Files
esp-idf/components/bt/common/ble_log/ble_log_spi_out.c
Zhou Xiao f99389e00d feat(ble): ble log spi out dev phase 5
* supported ts sync for light sleep
* removed controller event queue dependency
* supported get lc ts for ESP32-C3/S3
* optimized ble log spi out code size
2025-07-28 14:11:26 +08:00

1413 lines
48 KiB
C

/*
* SPDX-FileCopyrightText: 2025 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "ble_log/ble_log_spi_out.h"
#if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED
// sdkconfig defines
#define SPI_OUT_UL_TASK_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_UL_TASK_BUF_SIZE
#define SPI_OUT_LL_ENABLED CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED
#define SPI_OUT_LL_TASK_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_LL_TASK_BUF_SIZE
#define SPI_OUT_LL_ISR_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_LL_ISR_BUF_SIZE
#define SPI_OUT_LL_HCI_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_LL_HCI_BUF_SIZE
#define SPI_OUT_MOSI_IO_NUM CONFIG_BT_BLE_LOG_SPI_OUT_MOSI_IO_NUM
#define SPI_OUT_SCLK_IO_NUM CONFIG_BT_BLE_LOG_SPI_OUT_SCLK_IO_NUM
#define SPI_OUT_CS_IO_NUM CONFIG_BT_BLE_LOG_SPI_OUT_CS_IO_NUM
#define SPI_OUT_TS_SYNC_ENABLED CONFIG_BT_BLE_LOG_SPI_OUT_TS_SYNC_ENABLED
#define SPI_OUT_SYNC_IO_NUM CONFIG_BT_BLE_LOG_SPI_OUT_SYNC_IO_NUM
#define SPI_OUT_FLUSH_TIMER_ENABLED CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMER_ENABLED
#define SPI_OUT_FLUSH_TIMEOUT_US (CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMEOUT * 1000)
#define SPI_OUT_LE_AUDIO_ENABLED CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_ENABLED
#define SPI_OUT_LE_AUDIO_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_BUF_SIZE
#define SPI_OUT_LE_AUDIO_TASK_CNT CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_TASK_CNT
#define SPI_OUT_HOST_ENABLED CONFIG_BT_BLE_LOG_SPI_OUT_HOST_ENABLED
#define SPI_OUT_HOST_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_HOST_BUF_SIZE
#define SPI_OUT_HOST_TASK_CNT CONFIG_BT_BLE_LOG_SPI_OUT_HOST_TASK_CNT
#define SPI_OUT_HCI_ENABLED CONFIG_BT_BLE_LOG_SPI_OUT_HCI_ENABLED
#define SPI_OUT_HCI_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_HCI_BUF_SIZE
#define SPI_OUT_HCI_TASK_CNT CONFIG_BT_BLE_LOG_SPI_OUT_HCI_TASK_CNT
#define SPI_OUT_MESH_ENABLED CONFIG_BT_BLE_LOG_SPI_OUT_MESH_ENABLED
#define SPI_OUT_MESH_BUF_SIZE CONFIG_BT_BLE_LOG_SPI_OUT_MESH_BUF_SIZE
#define SPI_OUT_MESH_TASK_CNT CONFIG_BT_BLE_LOG_SPI_OUT_MESH_TASK_CNT
// Private defines
#define BLE_LOG_TAG "BLE_LOG"
#define SPI_OUT_BUS SPI2_HOST
#define SPI_OUT_MAX_TRANSFER_SIZE (10240)
#define SPI_OUT_TRANS_ITVL_MIN_US (30)
#define SPI_OUT_LOG_STR_BUF_SIZE (100)
#define SPI_OUT_MALLOC(size) heap_caps_malloc(size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
#define SPI_OUT_TASK_PRIORITY (ESP_TASK_PRIO_MAX - 1)
#define SPI_OUT_TASK_STACK_SIZE (1024)
#if SPI_OUT_TS_SYNC_ENABLED
#define SPI_OUT_TS_SYNC_TIMEOUT_MS (1000)
#define SPI_OUT_TS_SYNC_TIMEOUT_US (SPI_OUT_TS_SYNC_TIMEOUT_MS * 1000)
#endif // SPI_OUT_TS_SYNC_ENABLED
// Queue size defines
#define SPI_OUT_PING_PONG_BUF_CNT (2)
