mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 21:14:37 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			971 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			971 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| 
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stdbool.h>
 | |
| #include <stddef.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <freertos/FreeRTOS.h>
 | |
| #include <freertos/task.h>
 | |
| 
 | |
| #include "esp_err.h"
 | |
| #include "esp_partition.h"
 | |
| #include "esp_spi_flash.h"
 | |
| #include "esp_image_format.h"
 | |
| #include "esp_secure_boot.h"
 | |
| #include "esp_flash_encrypt.h"
 | |
| #include "esp_spi_flash.h"
 | |
| #include "sdkconfig.h"
 | |
| 
 | |
| #include "esp_ota_ops.h"
 | |
| #include "sys/queue.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_flash_partitions.h"
 | |
| #include "bootloader_common.h"
 | |
| #include "sys/param.h"
 | |
| #include "esp_system.h"
 | |
| #include "esp_efuse.h"
 | |
| #include "esp_attr.h"
 | |
| 
 | |
| #define SUB_TYPE_ID(i) (i & 0x0F)
 | |
| 
 | |
| /* Partial_data is word aligned so no reallocation is necessary for encrypted flash write */
 | |
| typedef struct ota_ops_entry_ {
 | |
|     uint32_t handle;
 | |
|     const esp_partition_t *part;
 | |
|     bool need_erase;
 | |
|     uint32_t wrote_size;
 | |
|     uint8_t partial_bytes;
 | |
|     WORD_ALIGNED_ATTR uint8_t partial_data[16];
 | |
|     LIST_ENTRY(ota_ops_entry_) entries;
 | |
| } ota_ops_entry_t;
 | |
| 
 | |
| static LIST_HEAD(ota_ops_entries_head, ota_ops_entry_) s_ota_ops_entries_head =
 | |
|     LIST_HEAD_INITIALIZER(s_ota_ops_entries_head);
 | |
| 
 | |
| static uint32_t s_ota_ops_last_handle = 0;
 | |
| 
 | |
| const static char *TAG = "esp_ota_ops";
 | |
| 
 | |
| /* Return true if this is an OTA app partition */
 | |
| static bool is_ota_partition(const esp_partition_t *p)
 | |
| {
 | |
|     return (p != NULL
 | |
|             && p->type == ESP_PARTITION_TYPE_APP
 | |
|             && p->subtype >= ESP_PARTITION_SUBTYPE_APP_OTA_0
 | |
|             && p->subtype < ESP_PARTITION_SUBTYPE_APP_OTA_MAX);
 | |
| }
 | |
| 
 | |
| // Read otadata partition and fill array from two otadata structures.
 | |
| // Also return pointer to otadata info partition.
 | |
| static const esp_partition_t *read_otadata(esp_ota_select_entry_t *two_otadata)
 | |
| {
 | |
|     const esp_partition_t *otadata_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
 | |
| 
 | |
|     if (otadata_partition == NULL) {
 | |
|         ESP_LOGE(TAG, "not found otadata");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     spi_flash_mmap_handle_t ota_data_map;
 | |
|     const void *result = NULL;
 | |
|     esp_err_t err = esp_partition_mmap(otadata_partition, 0, otadata_partition->size, SPI_FLASH_MMAP_DATA, &result, &ota_data_map);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "mmap otadata filed. Err=0x%8x", err);
 | |
|         return NULL;
 | |
|     } else {
 | |
|         memcpy(&two_otadata[0], result, sizeof(esp_ota_select_entry_t));
 | |
|         memcpy(&two_otadata[1], result + SPI_FLASH_SEC_SIZE, sizeof(esp_ota_select_entry_t));
 | |
|         spi_flash_munmap(ota_data_map);
 | |
|     }
 | |
|     return otadata_partition;
 | |
| }
 | |
| 
 | |
| static esp_err_t image_validate(const esp_partition_t *partition, esp_image_load_mode_t load_mode)
 | |
| {
 | |
|     esp_image_metadata_t data;
 | |
|     const esp_partition_pos_t part_pos = {
 | |
|         .offset = partition->address,
 | |
|         .size = partition->size,
 | |
|     };
 | |
| 
 | |
|     if (esp_image_verify(load_mode, &part_pos, &data) != ESP_OK) {
 | |
|         return ESP_ERR_OTA_VALIDATE_FAILED;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_ota_img_states_t set_new_state_otadata(void)
 | |
| {
 | |
| #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
 | |
|     ESP_LOGD(TAG, "Monitoring the first boot of the app is enabled.");
 | |
|     return ESP_OTA_IMG_NEW;
 | |
| #else
 | |
|     return ESP_OTA_IMG_UNDEFINED;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_begin(const esp_partition_t *partition, size_t image_size, esp_ota_handle_t *out_handle)
 | |
| {
 | |
|     ota_ops_entry_t *new_entry;
 | |
|     esp_err_t ret = ESP_OK;
 | |
| 
 | |
|     if ((partition == NULL) || (out_handle == NULL)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     partition = esp_partition_verify(partition);
 | |
|     if (partition == NULL) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     if (!is_ota_partition(partition)) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     const esp_partition_t* running_partition = esp_ota_get_running_partition();
 | |
|     if (partition == running_partition) {
 | |
|         return ESP_ERR_OTA_PARTITION_CONFLICT;
 | |
|     }
 | |
| 
 | |
| #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
 | |
|     esp_ota_img_states_t ota_state_running_part;
 | |
|     if (esp_ota_get_state_partition(running_partition, &ota_state_running_part) == ESP_OK) {
 | |
|         if (ota_state_running_part == ESP_OTA_IMG_PENDING_VERIFY) {
 | |
|             ESP_LOGE(TAG, "Running app has not confirmed state (ESP_OTA_IMG_PENDING_VERIFY)");
 | |
|             return ESP_ERR_OTA_ROLLBACK_INVALID_STATE;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (image_size != OTA_WITH_SEQUENTIAL_WRITES) {
 | |
|         // If input image size is 0 or OTA_SIZE_UNKNOWN, erase entire partition
 | |
|         if ((image_size == 0) || (image_size == OTA_SIZE_UNKNOWN)) {
 | |
