mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 06:11:06 +00:00 
			
		
		
		
	1. separate rom include files and linkscript to esp_rom 2. modefiy "include rom/xxx.h" to "include esp32/rom/xxx.h" 3. Forward compatible 4. update mqtt
		
			
				
	
	
		
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#include <freertos/FreeRTOS.h>
 | 
						|
#include <freertos/task.h>
 | 
						|
#include <freertos/semphr.h>
 | 
						|
#include <esp32/rom/spi_flash.h>
 | 
						|
#include <esp32/rom/cache.h>
 | 
						|
#include <soc/soc.h>
 | 
						|
#include <soc/dport_reg.h>
 | 
						|
#include "sdkconfig.h"
 | 
						|
#include "esp_ipc.h"
 | 
						|
#include "esp_attr.h"
 | 
						|
#include "esp_intr_alloc.h"
 | 
						|
#include "esp_spi_flash.h"
 | 
						|
#include "esp_log.h"
 | 
						|
 | 
						|
 | 
						|
static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t* saved_state);
 | 
						|
static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state);
 | 
						|
 | 
						|
static uint32_t s_flash_op_cache_state[2];
 | 
						|
 | 
						|
#ifndef CONFIG_FREERTOS_UNICORE
 | 
						|
static SemaphoreHandle_t s_flash_op_mutex;
 | 
						|
static volatile bool s_flash_op_can_start = false;
 | 
						|
static volatile bool s_flash_op_complete = false;
 | 
						|
#ifndef NDEBUG
 | 
						|
static volatile int s_flash_op_cpu = -1;
 | 
						|
#endif
 | 
						|
 | 
						|
void spi_flash_init_lock()
 | 
						|
{
 | 
						|
    s_flash_op_mutex = xSemaphoreCreateRecursiveMutex();
 | 
						|
    assert(s_flash_op_mutex != NULL);
 | 
						|
}
 | 
						|
 | 
						|
void spi_flash_op_lock()
 | 
						|
{
 | 
						|
    xSemaphoreTakeRecursive(s_flash_op_mutex, portMAX_DELAY);
 | 
						|
}
 | 
						|
 | 
						|
void spi_flash_op_unlock()
 | 
						|
{
 | 
						|
    xSemaphoreGiveRecursive(s_flash_op_mutex);
 | 
						|
}
 | 
						|
/*
 | 
						|
 If you're going to modify this, keep in mind that while the flash caches of the pro and app
 | 
						|
 cpu are separate, the psram cache is *not*. If one of the CPUs returns from a flash routine 
 | 
						|
 with its cache enabled but the other CPUs cache is not enabled yet, you will have problems
 | 
						|
 when accessing psram from the former CPU.
 | 
						|
*/
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_op_block_func(void* arg)
 | 
						|
{
 | 
						|
    // Disable scheduler on this CPU
 | 
						|
    vTaskSuspendAll();
 | 
						|
    // Restore interrupts that aren't located in IRAM
 | 
						|
    esp_intr_noniram_disable();
 | 
						|
    uint32_t cpuid = (uint32_t) arg;
 | 
						|
    // s_flash_op_complete flag is cleared on *this* CPU, otherwise the other
 | 
						|
    // CPU may reset the flag back to false before IPC task has a chance to check it
 | 
						|
    // (if it is preempted by an ISR taking non-trivial amount of time)
 | 
						|
    s_flash_op_complete = false;
 | 
						|
    s_flash_op_can_start = true;
 | 
						|
    while (!s_flash_op_complete) {
 | 
						|
        // busy loop here and wait for the other CPU to finish flash operation
 | 
						|
    }
 | 
						|
    // Flash operation is complete, re-enable cache
 | 
						|
    spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
 | 
						|
    // Restore interrupts that aren't located in IRAM
 | 
						|
    esp_intr_noniram_enable();
 | 
						|
    // Re-enable scheduler
 | 
						|
    xTaskResumeAll();
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu()
 | 
						|
{
 | 
						|
    spi_flash_op_lock();
 | 
						|
 | 
						|
    const uint32_t cpuid = xPortGetCoreID();
 | 
						|
    const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
    // For sanity check later: record the CPU which has started doing flash operation
 | 
						|
    assert(s_flash_op_cpu == -1);
 | 
						|
    s_flash_op_cpu = cpuid;
 | 
						|
#endif
 | 
						|
 | 
						|
    if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
 | 
						|
        // Scheduler hasn't been started yet, it means that spi_flash API is being
 | 
						|
        // called from the 2nd stage bootloader or from user_start_cpu0, i.e. from
 | 
						|
        // PRO CPU. APP CPU is either in reset or spinning inside user_start_cpu1,
 | 
						|
        // which is in IRAM. So it is safe to disable cache for the other_cpuid here.
 | 
						|
        assert(other_cpuid == 1);
 | 