#define SPI_OUT_UL_QUEUE_SIZE (SPI_OUT_PING_PONG_BUF_CNT)
#if SPI_OUT_LL_ENABLED
#define SPI_OUT_LL_QUEUE_SIZE (3 * SPI_OUT_PING_PONG_BUF_CNT)
#else
#define SPI_OUT_LL_QUEUE_SIZE (0)
#endif // SPI_OUT_LL_ENABLED
#if SPI_OUT_LE_AUDIO_ENABLED
#define SPI_OUT_LE_AUDIO_QUEUE_SIZE (SPI_OUT_PING_PONG_BUF_CNT)
#else
#define SPI_OUT_LE_AUDIO_QUEUE_SIZE (0)
#endif // SPI_OUT_LE_AUDIO_ENABLED
#if SPI_OUT_HOST_ENABLED
#define SPI_OUT_HOST_QUEUE_SIZE (SPI_OUT_PING_PONG_BUF_CNT)
#else
#define SPI_OUT_HOST_QUEUE_SIZE (0)
#endif // SPI_OUT_HOST_ENABLED
#if SPI_OUT_HCI_ENABLED
#define SPI_OUT_HCI_QUEUE_SIZE (SPI_OUT_PING_PONG_BUF_CNT)
#else
#define SPI_OUT_HCI_QUEUE_SIZE (0)
#endif // SPI_OUT_HCI_ENABLED
#if SPI_OUT_MESH_ENABLED
#define SPI_OUT_MESH_QUEUE_SIZE (SPI_OUT_PING_PONG_BUF_CNT)
#else
#define SPI_OUT_MESH_QUEUE_SIZE (0)
#endif // SPI_OUT_MESH_ENABLED
#define SPI_OUT_SPI_MASTER_QUEUE_SIZE (SPI_OUT_UL_QUEUE_SIZE +\
SPI_OUT_LL_QUEUE_SIZE +\
SPI_OUT_LE_AUDIO_QUEUE_SIZE +\
SPI_OUT_HOST_QUEUE_SIZE +\
SPI_OUT_HCI_QUEUE_SIZE +\
SPI_OUT_MESH_QUEUE_SIZE)
// Private typedefs
typedef struct {
// CRITICAL: 0 for available, 1 for need queue (ISR), 2 for in queue
// This flag is for multithreading, must be a word, do not modify
volatile uint32_t flag;
uint16_t buf_size;
uint16_t length;
spi_transaction_t trans;
} spi_out_trans_cb_t;
typedef struct {
spi_out_trans_cb_t *trans_cb[2];
uint8_t trans_cb_idx;
uint8_t type;
uint16_t lost_frame_cnt;
uint32_t lost_bytes_cnt;
uint32_t frame_sn;
} spi_out_log_cb_t;
typedef struct {
TaskHandle_t task_handle;
spi_out_log_cb_t *log_cb;
uint8_t *str_buf;
} task_map_t;
typedef struct {
uint16_t length;
uint8_t source;
uint8_t type;
uint16_t frame_sn;
} __attribute__((packed)) frame_head_t;
typedef struct {
uint8_t type;
uint16_t lost_frame_cnt;
uint32_t lost_bytes_cnt;
} __attribute__((packed)) loss_payload_t;
typedef struct {
uint8_t io_level;
uint32_t lc_ts;
uint32_t os_ts;
} __attribute__((packed)) ts_sync_data_t;
// Private enums
enum {
TRANS_CB_FLAG_AVAILABLE = 0,
TRANS_CB_FLAG_NEED_QUEUE,
TRANS_CB_FLAG_IN_QUEUE,
};
enum {
LOG_CB_TYPE_UL = 0,
LOG_CB_TYPE_LL,
LOG_CB_TYPE_LE_AUDIO,
LOG_CB_TYPE_HOST,
LOG_CB_TYPE_HCI,
LOG_CB_TYPE_MESH,
};
enum {
LL_LOG_FLAG_CONTINUE = 0,
LL_LOG_FLAG_END,
LL_LOG_FLAG_TASK,
LL_LOG_FLAG_ISR,
LL_LOG_FLAG_HCI,
LL_LOG_FLAG_RAW,
LL_LOG_FLAG_HCI_UPSTREAM,
};
enum {
LL_EV_FLAG_ISR_APPEND = 0,
LL_EV_FLAG_FLUSH_LOG,
};
// Private variables
static TaskHandle_t spi_out_task_handle = NULL;
static bool spi_out_inited = false;
static bool spi_out_enabled = false;
static spi_device_handle_t spi_handle = NULL;
static uint32_t last_tx_done_ts = 0;
#if SPI_OUT_LL_ENABLED
static bool ll_log_inited = false;
static spi_out_log_cb_t *ll_task_log_cb = NULL;
static spi_out_log_cb_t *ll_isr_log_cb = NULL;
static spi_out_log_cb_t *ll_hci_log_cb = NULL;
static uint32_t ll_ev_flags = 0;
#endif // SPI_OUT_LL_ENABLED
#if SPI_OUT_TS_SYNC_ENABLED
static bool ts_sync_inited = false;
static bool ts_sync_enabled = false;
static ts_sync_data_t ts_sync_data = {0};
#endif // SPI_OUT_TS_SYNC_ENABLED