|             ret = esp_partition_erase_range(partition, 0, partition->size);
 | |
|         } else {
 | |
|             const int aligned_erase_size = (image_size + SPI_FLASH_SEC_SIZE - 1) & ~(SPI_FLASH_SEC_SIZE - 1);
 | |
|             ret = esp_partition_erase_range(partition, 0, aligned_erase_size);
 | |
|         }
 | |
|         if (ret != ESP_OK) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     new_entry = (ota_ops_entry_t *) calloc(sizeof(ota_ops_entry_t), 1);
 | |
|     if (new_entry == NULL) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
| 
 | |
|     LIST_INSERT_HEAD(&s_ota_ops_entries_head, new_entry, entries);
 | |
| 
 | |
|     new_entry->part = partition;
 | |
|     new_entry->handle = ++s_ota_ops_last_handle;
 | |
|     new_entry->need_erase = (image_size == OTA_WITH_SEQUENTIAL_WRITES);
 | |
|     *out_handle = new_entry->handle;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_write(esp_ota_handle_t handle, const void *data, size_t size)
 | |
| {
 | |
|     const uint8_t *data_bytes = (const uint8_t *)data;
 | |
|     esp_err_t ret;
 | |
|     ota_ops_entry_t *it;
 | |
| 
 | |
|     if (data == NULL) {
 | |
|         ESP_LOGE(TAG, "write data is invalid");
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     // find ota handle in linked list
 | |
|     for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
 | |
|         if (it->handle == handle) {
 | |
|             if (it->need_erase) {
 | |
|                 // must erase the partition before writing to it
 | |
|                 uint32_t first_sector = it->wrote_size / SPI_FLASH_SEC_SIZE;
 | |
|                 uint32_t last_sector = (it->wrote_size + size) / SPI_FLASH_SEC_SIZE;
 | |
| 
 | |
|                 ret = ESP_OK;
 | |
|                 if ((it->wrote_size % SPI_FLASH_SEC_SIZE) == 0) {
 | |
|                     ret = esp_partition_erase_range(it->part, it->wrote_size, ((last_sector - first_sector) + 1) * SPI_FLASH_SEC_SIZE);
 | |
|                 } else if (first_sector != last_sector) {
 | |
|                     ret = esp_partition_erase_range(it->part, (first_sector + 1) * SPI_FLASH_SEC_SIZE, (last_sector - first_sector) * SPI_FLASH_SEC_SIZE);
 | |
|                 }
 | |
|                 if (ret != ESP_OK) {
 | |
|                     return ret;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (it->wrote_size == 0 && it->partial_bytes == 0 && size > 0 && data_bytes[0] != ESP_IMAGE_HEADER_MAGIC) {
 | |
|                 ESP_LOGE(TAG, "OTA image has invalid magic byte (expected 0xE9, saw 0x%02x)", data_bytes[0]);
 | |
|                 return ESP_ERR_OTA_VALIDATE_FAILED;
 | |
|             }
 | |
| 
 | |
|             if (esp_flash_encryption_enabled()) {
 | |
|                 /* Can only write 16 byte blocks to flash, so need to cache anything else */
 | |
|                 size_t copy_len;
 | |
| 
 | |
|                 /* check if we have partially written data from earlier */
 | |
|                 if (it->partial_bytes != 0) {
 | |
|                     copy_len = MIN(16 - it->partial_bytes, size);
 | |
|                     memcpy(it->partial_data + it->partial_bytes, data_bytes, copy_len);
 | |
|                     it->partial_bytes += copy_len;
 | |
|                     if (it->partial_bytes != 16) {
 | |
|                         return ESP_OK; /* nothing to write yet, just filling buffer */
 | |
|                     }
 | |
|                     /* write 16 byte to partition */
 | |
|                     ret = esp_partition_write(it->part, it->wrote_size, it->partial_data, 16);
 | |
|                     if (ret != ESP_OK) {
 | |
|                         return ret;
 | |
|                     }
 | |
|                     it->partial_bytes = 0;
 | |
|                     memset(it->partial_data, 0xFF, 16);
 | |
|                     it->wrote_size += 16;
 | |
|                     data_bytes += copy_len;
 | |
|                     size -= copy_len;
 | |
|                 }
 | |
| 
 | |
|                 /* check if we need to save trailing data that we're about to write */
 | |
|                 it->partial_bytes = size % 16;
 | |
|                 if (it->partial_bytes != 0) {
 | |
|                     size -= it->partial_bytes;
 | |
|                     memcpy(it->partial_data, data_bytes + size, it->partial_bytes);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             ret = esp_partition_write(it->part, it->wrote_size, data_bytes, size);
 | |
|             if(ret == ESP_OK){
 | |
|                 it->wrote_size += size;
 | |
|             }
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //if go to here ,means don't find the handle
 | |
|     ESP_LOGE(TAG,"not found the handle");
 | |
|     return ESP_ERR_INVALID_ARG;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_write_with_offset(esp_ota_handle_t handle, const void *data, size_t size, uint32_t offset)
 | |
| {
 | |
|     const uint8_t *data_bytes = (const uint8_t *)data;
 | |
|     esp_err_t ret;
 | |
|     ota_ops_entry_t *it;
 | |
| 
 | |
|     if (data == NULL) {
 | |
|         ESP_LOGE(TAG, "write data is invalid");
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     // find ota handle in linked list
 | |
|     for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
 | |
|         if (it->handle == handle) {
 | |
|             // must erase the partition before writing to it
 | |
|             assert(it->need_erase == 0 && "must erase the partition before writing to it");
 | |
| 
 | |
|             /* esp_ota_write_with_offset is used to write data in non contiguous manner.
