
b = num_2;
} else {
b = num_2;
a = num_1;
}
rem = a % b;
while (rem != 0) {
a = b;
b = rem;
rem = a % b;
}
return b;
}
/**
* @brief Get the least common multiple of two integer
*
* @param[in] Integer A
* @param[in] Integer B
*
* @return LCM of A and B
*/
__attribute__((always_inline))
static inline uint32_t hal_utils_calc_lcm(uint32_t a, uint32_t b)
{
a = a == 0 ? 1 : a;
b = b == 0 ? 1 : b;
return (a * b / hal_utils_gcd(a, b));
}
/**
* @brief Fixed-point data configuration
*
*/
typedef struct {
uint32_t int_bit; /*!< Integer bit of the fixed point */
uint32_t frac_bit; /*!< Fractional bit of the fixed point */
bool saturation; /*!< Whether to limit the value to the maximum when fixed-point data overflow.
* When set true, the value will be limited to the maximum when the float type data is out of range.
* When set false, the function will return false when the float type data is out of range.
*/
} hal_utils_fixed_point_t;
/**
* @brief Convert the float type to fixed point type
* @note The supported data format:
* - [input] float (IEEE 754):
* sign(1bit) + exponent(8bit) + mantissa(23bit) (32 bit in total)
* - [output] fixed-point:
* sign(1bit) + integer(int_bit) + fraction(frac_bit) (less or equal to 32 bit)
*
* @param[in] flt IEEE 754 float type data
* @param[in] fp_cfg Fixed-point data configuration
* @param[out] fp_out The output fixed-point data
* @return
* 0: Success
* -1: Fixed point data overflow, `fp_out` will still be assigned
* -2: Float is NaN
* -3: Invalid configuration
*/
int hal_utils_float_to_fixed_point_32b(float flt, const hal_utils_fixed_point_t *fp_cfg, uint32_t *fp_out);
#ifdef __cplusplus
}
#endif