#if SPI_OUT_FLUSH_TIMER_ENABLED
static esp_timer_handle_t flush_timer = NULL;
#endif // SPI_OUT_FLUSH_TIMER_ENABLED
// Extern function declarations
extern void esp_panic_handler_feed_wdts(void);
// Private function declarations
static int spi_out_init_trans(spi_out_trans_cb_t **trans_cb, uint16_t buf_size);
static void spi_out_deinit_trans(spi_out_trans_cb_t **trans_cb);
static void spi_out_tx_done_cb(spi_transaction_t *ret_trans);
static inline void spi_out_append_trans(spi_out_trans_cb_t *trans_cb);
static int spi_out_log_cb_init(spi_out_log_cb_t **log_cb, uint16_t buf_size, uint8_t type, uint8_t idx);
static void spi_out_log_cb_deinit(spi_out_log_cb_t **log_cb);
static inline bool spi_out_log_cb_check_trans(spi_out_log_cb_t *log_cb, uint16_t len, bool *need_append);
static inline void spi_out_log_cb_append_trans(spi_out_log_cb_t *log_cb);
static inline void spi_out_log_cb_flush_trans(spi_out_log_cb_t *log_cb);
static bool spi_out_log_cb_write(spi_out_log_cb_t *log_cb, const uint8_t *addr, uint16_t len,
const uint8_t *addr_append, uint16_t len_append, uint8_t source,
bool with_checksum);
static void spi_out_log_cb_write_loss(spi_out_log_cb_t *log_cb);
static void spi_out_log_cb_dump(spi_out_log_cb_t *log_cb);
#if SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED || SPI_OUT_HCI_ENABLED || SPI_OUT_LE_AUDIO_ENABLED
static bool spi_out_get_task_mapping(task_map_t *map, size_t num,
spi_out_log_cb_t **log_cb, uint8_t **str_buf);
#endif // SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED || SPI_OUT_HCI_ENABLED || SPI_OUT_LE_AUDIO_ENABLED
static void spi_out_log_flush(void);
static void spi_out_write_hex(spi_out_log_cb_t *log_cb, uint8_t source,
const uint8_t *addr, uint16_t len, bool with_ts);
#if SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED
static int spi_out_write_str(uint8_t *str_buf, const char *format, va_list args, int offset);
#endif // SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED
#if SPI_OUT_LL_ENABLED
static int spi_out_ll_log_init(void);
static void spi_out_ll_log_deinit(void);
static void spi_out_ll_log_flush(void);
#endif // SPI_OUT_LL_ENABLED
#if SPI_OUT_TS_SYNC_ENABLED
static int spi_out_ts_sync_init(void);
static void spi_out_ts_sync_deinit(void);
static void spi_out_ts_sync_enable(bool enable);
static void spi_out_ts_sync_toggle(void);
#if defined(CONFIG_IDF_TARGET_ESP32H2) || defined(CONFIG_IDF_TARGET_ESP32C6) || defined(CONFIG_IDF_TARGET_ESP32C5) ||\
defined(CONFIG_IDF_TARGET_ESP32C61) || defined(CONFIG_IDF_TARGET_ESP32H21)
extern uint32_t r_ble_lll_timer_current_tick_get(void);
#define SPI_OUT_GET_LC_TIME r_ble_lll_timer_current_tick_get()
#elif defined(CONFIG_IDF_TARGET_ESP32C2)
extern uint32_t r_os_cputime_get32(void);
#define SPI_OUT_GET_LC_TIME r_os_cputime_get32()
#elif defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S3)
extern uint32_t lld_read_clock_us(void);
#define SPI_OUT_GET_LC_TIME lld_read_clock_us()
#else
#define SPI_OUT_GET_LC_TIME esp_timer_get_time()
#endif
#endif // SPI_OUT_TS_SYNC_ENABLED
// Private templates
#define IF_1(...) __VA_ARGS__
#define IF_0(...)