 | |
|              * Hence, unaligned data(less than 16 bytes) cannot be cached if flash encryption is enabled.
 | |
|              */
 | |
|             if (esp_flash_encryption_enabled() && (size % 16)) {
 | |
|                 ESP_LOGE(TAG, "Size should be 16byte aligned for flash encryption case");
 | |
|                 return ESP_ERR_INVALID_ARG;
 | |
|             }
 | |
|             ret = esp_partition_write(it->part, offset, data_bytes, size);
 | |
|             if (ret == ESP_OK) {
 | |
|                 it->wrote_size += size;
 | |
|             }
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // OTA handle is not found in linked list
 | |
|     ESP_LOGE(TAG,"OTA handle not found");
 | |
|     return ESP_ERR_INVALID_ARG;
 | |
| }
 | |
| 
 | |
| static ota_ops_entry_t *get_ota_ops_entry(esp_ota_handle_t handle)
 | |
| {
 | |
|     ota_ops_entry_t *it = NULL;
 | |
|     for (it = LIST_FIRST(&s_ota_ops_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
 | |
|         if (it->handle == handle) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|    return it;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_abort(esp_ota_handle_t handle)
 | |
| {
 | |
|     ota_ops_entry_t *it = get_ota_ops_entry(handle);
 | |
| 
 | |
|     if (it == NULL) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
|     LIST_REMOVE(it, entries);
 | |
|     free(it);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_end(esp_ota_handle_t handle)
 | |
| {
 | |
|     ota_ops_entry_t *it = get_ota_ops_entry(handle);
 | |
|     esp_err_t ret = ESP_OK;
 | |
| 
 | |
|     if (it == NULL) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     /* 'it' holds the ota_ops_entry_t for 'handle' */
 | |
| 
 | |
|     // esp_ota_end() is only valid if some data was written to this handle
 | |
|     if (it->wrote_size == 0) {
 | |
|         ret = ESP_ERR_INVALID_ARG;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (it->partial_bytes > 0) {
 | |
|         /* Write out last 16 bytes, if necessary */
 | |
|         ret = esp_partition_write(it->part, it->wrote_size, it->partial_data, 16);
 | |
|         if (ret != ESP_OK) {
 | |
|             ret = ESP_ERR_INVALID_STATE;
 | |
|             goto cleanup;
 | |
|         }
 | |
|         it->wrote_size += 16;
 | |
|         it->partial_bytes = 0;
 | |
|     }
 | |
| 
 | |
|     esp_image_metadata_t data;
 | |
|     const esp_partition_pos_t part_pos = {
 | |
|       .offset = it->part->address,
 | |
|       .size = it->part->size,
 | |
|     };
 | |
| 
 | |
|     if (esp_image_verify(ESP_IMAGE_VERIFY, &part_pos, &data) != ESP_OK) {
 | |
|         ret = ESP_ERR_OTA_VALIDATE_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|  cleanup:
 | |
|     LIST_REMOVE(it, entries);
 | |
|     free(it);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t rewrite_ota_seq(esp_ota_select_entry_t *two_otadata, uint32_t seq, uint8_t sec_id, const esp_partition_t *ota_data_partition)
 | |
| {
 | |
|     if (two_otadata == NULL || sec_id > 1) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     two_otadata[sec_id].ota_seq = seq;
 | |
|     two_otadata[sec_id].crc = bootloader_common_ota_select_crc(&two_otadata[sec_id]);
 | |
|     esp_err_t ret = esp_partition_erase_range(ota_data_partition, sec_id * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
 | |
|     if (ret != ESP_OK) {
 | |
|         return ret;
 | |
|     } else {
 | |
|         return esp_partition_write(ota_data_partition, SPI_FLASH_SEC_SIZE * sec_id, &two_otadata[sec_id], sizeof(esp_ota_select_entry_t));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint8_t get_ota_partition_count(void)
 | |
| {
 | |
|     uint16_t ota_app_count = 0;
 | |
|     while (esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_app_count, NULL) != NULL) {
 | |
|             assert(ota_app_count < 16 && "must erase the partition before writing to it");
 | |
|             ota_app_count++;
 | |
|     }
 | |
|     return ota_app_count;
 | |
| }
 | |
| 
 | |
| static esp_err_t esp_rewrite_ota_data(esp_partition_subtype_t subtype)
 | |
| {
 | |
|     esp_ota_select_entry_t otadata[2];
 | |
|     const esp_partition_t *otadata_partition = read_otadata(otadata);
 | |
|     if (otadata_partition == NULL) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     uint8_t ota_app_count = get_ota_partition_count();
 | |
|     if (SUB_TYPE_ID(subtype) >= ota_app_count) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     //esp32_idf use two sector for store information about which partition is running
 | |
|     //it defined the two sector as ota data partition,two structure esp_ota_select_entry_t is saved in the two sector
 | |
|     //named data in first sector as otadata[0], second sector data as otadata[1]
 | |
|     //e.g.