						|
        spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
 | 
						|
    } else {
 | 
						|
        // Temporarily raise current task priority to prevent a deadlock while
 | 
						|
        // waiting for IPC task to start on the other CPU
 | 
						|
        int old_prio = uxTaskPriorityGet(NULL);
 | 
						|
        vTaskPrioritySet(NULL, configMAX_PRIORITIES - 1);
 | 
						|
        // Signal to the spi_flash_op_block_task on the other CPU that we need it to
 | 
						|
        // disable cache there and block other tasks from executing.
 | 
						|
        s_flash_op_can_start = false;
 | 
						|
        esp_err_t ret = esp_ipc_call(other_cpuid, &spi_flash_op_block_func, (void*) other_cpuid);
 | 
						|
        assert(ret == ESP_OK);
 | 
						|
        while (!s_flash_op_can_start) {
 | 
						|
            // Busy loop and wait for spi_flash_op_block_func to disable cache
 | 
						|
            // on the other CPU
 | 
						|
        }
 | 
						|
        // Disable scheduler on the current CPU
 | 
						|
        vTaskSuspendAll();
 | 
						|
        // Can now set the priority back to the normal one
 | 
						|
        vTaskPrioritySet(NULL, old_prio);
 | 
						|
        // This is guaranteed to run on CPU <cpuid> because the other CPU is now
 | 
						|
        // occupied by highest priority task
 | 
						|
        assert(xPortGetCoreID() == cpuid);
 | 
						|
    }
 | 
						|
    // Kill interrupts that aren't located in IRAM
 | 
						|
    esp_intr_noniram_disable();
 | 
						|
    // This CPU executes this routine, with non-IRAM interrupts and the scheduler 
 | 
						|
    // disabled. The other CPU is spinning in the spi_flash_op_block_func task, also
 | 
						|
    // with non-iram interrupts and the scheduler disabled. None of these CPUs will
 | 
						|
    // touch external RAM or flash this way, so we can safely disable caches.
 | 
						|
    spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
 | 
						|
    spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
 | 
						|
{
 | 
						|
    const uint32_t cpuid = xPortGetCoreID();
 | 
						|
    const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
    // Sanity check: flash operation ends on the same CPU as it has started
 | 
						|
    assert(cpuid == s_flash_op_cpu);
 | 
						|
    // More sanity check: if scheduler isn't started, only CPU0 can call this.
 | 
						|
    assert(!(xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED && cpuid != 0));
 | 
						|
    s_flash_op_cpu = -1;
 | 
						|
#endif
 | 
						|
 | 
						|
    // Re-enable cache on both CPUs. After this, cache (flash and external RAM) should work again.
 | 
						|
    spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
 | 
						|
    spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]);
 | 
						|
 | 
						|
    if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
 | 
						|
        // Signal to spi_flash_op_block_task that flash operation is complete
 | 
						|
        s_flash_op_complete = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Re-enable non-iram interrupts
 | 
						|
    esp_intr_noniram_enable();
 | 
						|
 | 
						|
    // Resume tasks on the current CPU, if the scheduler has started.
 | 
						|
    // NOTE: enabling non-IRAM interrupts has to happen before this,
 | 
						|
    // because once the scheduler has started, due to preemption the
 | 
						|
    // current task can end up being moved to the other CPU.
 | 
						|
    // But esp_intr_noniram_enable has to be called on the same CPU which
 | 
						|
    // called esp_intr_noniram_disable
 | 
						|
    if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
 | 
						|
        xTaskResumeAll();
 | 
						|
    }
 | 
						|
    // Release API lock
 | 
						|
    spi_flash_op_unlock();
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
 | 
						|
{
 | 
						|
    const uint32_t cpuid = xPortGetCoreID();
 | 
						|
    const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
 | 
						|
 | 
						|
    // do not care about other CPU, it was halted upon entering panic handler
 | 
						|
    spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
 | 
						|
    // Kill interrupts that aren't located in IRAM
 | 
						|
    esp_intr_noniram_disable();
 | 
						|
    // Disable cache on this CPU as well
 | 
						|
    spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
 | 
						|
{
 | 
						|
    const uint32_t cpuid = xPortGetCoreID();
 | 
						|
 | 
						|
    // Re-enable cache on this CPU
 | 
						|
    spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
 | 
						|
    // Re-enable non-iram interrupts
 | 
						|
    esp_intr_noniram_enable();
 | 
						|
}
 | 
						|
 | 
						|
#else // CONFIG_FREERTOS_UNICORE
 | 
						|
 | 
						|
void spi_flash_init_lock()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void spi_flash_op_lock()
 | 
						|
{
 | 
						|
    vTaskSuspendAll();
 | 
						|
}
 | 
						|
 | 
						|
void spi_flash_op_unlock()
 | 
						|
{
 | 
						|
    xTaskResumeAll();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu()
 | 
						|
{
 | 
						|
    spi_flash_op_lock();
 | 
						|
    esp_intr_noniram_disable();
 | 
						|
    spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
 | 
						|
{
 | 
						|
    spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
 | 
						|
    esp_intr_noniram_enable();
 | 
						|
    spi_flash_op_unlock();
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
 | 
						|
{
 | 
						|
    // Kill interrupts that aren't located in IRAM
 | 
						|
    esp_intr_noniram_disable();
 | 
						|
    // Disable cache on this CPU as well
 | 
						|
    spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
 | 
						|
{
 | 
						|
    // Re-enable cache on this CPU
 | 
						|
    spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
 | 
						|
    // Re-enable non-iram interrupts
 | 
						|
    esp_intr_noniram_enable();
 | 
						|
}
 | 
						|
 | 
						|
#endif // CONFIG_FREERTOS_UNICORE
 | 
						|
 | 
						|
/**
 | 
						|
 * The following two functions are replacements for Cache_Read_Disable and Cache_Read_Enable
 | 
						|
 * function in ROM. They are used to work around a bug where Cache_Read_Disable requires a call to
 | 
						|
 * Cache_Flush before Cache_Read_Enable, even if cached data was not modified.
 | 
						|
 */
 | 
						|
 | 
						|
static const uint32_t cache_mask  = DPORT_APP_CACHE_MASK_OPSDRAM | DPORT_APP_CACHE_MASK_DROM0 |
 | 
						|
        DPORT_APP_CACHE_MASK_DRAM1 | DPORT_APP_CACHE_MASK_IROM0 |
 | 
						|
        DPORT_APP_CACHE_MASK_IRAM1 | DPORT_APP_CACHE_MASK_IRAM0;
 | 
						|
 | 
						|
static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t* saved_state)
 | 
						|
{
 | 
						|
    uint32_t ret = 0;
 | 
						|
    if (cpuid == 0) {
 | 
						|
        ret |= DPORT_GET_PERI_REG_BITS2(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, 0);
 | 
						|
        while (DPORT_GET_PERI_REG_BITS2(DPORT_PRO_DCACHE_DBUG0_REG, DPORT_PRO_CACHE_STATE, DPORT_PRO_CACHE_STATE_S) != 1) {
 | 
						|
            ;
 | 
						|
        }
 | 
						|
        DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 0, DPORT_PRO_CACHE_ENABLE_S);
 | 
						|
    } else {
 | 
						|
        ret |= DPORT_GET_PERI_REG_BITS2(DPORT_APP_CACHE_CTRL1_REG, cache_mask, 0);
 | 
						|
        while (DPORT_GET_PERI_REG_BITS2(DPORT_APP_DCACHE_DBUG0_REG, DPORT_APP_CACHE_STATE, DPORT_APP_CACHE_STATE_S) != 1) {
 | 
						|
            ;
 | 
						|
        }
 | 
						|
        DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 0, DPORT_APP_CACHE_ENABLE_S);
 | 
						|
    }
 | 
						|
    *saved_state = ret;
 | 
						|
}
 | 
						|
 | 
						|
static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state)
 | 
						|
{
 | 
						|
    if (cpuid == 0) {
 | 
						|
        DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 1, DPORT_PRO_CACHE_ENABLE_S);
 | 
						|
        DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, saved_state, 0);
 | 
						|
    } else {
 | 
						|
        DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 1, DPORT_APP_CACHE_ENABLE_S);
 | 
						|
        DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, cache_mask, saved_state, 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
IRAM_ATTR bool spi_flash_cache_enabled()
 | 
						|
{
 | 
						|
    bool result = (DPORT_REG_GET_BIT(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_CACHE_ENABLE) != 0);
 | 
						|
#if portNUM_PROCESSORS == 2
 | 
						|
    result = result && (DPORT_REG_GET_BIT(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_CACHE_ENABLE) != 0);
 | 
						|
#endif
 | 
						|
    return result;
 | 
						|
}
 |