#define LOG_MODULE_INIT_FLAG(ID) (ID##_log_inited)
#define LOG_MODULE_CB_ARR(ID) (ID##_log_cb)
#define LOG_MODULE_CB_CNT(ID) (ID##_log_cb_cnt)
#define LOG_MODULE_CB(ID, IDX) (ID##_log_cb[IDX])
#define LOG_MODULE_TASK_MAP(ID) (ID##_task_map)
#define LOG_MODULE_MUTEX(ID) (ID##_log_mutex)
#define LOG_MODULE_STR_BUF_ARR(ID) (ID##_log_str_buf)
#define LOG_MODULE_STR_BUF(ID, IDX) (ID##_log_str_buf[IDX])
#define LOG_MODULE_INIT(ID) (spi_out_##ID##_log_init)
#define LOG_MODULE_DEINIT(ID) (spi_out_##ID##_log_deinit)
#define LOG_MODULE_FLUSH(ID) (spi_out_##ID##_log_flush)
#define LOG_MODULE_DUMP(ID) \
do { \
if (LOG_MODULE_INIT_FLAG(ID)) { \
for (int i = 0; i < LOG_MODULE_CB_CNT(ID); i++) { \
spi_out_log_cb_dump(LOG_MODULE_CB(ID, i)); \
} \
} \
} while (0)
#define DECLARE_LOG_MODULE(ID, TYPE, BUF_SIZE, NUM_CB, USE_MUTEX, USE_STR) \
static bool LOG_MODULE_INIT_FLAG(ID) = false; \
static spi_out_log_cb_t *LOG_MODULE_CB_ARR(ID)[NUM_CB] = { NULL }; \
static const size_t LOG_MODULE_CB_CNT(ID) = (NUM_CB); \
static task_map_t LOG_MODULE_TASK_MAP(ID)[NUM_CB] = {0}; \
IF_##USE_MUTEX(static SemaphoreHandle_t LOG_MODULE_MUTEX(ID) = NULL;) \
IF_##USE_STR(static uint8_t *LOG_MODULE_STR_BUF_ARR(ID)[NUM_CB] = {0};) \
\
static int LOG_MODULE_INIT(ID)(void); \
static void LOG_MODULE_DEINIT(ID)(void); \
static void LOG_MODULE_FLUSH(ID)(void); \
\
static int LOG_MODULE_INIT(ID)(void) { \
if (LOG_MODULE_INIT_FLAG(ID)) { \
return 0; \
} \
IF_##USE_MUTEX( \
LOG_MODULE_MUTEX(ID) = xSemaphoreCreateMutex(); \
if (!LOG_MODULE_MUTEX(ID)) { \
goto failed; \
} \
) \
IF_##USE_STR( \
for (size_t i = 0; i < LOG_MODULE_CB_CNT(ID); i++) { \
LOG_MODULE_STR_BUF(ID, i) = (uint8_t *)SPI_OUT_MALLOC( \
SPI_OUT_LOG_STR_BUF_SIZE \
); \
if (!LOG_MODULE_STR_BUF(ID, i)) { \
goto failed; \
} \
LOG_MODULE_TASK_MAP(ID)[i].str_buf = LOG_MODULE_STR_BUF(ID, i); \
} \
) \
for (size_t i = 0; i < LOG_MODULE_CB_CNT(ID); i++) { \
if (spi_out_log_cb_init(&LOG_MODULE_CB(ID, i), BUF_SIZE, TYPE, i) != 0) \
{ \
goto failed; \
} \
LOG_MODULE_TASK_MAP(ID)[i].log_cb = LOG_MODULE_CB(ID, i); \
} \
LOG_MODULE_INIT_FLAG(ID) = true; \
return 0; \
failed: \
LOG_MODULE_DEINIT(ID)(); \
return -1; \
} \
static void LOG_MODULE_DEINIT(ID)(void) { \
LOG_MODULE_INIT_FLAG(ID) = false; \
IF_##USE_MUTEX( \
if (!LOG_MODULE_MUTEX(ID)) { \
return; \
} \
xSemaphoreTake(LOG_MODULE_MUTEX(ID), portMAX_DELAY); \
) \
IF_##USE_STR( \
for (size_t i = 0; i < LOG_MODULE_CB_CNT(ID); i++) { \
if (LOG_MODULE_STR_BUF(ID, i)) { \
free(LOG_MODULE_STR_BUF(ID, i)); \
LOG_MODULE_STR_BUF(ID, i) = NULL; \
} \
} \
) \
for (size_t i = 0; i < LOG_MODULE_CB_CNT(ID); i++) { \
spi_out_log_cb_deinit(&LOG_MODULE_CB(ID, i)); \
LOG_MODULE_CB(ID, i) = NULL; \
} \
for (size_t i = 0; i < LOG_MODULE_CB_CNT(ID); i++) { \