 | |
|     //if otadata[0].ota_seq == otadata[1].ota_seq == 0xFFFFFFFF,means ota info partition is in init status
 | |
|     //so it will boot factory application(if there is),if there's no factory application,it will boot ota[0] application
 | |
|     //if otadata[0].ota_seq != 0 and otadata[1].ota_seq != 0,it will choose a max seq ,and get value of max_seq%max_ota_app_number
 | |
|     //and boot a subtype (mask 0x0F) value is (max_seq - 1)%max_ota_app_number,so if want switch to run ota[x],can use next formulas.
 | |
|     //for example, if otadata[0].ota_seq = 4, otadata[1].ota_seq = 5, and there are 8 ota application,
 | |
|     //current running is (5-1)%8 = 4,running ota[4],so if we want to switch to run ota[7],
 | |
|     //we should add otadata[0].ota_seq (is 4) to 4 ,(8-1)%8=7,then it will boot ota[7]
 | |
|     //if      A=(B - C)%D
 | |
|     //then    B=(A + C)%D + D*n ,n= (0,1,2...)
 | |
|     //so current ota app sub type id is x , dest bin subtype is y,total ota app count is n
 | |
|     //seq will add (x + n*1 + 1 - seq)%n
 | |
| 
 | |
|     int active_otadata = bootloader_common_get_active_otadata(otadata);
 | |
|     if (active_otadata != -1) {
 | |
|         uint32_t seq = otadata[active_otadata].ota_seq;
 | |
|         uint32_t i = 0;
 | |
|         while (seq > (SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count) {
 | |
|             i++;
 | |
|         }
 | |
|         int next_otadata = (~active_otadata)&1; // if 0 -> will be next 1. and if 1 -> will be next 0.
 | |
|         otadata[next_otadata].ota_state = set_new_state_otadata();
 | |
|         return rewrite_ota_seq(otadata, (SUB_TYPE_ID(subtype) + 1) % ota_app_count + i * ota_app_count, next_otadata, otadata_partition);
 | |
|     } else {
 | |
|         /* Both OTA slots are invalid, probably because unformatted... */
 | |
|         int next_otadata = 0;
 | |
|         otadata[next_otadata].ota_state = set_new_state_otadata();
 | |
|         return rewrite_ota_seq(otadata, SUB_TYPE_ID(subtype) + 1, next_otadata, otadata_partition);
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_set_boot_partition(const esp_partition_t *partition)
 | |
| {
 | |
|     if (partition == NULL) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     if (image_validate(partition, ESP_IMAGE_VERIFY) != ESP_OK) {
 | |
|         return ESP_ERR_OTA_VALIDATE_FAILED;
 | |
|     }
 | |
| 
 | |
|     // if set boot partition to factory bin ,just format ota info partition
 | |
|     if (partition->type == ESP_PARTITION_TYPE_APP) {
 | |
|         if (partition->subtype == ESP_PARTITION_SUBTYPE_APP_FACTORY) {
 | |
|             const esp_partition_t *find_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL);
 | |
|             if (find_partition != NULL) {
 | |
|                 return esp_partition_erase_range(find_partition, 0, find_partition->size);
 | |
|             } else {
 | |
|                 return ESP_ERR_NOT_FOUND;
 | |
|             }
 | |
|         } else {
 | |
| #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
 | |
|             esp_app_desc_t partition_app_desc;
 | |
|             esp_err_t err = esp_ota_get_partition_description(partition, &partition_app_desc);
 | |
|             if (err != ESP_OK) {
 | |
|                 return err;
 | |
|             }
 | |
| 
 | |
|             if (esp_efuse_check_secure_version(partition_app_desc.secure_version) == false) {
 | |
|                 ESP_LOGE(TAG, "This a new partition can not be booted due to a secure version is lower than stored in efuse. Partition will be erased.");
 | |
|                 esp_err_t err = esp_partition_erase_range(partition, 0, partition->size);
 | |
|                 if (err != ESP_OK) {
 | |
|                     return err;
 | |
|                 }
 | |
|                 return ESP_ERR_OTA_SMALL_SEC_VER;
 | |
|             }
 | |
| #endif
 | |
|             return esp_rewrite_ota_data(partition->subtype);
 | |
|         }
 | |
|     } else {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const esp_partition_t *find_default_boot_partition(void)
 | |
| {
 | |
|     // This logic matches the logic of bootloader get_selected_boot_partition() & load_boot_image().