memset(&LOG_MODULE_TASK_MAP(ID)[i], 0, sizeof(task_map_t)); \
} \
IF_##USE_MUTEX( \
xSemaphoreGive(LOG_MODULE_MUTEX(ID)); \
vSemaphoreDelete(LOG_MODULE_MUTEX(ID)); \
LOG_MODULE_MUTEX(ID) = NULL; \
) \
} \
static void LOG_MODULE_FLUSH(ID)(void) { \
if (!LOG_MODULE_INIT_FLAG(ID)) { \
return; \
} \
IF_##USE_MUTEX( \
xSemaphoreTake(LOG_MODULE_MUTEX(ID), portMAX_DELAY); \
) \
for (size_t i = 0; i < LOG_MODULE_CB_CNT(ID); ++i) { \
spi_out_log_cb_write_loss(LOG_MODULE_CB(ID, i)); \
spi_out_log_cb_flush_trans(LOG_MODULE_CB(ID, i)); \
spi_out_log_cb_append_trans(LOG_MODULE_CB(ID, i)); \
} \
IF_##USE_MUTEX( \
xSemaphoreGive(LOG_MODULE_MUTEX(ID)); \
) \
}
DECLARE_LOG_MODULE(ul, LOG_CB_TYPE_UL, SPI_OUT_UL_TASK_BUF_SIZE, 1, 1, 1)
#if SPI_OUT_LE_AUDIO_ENABLED
DECLARE_LOG_MODULE(le_audio, LOG_CB_TYPE_LE_AUDIO, SPI_OUT_LE_AUDIO_BUF_SIZE,
SPI_OUT_LE_AUDIO_TASK_CNT, 0, 0)
#endif // SPI_OUT_LE_AUDIO_ENABLED
#if SPI_OUT_HOST_ENABLED
DECLARE_LOG_MODULE(host, LOG_CB_TYPE_HOST, SPI_OUT_HOST_BUF_SIZE,
SPI_OUT_HOST_TASK_CNT, 0, 1)
#endif // SPI_OUT_HOST_ENABLED
#if SPI_OUT_HCI_ENABLED
DECLARE_LOG_MODULE(hci, LOG_CB_TYPE_HCI, SPI_OUT_HCI_BUF_SIZE,
SPI_OUT_HCI_TASK_CNT, 0, 0)
#endif // SPI_OUT_HCI_ENABLED
#if SPI_OUT_MESH_ENABLED
DECLARE_LOG_MODULE(mesh, LOG_CB_TYPE_MESH, SPI_OUT_MESH_BUF_SIZE,
SPI_OUT_MESH_TASK_CNT, 0, 1)
#endif // SPI_OUT_MESH_ENABLED
// Private macros
#define SPI_OUT_FRAME_HEAD_LEN (sizeof(frame_head_t))
#define SPI_OUT_FRAME_TAIL_LEN (sizeof(uint32_t))
#define SPI_OUT_FRAME_OVERHEAD (SPI_OUT_FRAME_HEAD_LEN + SPI_OUT_FRAME_TAIL_LEN)
#define SPI_OUT_GET_FRAME_SN(VAR) __atomic_fetch_add(VAR, 1, __ATOMIC_RELAXED)
#define SPI_OUT_TASK_NOTIFY_FROM_ISR \
do { \
if (spi_out_task_handle) { \
BaseType_t xHigherPriorityTaskWoken = pdFALSE; \
vTaskNotifyGiveFromISR(spi_out_task_handle, &xHigherPriorityTaskWoken); \
portYIELD_FROM_ISR(xHigherPriorityTaskWoken); \
} \
} while (0)
#define SPI_OUT_TASK_NOTIFY_FROM_TASK \
do { \
if (spi_out_task_handle) { \
xTaskNotifyGive(spi_out_task_handle); \
} \
} while (0)
// Private functions
static int spi_out_init_trans(spi_out_trans_cb_t **trans_cb, uint16_t buf_size)
{
// Memory allocations
*trans_cb = (spi_out_trans_cb_t *)SPI_OUT_MALLOC(sizeof(spi_out_trans_cb_t));
if (!(*trans_cb)) {
return -1;
}
memset(*trans_cb, 0, sizeof(spi_out_trans_cb_t));
uint8_t *buf = (uint8_t *)SPI_OUT_MALLOC((size_t)buf_size);
if (!buf) {
free(*trans_cb);
*trans_cb = NULL;
return -1;
}
// Initialization
(*trans_cb)->buf_size = buf_size;
(*trans_cb)->trans.tx_buffer = buf;
(*trans_cb)->trans.user = (void *)(*trans_cb);
return 0;
}
static void spi_out_deinit_trans(spi_out_trans_cb_t **trans_cb)
{
if (!(*trans_cb)) {
return;
}
if ((*trans_cb)->trans.tx_buffer) {
free((uint8_t *)(*trans_cb)->trans.tx_buffer);
(*trans_cb)->trans.tx_buffer = NULL;
}
free(*trans_cb);
*trans_cb = NULL;
return;
}
IRAM_ATTR static void spi_out_tx_done_cb(spi_transaction_t *ret_trans)
{
last_tx_done_ts = esp_timer_get_time();
spi_out_trans_cb_t *trans_cb = (spi_out_trans_cb_t *)ret_trans->user;
trans_cb->length = 0;
trans_cb->flag = TRANS_CB_FLAG_AVAILABLE;
}
IRAM_ATTR static void spi_out_pre_tx_cb(spi_transaction_t *ret_trans)
{
// SPI slave continuous transaction workaround
while (esp_timer_get_time() - last_tx_done_ts < SPI_OUT_TRANS_ITVL_MIN_US) {}
}
IRAM_ATTR static inline void spi_out_append_trans(spi_out_trans_cb_t *trans_cb)
{
if (trans_cb->flag != TRANS_CB_FLAG_NEED_QUEUE || !trans_cb->length) {
return;
}
// Note: To support dump log when disabled
if (!spi_out_enabled) {
goto recycle;
}
// CRITICAL: Length unit conversion from bytes to bits
trans_cb->trans.length = trans_cb->length * 8;
trans_cb->trans.rxlength = 0;
trans_cb->flag = TRANS_CB_FLAG_IN_QUEUE;
if (spi_device_queue_trans(spi_handle, &(trans_cb->trans), 0) != ESP_OK) {
goto recycle;
}
SPI_OUT_TASK_NOTIFY_FROM_ISR;
return;
recycle:
trans_cb->length = 0;
trans_cb->flag = TRANS_CB_FLAG_AVAILABLE;
return;
}
static int spi_out_log_cb_init(spi_out_log_cb_t **log_cb, uint16_t buf_size, uint8_t type, uint8_t idx)
{
// Initialize log control block
*log_cb = (spi_out_log_cb_t *)SPI_OUT_MALLOC(sizeof(spi_out_log_cb_t));
if (!(*log_cb)) {
return -1;
}
memset(*log_cb, 0, sizeof(spi_out_log_cb_t));
// Initialize transactions
int ret = 0;
for (uint8_t i = 0; i < 2; i++) {
ret |= spi_out_init_trans(&((*log_cb)->trans_cb[i]), buf_size);
}
if (ret != 0) {
spi_out_log_cb_deinit(log_cb);
return -1;
}
(*log_cb)->type = (type << 4) | (idx);
return 0;
}
static void spi_out_log_cb_deinit(spi_out_log_cb_t **log_cb)
{
if (!(*log_cb)) {
return;
}
for (uint8_t i = 0; i < 2; i++) {
if ((*log_cb)->trans_cb[i]) {
spi_out_deinit_trans(&((*log_cb)->trans_cb[i]));
}
}
free(*log_cb);
*log_cb = NULL;
return;
}
IRAM_ATTR static inline bool spi_out_log_cb_check_trans(spi_out_log_cb_t *log_cb, uint16_t len, bool *need_append)
{
spi_out_trans_cb_t *trans_cb;
uint16_t frame_len = len + SPI_OUT_FRAME_OVERHEAD;
*need_append = false;
for (uint8_t i = 0; i < 2; i++) {
trans_cb = log_cb->trans_cb[log_cb->trans_cb_idx];
if (frame_len > trans_cb->buf_size) {
goto failed;
}
if (trans_cb->flag == TRANS_CB_FLAG_AVAILABLE) {
if ((trans_cb->buf_size - trans_cb->length) >= frame_len) {
return true;
} else {
trans_cb->flag = TRANS_CB_FLAG_NEED_QUEUE;
*need_append = true;
}
}
log_cb->trans_cb_idx = !(log_cb->trans_cb_idx);
}
failed:
log_cb->lost_bytes_cnt += frame_len;
log_cb->lost_frame_cnt++;
return false;
}
// CRITICAL: Shall not be called from ISR!