 | |
| 
 | |
|     // Default to factory if present
 | |
|     const esp_partition_t *result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_FACTORY, NULL);
 | |
|     if (result != NULL) {
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     // Try first OTA slot if no factory partition
 | |
|     for (esp_partition_subtype_t s = ESP_PARTITION_SUBTYPE_APP_OTA_MIN; s != ESP_PARTITION_SUBTYPE_APP_OTA_MAX; s++) {
 | |
|         result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, s, NULL);
 | |
|         if (result != NULL) {
 | |
|             return result;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Test app slot if present
 | |
|     result = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_TEST, NULL);
 | |
|     if (result != NULL) {
 | |
|         return result;
 | |
|     }
 | |
| 
 | |
|     ESP_LOGE(TAG, "invalid partition table, no app partitions");
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| const esp_partition_t *esp_ota_get_boot_partition(void)
 | |
| {
 | |
|     esp_ota_select_entry_t otadata[2];
 | |
|     const esp_partition_t *otadata_partition = read_otadata(otadata);
 | |
|     if (otadata_partition == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     int ota_app_count = get_ota_partition_count();
 | |
|     ESP_LOGD(TAG, "found ota app max = %d", ota_app_count);
 | |
| 
 | |
|     if ((bootloader_common_ota_select_invalid(&otadata[0]) &&
 | |
|          bootloader_common_ota_select_invalid(&otadata[1])) ||
 | |
|          ota_app_count == 0) {
 | |
|         ESP_LOGD(TAG, "finding factory app...");
 | |
|         return find_default_boot_partition();
 | |
|     } else {
 | |
|         int active_otadata = bootloader_common_get_active_otadata(otadata);
 | |
|         if (active_otadata != -1) {
 | |
|             int ota_slot = (otadata[active_otadata].ota_seq - 1) % ota_app_count; // Actual OTA partition selection
 | |
|             ESP_LOGD(TAG, "finding ota_%d app...", ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot);
 | |
|             return esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot, NULL);
 | |
|         } else {
 | |
|             ESP_LOGE(TAG, "ota data invalid, no current app. Assuming factory");
 | |
|             return find_default_boot_partition();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| const esp_partition_t* esp_ota_get_running_partition(void)
 | |
| {
 | |
|     static const esp_partition_t *curr_partition = NULL;
 | |
| 
 | |
|     /*
 | |
|      * Currently running partition is unlikely to change across reset cycle,
 | |
|      * so it can be cached here, and avoid lookup on every flash write operation.
 | |
|      */
 | |
|     if (curr_partition != NULL) {
 | |
|         return curr_partition;
 | |
|     }
 | |
| 
 | |
|     /* Find the flash address of this exact function. By definition that is part
 | |
|        of the currently running firmware. Then find the enclosing partition. */
 | |
|     size_t phys_offs = spi_flash_cache2phys(esp_ota_get_running_partition);
 | |
| 
 | |
|     assert (phys_offs != SPI_FLASH_CACHE2PHYS_FAIL); /* indicates cache2phys lookup is buggy */
 | |
| 
 | |
|     esp_partition_iterator_t it = esp_partition_find(ESP_PARTITION_TYPE_APP,
 | |
|                                                      ESP_PARTITION_SUBTYPE_ANY,
 | |
|                                                      NULL);
 | |
|     assert(it != NULL); /* has to be at least one app partition */
 | |
| 
 | |
|     while (it != NULL) {
 | |
|         const esp_partition_t *p = esp_partition_get(it);
 | |
|         if (p->address <= phys_offs && p->address + p->size > phys_offs) {
 | |
|             esp_partition_iterator_release(it);
 | |
|             curr_partition = p;
 | |
|             return p;
 | |
|         }
 | |
|         it = esp_partition_next(it);
 | |
|     }
 | |
| 
 | |
|     abort(); /* Partition table is invalid or corrupt */
 | |
| }
 | |
| 
 | |
| 
 | |
| const esp_partition_t* esp_ota_get_next_update_partition(const esp_partition_t *start_from)
 | |
| {
 | |
|     const esp_partition_t *default_ota = NULL;
 | |
|     bool next_is_result = false;
 | |
|     if (start_from == NULL) {
 | |
|         start_from = esp_ota_get_running_partition();
 | |
|     } else {
 | |
|         start_from = esp_partition_verify(start_from);
 | |
|     }
 | |
|     assert (start_from != NULL);
 | |
|     /* at this point, 'start_from' points to actual partition table data in flash */
 | |
| 
 | |
| 
 | |
|     /* Two possibilities: either we want the OTA partition immediately after the current running OTA partition, or we
 | |
|        want the first OTA partition in the table (for the case when the last OTA partition is the running partition, or
 | |
|        if the current running partition is not OTA.)
 | |
| 
 | |
|        This loop iterates subtypes instead of using esp_partition_find, so we
 | |
|        get all OTA partitions in a known order (low slot to high slot).