IRAM_ATTR static inline void spi_out_log_cb_append_trans(spi_out_log_cb_t *log_cb)
{
spi_out_trans_cb_t *trans_cb;
uint8_t idx = !log_cb->trans_cb_idx;
for (uint8_t i = 0; i < 2; i++) {
trans_cb = log_cb->trans_cb[idx];
if (trans_cb->flag == TRANS_CB_FLAG_NEED_QUEUE) {
spi_out_append_trans(trans_cb);
}
idx = !idx;
}
}
IRAM_ATTR static inline void spi_out_log_cb_flush_trans(spi_out_log_cb_t *log_cb)
{
spi_out_trans_cb_t *trans_cb;
for (uint8_t i = 0; i < 2; i++) {
trans_cb = log_cb->trans_cb[i];
if (trans_cb->length && (trans_cb->flag == TRANS_CB_FLAG_AVAILABLE)) {
trans_cb->flag = TRANS_CB_FLAG_NEED_QUEUE;
}
}
}
// Return value: Need append
IRAM_ATTR static bool spi_out_log_cb_write(spi_out_log_cb_t *log_cb, const uint8_t *addr, uint16_t len,
const uint8_t *addr_append, uint16_t len_append, uint8_t source,
bool with_checksum)
{
spi_out_trans_cb_t *trans_cb = log_cb->trans_cb[log_cb->trans_cb_idx];
uint8_t *buf = (uint8_t *)trans_cb->trans.tx_buffer + trans_cb->length;
uint16_t total_length = len + len_append;
frame_head_t head = {
.length = total_length,
.source = source,
.type = log_cb->type,
.frame_sn = SPI_OUT_GET_FRAME_SN(&(log_cb->frame_sn)) & 0xFFFF,
};
memcpy(buf, (const uint8_t *)&head, SPI_OUT_FRAME_HEAD_LEN);
memcpy(buf + SPI_OUT_FRAME_HEAD_LEN, addr, len);
if (len_append && addr_append) {
memcpy(buf + SPI_OUT_FRAME_HEAD_LEN + len, addr_append, len_append);
}
uint32_t checksum = 0;
for (int i = 0; i < SPI_OUT_FRAME_HEAD_LEN + total_length; i++) {
checksum += buf[i];
}
memcpy(buf + SPI_OUT_FRAME_HEAD_LEN + total_length, &checksum, SPI_OUT_FRAME_TAIL_LEN);
trans_cb->length += total_length + SPI_OUT_FRAME_OVERHEAD;
if ((trans_cb->buf_size - trans_cb->length) <= SPI_OUT_FRAME_OVERHEAD) {
trans_cb->flag = TRANS_CB_FLAG_NEED_QUEUE;
return true;
}
return false;
}
IRAM_ATTR static void spi_out_log_cb_write_loss(spi_out_log_cb_t *log_cb)
{
if (!log_cb->lost_bytes_cnt || !log_cb->lost_frame_cnt) {
return;
}
bool need_append;
if (spi_out_log_cb_check_trans(log_cb, sizeof(loss_payload_t), &need_append)) {
loss_payload_t payload = {
.type = log_cb->type,
.lost_frame_cnt = log_cb->lost_frame_cnt,
.lost_bytes_cnt = log_cb->lost_bytes_cnt,
};
spi_out_log_cb_write(log_cb, (const uint8_t *)&payload, sizeof(loss_payload_t),
NULL, 0, BLE_LOG_SPI_OUT_SOURCE_LOSS, true);
log_cb->lost_frame_cnt = 0;
log_cb->lost_bytes_cnt = 0;
}
}
static void spi_out_log_cb_dump(spi_out_log_cb_t *log_cb)
{
spi_out_trans_cb_t *trans_cb;
uint8_t *buf;
for (uint8_t i = 0; i < 2; i++) {
// Dump the last transaction before dumping the current transaction
log_cb->trans_cb_idx = !(log_cb->trans_cb_idx);
trans_cb = log_cb->trans_cb[log_cb->trans_cb_idx];
buf = (uint8_t *)trans_cb->trans.tx_buffer;
for (uint16_t j = 0; j < trans_cb->buf_size; j++) {
esp_rom_printf("%02x ", buf[j]);
// Feed watchdogs periodically to avoid wdts timeout
if ((j % 100) == 0) {
esp_panic_handler_feed_wdts();
}
}
}
}
static void spi_out_update_task_mapping(int idx, void *ptr)
{
// It is a must to clear task handle after task deletion
task_map_t *entry = (task_map_t *)ptr;
entry->task_handle = NULL;
}
#if SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED || SPI_OUT_HCI_ENABLED || SPI_OUT_LE_AUDIO_ENABLED
static bool spi_out_get_task_mapping(task_map_t *map, size_t num,
spi_out_log_cb_t **log_cb, uint8_t **str_buf)
{
if (!map || !log_cb) {
return false;
}
// Shall not be called in ISR
TaskHandle_t handle = xTaskGetCurrentTaskHandle();
if (!handle) {
return false;
}
// Check if the given task handle is already in map
for (size_t i = 0; i < num; i++) {
task_map_t *entry = &map[i];
if (entry->task_handle == handle) {
*log_cb = entry->log_cb;
if (str_buf) {
*str_buf = entry->str_buf;
}