 | |
|     */
 | |
| 
 | |
|     for (esp_partition_subtype_t t = ESP_PARTITION_SUBTYPE_APP_OTA_0;
 | |
|          t != ESP_PARTITION_SUBTYPE_APP_OTA_MAX;
 | |
|          t++) {
 | |
|         const esp_partition_t *p = esp_partition_find_first(ESP_PARTITION_TYPE_APP, t, NULL);
 | |
|         if (p == NULL) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (default_ota == NULL) {
 | |
|             /* Default to first OTA partition we find,
 | |
|                will be used if nothing else matches */
 | |
|             default_ota = p;
 | |
|         }
 | |
| 
 | |
|         if (p == start_from) {
 | |
|             /* Next OTA partition is the one to use */
 | |
|             next_is_result = true;
 | |
|         }
 | |
|         else if (next_is_result) {
 | |
|             return p;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return default_ota;
 | |
| 
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_get_partition_description(const esp_partition_t *partition, esp_app_desc_t *app_desc)
 | |
| {
 | |
|     if (partition == NULL || app_desc == NULL) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     if(partition->type != ESP_PARTITION_TYPE_APP) {
 | |
|         return ESP_ERR_NOT_SUPPORTED;
 | |
|     }
 | |
| 
 | |
|     esp_err_t err = esp_partition_read(partition, sizeof(esp_image_header_t) + sizeof(esp_image_segment_header_t), app_desc, sizeof(esp_app_desc_t));
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     if (app_desc->magic_word != ESP_APP_DESC_MAGIC_WORD) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
 | |
| static esp_err_t esp_ota_set_anti_rollback(void) {
 | |
|     const esp_app_desc_t *app_desc = esp_ota_get_app_description();
 | |
|     return esp_efuse_update_secure_version(app_desc->secure_version);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Checks applications on the slots which can be booted in case of rollback.
 | |
| // Returns true if the slots have at least one app (except the running app).
 | |
| bool esp_ota_check_rollback_is_possible(void)
 | |
| {
 | |
|     esp_ota_select_entry_t otadata[2];
 | |
|     if (read_otadata(otadata) == NULL) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     int ota_app_count = get_ota_partition_count();
 | |
|     if (ota_app_count == 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     bool valid_otadata[2];
 | |
|     valid_otadata[0] = bootloader_common_ota_select_valid(&otadata[0]);
 | |
|     valid_otadata[1] = bootloader_common_ota_select_valid(&otadata[1]);
 | |
| 
 | |
|     int active_ota = bootloader_common_select_otadata(otadata, valid_otadata, true);
 | |
|     if (active_ota == -1) {
 | |
|         return false;
 | |
|     }
 | |
|     int last_active_ota = (~active_ota)&1;
 | |
| 
 | |
|     const esp_partition_t *partition = NULL;
 | |
| #ifndef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
 | |
|     if (valid_otadata[last_active_ota] == false) {
 | |
|         partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_FACTORY, NULL);
 | |
|         if (partition != NULL) {
 | |
|             if(image_validate(partition, ESP_IMAGE_VERIFY_SILENT) == ESP_OK) {
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (valid_otadata[last_active_ota] == true) {
 | |
|         int slot = (otadata[last_active_ota].ota_seq - 1) % ota_app_count;
 | |
|         partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + slot, NULL);
 | |
|         if (partition != NULL) {
 | |
|             if(image_validate(partition, ESP_IMAGE_VERIFY_SILENT) == ESP_OK) {
 | |
| #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
 | |
|                 esp_app_desc_t app_desc;
 | |
|                 if (esp_ota_get_partition_description(partition, &app_desc) == ESP_OK &&
 | |
|                     esp_efuse_check_secure_version(app_desc.secure_version) == true) {
 | |
|                     return true;
 | |
|                 }
 | |
| #else
 | |
|                 return true;
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // if valid == false - will done rollback with reboot. After reboot will boot previous OTA[x] or Factory partition.
 | |
| // if valid == true  - it confirm that current OTA[x] is workable. Reboot will not happen.
 | |
| static esp_err_t esp_ota_current_ota_is_workable(bool valid)
 | |
| {
 | |
|     esp_ota_select_entry_t otadata[2];
 | |
|     const esp_partition_t *otadata_partition = read_otadata(otadata);
 | |
|     if (otadata_partition == NULL) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     int active_otadata = bootloader_common_get_active_otadata(otadata);
 | |
|     if (active_otadata != -1 && get_ota_partition_count() != 0) {
 | |
|         if (valid == true && otadata[active_otadata].ota_state != ESP_OTA_IMG_VALID) {
 | |
|             otadata[active_otadata].ota_state = ESP_OTA_IMG_VALID;
 | |
|             ESP_LOGD(TAG, "OTA[current] partition is marked as VALID");
 | |
|             esp_err_t err = rewrite_ota_seq(otadata, otadata[active_otadata].ota_seq, active_otadata, otadata_partition);
 | |
| #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
 | |
|             if (err == ESP_OK) {
 | |
|                 return esp_ota_set_anti_rollback();
 | |
|             }
 | |
| #endif
 | |
|             return err;
 | |
|         } else if (valid == false) {
 | |
|             if (esp_ota_check_rollback_is_possible() == false) {
 | |
|                 ESP_LOGE(TAG, "Rollback is not possible, do not have any suitable apps in slots");
 | |
|                 return ESP_ERR_OTA_ROLLBACK_FAILED;
 | |
|             }
 | |
|             ESP_LOGD(TAG, "OTA[current] partition is marked as INVALID");
 | |
|             otadata[active_otadata].ota_state = ESP_OTA_IMG_INVALID;
 | |
|             esp_err_t err = rewrite_ota_seq(otadata, otadata[active_otadata].ota_seq, active_otadata, otadata_partition);
 | |
|             if (err != ESP_OK) {
 | |
|                 return err;
 | |
|             }
 | |
|             ESP_LOGI(TAG, "Rollback to previously worked partition. Restart.");
 | |
|             esp_restart();
 | |
|         }
 | |
|     } else {
 | |
|         ESP_LOGE(TAG, "Running firmware is factory");
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_mark_app_valid_cancel_rollback(void)
 | |
| {
 | |
|     return esp_ota_current_ota_is_workable(true);
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_mark_app_invalid_rollback_and_reboot(void)
 | |
| {
 | |
|     return esp_ota_current_ota_is_workable(false);
 | |
| }
 | |
| 
 | |
| static bool check_invalid_otadata (const esp_ota_select_entry_t *s) {
 | |
|     return s->ota_seq != UINT32_MAX &&
 | |
|            s->crc == bootloader_common_ota_select_crc(s) &&
 | |
|            (s->ota_state == ESP_OTA_IMG_INVALID ||
 | |
|             s->ota_state == ESP_OTA_IMG_ABORTED);
 | |
| }
 | |
| 
 | |
| static int get_last_invalid_otadata(const esp_ota_select_entry_t *two_otadata)
 | |
| {
 | |
| 
 | |
|     bool invalid_otadata[2];
 | |
|     invalid_otadata[0] = check_invalid_otadata(&two_otadata[0]);
 | |
|     invalid_otadata[1] = check_invalid_otadata(&two_otadata[1]);
 | |
|     int num_invalid_otadata = bootloader_common_select_otadata(two_otadata, invalid_otadata, false);
 | |
|     ESP_LOGD(TAG, "Invalid otadata[%d]", num_invalid_otadata);
 | |
|     return num_invalid_otadata;
 | |
| }
 | |
| 
 | |
| const esp_partition_t* esp_ota_get_last_invalid_partition(void)
 | |
| {
 | |
|     esp_ota_select_entry_t otadata[2];
 | |
|     if (read_otadata(otadata) == NULL) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     int invalid_otadata = get_last_invalid_otadata(otadata);
 | |
| 
 | |
|     int ota_app_count = get_ota_partition_count();
 | |
|     if (invalid_otadata != -1 && ota_app_count != 0) {
 | |
|         int ota_slot = (otadata[invalid_otadata].ota_seq - 1) % ota_app_count;
 | |
|         ESP_LOGD(TAG, "Find invalid ota_%d app", ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot);
 | |
| 
 | |
|         const esp_partition_t* invalid_partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot, NULL);
 | |
|         if (invalid_partition != NULL) {
 | |
|             if (image_validate(invalid_partition, ESP_IMAGE_VERIFY_SILENT) != ESP_OK) {
 | |
|                 ESP_LOGD(TAG, "Last invalid partition has corrupted app");
 | |
|                 return NULL;
 | |
|             }
 | |
|         }
 | |
|         return invalid_partition;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_get_state_partition(const esp_partition_t *partition, esp_ota_img_states_t *ota_state)
 | |
| {
 | |
|     if (partition == NULL || ota_state == NULL) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     if (!is_ota_partition(partition)) {
 | |
|         return ESP_ERR_NOT_SUPPORTED;
 | |
|     }
 | |
| 
 | |
|     esp_ota_select_entry_t otadata[2];
 | |
|     int ota_app_count = get_ota_partition_count();
 | |
|     if (read_otadata(otadata) == NULL || ota_app_count == 0) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     int req_ota_slot = partition->subtype - ESP_PARTITION_SUBTYPE_APP_OTA_MIN;
 | |
|     bool not_found = true;
 | |
|     for (int i = 0; i < 2; ++i) {
 | |
|         int ota_slot = (otadata[i].ota_seq - 1) % ota_app_count;
 | |
|         if (ota_slot == req_ota_slot && otadata[i].crc == bootloader_common_ota_select_crc(&otadata[i])) {
 | |
|             *ota_state = otadata[i].ota_state;
 | |
|             not_found = false;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (not_found) {
 | |
|         return ESP_ERR_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_ota_erase_last_boot_app_partition(void)
 | |
| {
 | |
|     esp_ota_select_entry_t otadata[2];
 | |
|     const esp_partition_t* ota_data_partition = read_otadata(otadata);
 | |
|     if (ota_data_partition == NULL) {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     int active_otadata = bootloader_common_get_active_otadata(otadata);
 | |
|     int ota_app_count = get_ota_partition_count();
 | |
|     if (active_otadata == -1 || ota_app_count == 0) {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     int inactive_otadata = (~active_otadata)&1;
 | |
|     if (otadata[inactive_otadata].ota_seq == UINT32_MAX || otadata[inactive_otadata].crc != bootloader_common_ota_select_crc(&otadata[inactive_otadata])) {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     int ota_slot = (otadata[inactive_otadata].ota_seq - 1) % ota_app_count; // Actual OTA partition selection
 | |
|     ESP_LOGD(TAG, "finding last_boot_app_partition ota_%d app...", ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot);
 | |
| 
 | |
|     const esp_partition_t* last_boot_app_partition_from_otadata = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_OTA_MIN + ota_slot, NULL);
 | |
|     if (last_boot_app_partition_from_otadata == NULL) {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     const esp_partition_t* running_partition = esp_ota_get_running_partition();
 | |
|     if (running_partition == NULL || last_boot_app_partition_from_otadata == running_partition) {
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     esp_err_t err = esp_partition_erase_range(last_boot_app_partition_from_otadata, 0, last_boot_app_partition_from_otadata->size);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     int sec_id = inactive_otadata;
 | |
|     err = esp_partition_erase_range(ota_data_partition, sec_id * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
 | |
|     if (err != ESP_OK) {
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if SOC_EFUSE_SECURE_BOOT_KEY_DIGESTS > 1 && CONFIG_SECURE_BOOT_V2_ENABLED
 | |
| esp_err_t esp_ota_revoke_secure_boot_public_key(esp_ota_secure_boot_public_key_index_t index)
 | |
| {
 | |
|     if (!esp_secure_boot_enabled()) {
 | |
|         ESP_LOGE(TAG, "Secure boot v2 has not been enabled.");
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     if (index != SECURE_BOOT_PUBLIC_KEY_INDEX_0 &&
 | |
|          index != SECURE_BOOT_PUBLIC_KEY_INDEX_1 &&
 | |
|          index != SECURE_BOOT_PUBLIC_KEY_INDEX_2) {
 | |
|         ESP_LOGE(TAG, "Invalid Index found for public key revocation %d.", index);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     esp_image_sig_public_key_digests_t app_digests = { 0 };
 | |
|     esp_err_t err = esp_secure_boot_get_signature_blocks_for_running_app(true, &app_digests);
 | |
|     if (err != ESP_OK || app_digests.num_digests == 0) {
 | |
|         ESP_LOGE(TAG, "This app is not signed, but check signature on update is enabled in config. It won't be possible to verify any update.");
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     ets_secure_boot_key_digests_t trusted_keys;
 | |
|     int ets_status = ets_secure_boot_read_key_digests(&trusted_keys);
 | |
|     if (ets_status != ETS_OK) {
 | |
|         ESP_LOGE(TAG, "Could not read the secure boot key digests from efuse. Aborting..");
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     if (trusted_keys.key_digests[index] == NULL) {
 | |
|         ESP_LOGI(TAG, "Trusted Key block(%d) already revoked.", index);
 | |
|         return ESP_OK;
 | |
|     }
 | |
| 
 | |
|     esp_image_sig_public_key_digests_t trusted_digests = { 0 };
 | |
|     for (unsigned i = 0; i < SECURE_BOOT_NUM_BLOCKS; i++) {
 | |
|         if (i == index) {
 | |
|             continue; // omitting - to find if there is a valid key after revoking this digest
 | |
|         }
 | |
| 
 | |
|         if (trusted_keys.key_digests[i] != NULL) {
 | |
|             bool all_zeroes = true;
 | |
|             for (unsigned j = 0; j < ESP_SECURE_BOOT_DIGEST_LEN; j++) {
 | |
|                 all_zeroes = all_zeroes && (*(uint8_t *)(trusted_keys.key_digests[i] + j) == 0);
 | |
|             }
 | |
|             if (!all_zeroes) {
 | |
|                 memcpy(trusted_digests.key_digests[trusted_digests.num_digests++], (uint8_t *)trusted_keys.key_digests[i], ESP_SECURE_BOOT_DIGEST_LEN);
 | |
|             } else {
 | |
|                 ESP_LOGD(TAG, "Empty trusted key block (%d).", i);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bool match = false;
 | |
|     for (unsigned i = 0; i < trusted_digests.num_digests; i++) {
 | |
|         if (match == true) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         for (unsigned j = 0; j < app_digests.num_digests; j++) {
 | |
|             if (memcmp(trusted_digests.key_digests[i], app_digests.key_digests[j], ESP_SECURE_BOOT_DIGEST_LEN) == 0) {
 | |
|                 ESP_LOGI(TAG, "App key block(%d) matches Trusted key block(%d)[%d -> Next active trusted key block].", j, i, i);
 | |
|                 esp_err_t err = esp_efuse_set_digest_revoke(index);
 | |
|                 if (err != ESP_OK) {
 | |
|                     ESP_LOGE(TAG, "Failed to revoke digest (0x%x).", err);
 | |
|                     return ESP_FAIL;
 | |
|                 }
 | |
|                 ESP_LOGI(TAG, "Revoked signature block %d.", index);
 | |
|                 match = true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (match == false) {
 | |
|         ESP_LOGE(TAG, "Running app doesn't have another valid secure boot key. Cannot revoke current key(%d).", index);
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | 