return true;
}
}
// Task handle not in map, try to allocate free slot
bool ret = false;
portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL_SAFE(&spinlock);
for (size_t i = 0; i < num; i++) {
task_map_t *entry = &map[i];
if (entry->task_handle == NULL) {
vTaskSetThreadLocalStoragePointerAndDelCallback(
NULL, 0, (void *)entry, spi_out_update_task_mapping
);
entry->task_handle = handle;
*log_cb = entry->log_cb;
if (str_buf) {
*str_buf = entry->str_buf;
}
ret = true;
break;
}
}
portEXIT_CRITICAL_SAFE(&spinlock);
return ret;
}
#endif // SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED || SPI_OUT_HCI_ENABLED || SPI_OUT_LE_AUDIO_ENABLED
static void spi_out_log_flush(void)
{
LOG_MODULE_FLUSH(ul)();
#if SPI_OUT_LL_ENABLED
ll_ev_flags |= BIT(LL_EV_FLAG_FLUSH_LOG);
SPI_OUT_TASK_NOTIFY_FROM_TASK;
#endif // SPI_OUT_LL_ENABLED
#if SPI_OUT_LE_AUDIO_ENABLED
LOG_MODULE_FLUSH(le_audio)();
#endif // SPI_OUT_LE_AUDIO_ENABLED
#if SPI_OUT_HOST_ENABLED
LOG_MODULE_FLUSH(host)();
#endif // SPI_OUT_HOST_ENABLED
#if SPI_OUT_HCI_ENABLED
LOG_MODULE_FLUSH(hci)();
#endif // SPI_OUT_HCI_ENABLED
#if SPI_OUT_MESH_ENABLED
LOG_MODULE_FLUSH(mesh)();
#endif // SPI_OUT_MESH_ENABLED
}
#if SPI_OUT_FLUSH_TIMER_ENABLED
// Context: ESP timer
static void esp_timer_cb_log_flush(void)
{
spi_out_log_flush();
esp_timer_start_once(flush_timer, SPI_OUT_FLUSH_TIMEOUT_US);
}
#endif // SPI_OUT_FLUSH_TIMER_ENABLED
static void spi_out_write_hex(spi_out_log_cb_t *log_cb, uint8_t source,
const uint8_t *addr, uint16_t len, bool with_ts)
{
uint16_t total_len = with_ts? (len + sizeof(uint32_t)): len;
bool need_append;
if (spi_out_log_cb_check_trans(log_cb, total_len, &need_append)) {
if (with_ts) {
uint32_t os_ts = pdTICKS_TO_MS(xTaskGetTickCount());
need_append |= spi_out_log_cb_write(log_cb, (const uint8_t *)&os_ts,
sizeof(uint32_t), addr, len, source, true);
} else {
need_append |= spi_out_log_cb_write(log_cb, addr, len, NULL, 0, source, true);
}
}
if (need_append) {
spi_out_log_cb_append_trans(log_cb);
}
spi_out_log_cb_write_loss(log_cb);
}
#if SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED
static int spi_out_write_str(uint8_t *str_buf, const char *format, va_list args, int offset)
{
int len = vsnprintf((char *)(str_buf + offset), SPI_OUT_LOG_STR_BUF_SIZE - offset, format, args);
if (len < 0) {
return 0;
}
len += offset;
if (len >= SPI_OUT_LOG_STR_BUF_SIZE) {
len = SPI_OUT_LOG_STR_BUF_SIZE - 1;
str_buf[len] = '\0';
}
return len;
}
#endif // SPI_OUT_HOST_ENABLED || SPI_OUT_MESH_ENABLED
#if SPI_OUT_LL_ENABLED
static int spi_out_ll_log_init(void)
{
if (ll_log_inited) {
return 0;
}
// Initialize log control blocks for controller task & ISR logs
if (spi_out_log_cb_init(&ll_task_log_cb, SPI_OUT_LL_TASK_BUF_SIZE, LOG_CB_TYPE_LL, 0) != 0) {
goto task_log_cb_init_failed;
}
if (spi_out_log_cb_init(&ll_isr_log_cb, SPI_OUT_LL_ISR_BUF_SIZE, LOG_CB_TYPE_LL, 1) != 0) {
goto isr_log_cb_init_failed;
}
if (spi_out_log_cb_init(&ll_hci_log_cb, SPI_OUT_LL_HCI_BUF_SIZE, LOG_CB_TYPE_LL, 2) != 0) {
goto hci_log_cb_init_failed;
}
// Initialization done
ll_log_inited = true;
return 0;
hci_log_cb_init_failed:
spi_out_log_cb_deinit(&ll_isr_log_cb);
isr_log_cb_init_failed:
spi_out_log_cb_deinit(&ll_task_log_cb);
task_log_cb_init_failed:
return -1;
}
static void spi_out_ll_log_deinit(void)
{
if (!ll_log_inited) {
return;
}
spi_out_log_cb_deinit(&ll_hci_log_cb);
spi_out_log_cb_deinit(&ll_isr_log_cb);
spi_out_log_cb_deinit(&ll_task_log_cb);
// Deinitialization done
ll_log_inited = false;
return;
}
static void spi_out_ll_log_flush(void)
{
if (!ll_log_inited) {
return;
}
portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL_SAFE(&spinlock);
spi_out_log_cb_flush_trans(ll_task_log_cb);
spi_out_log_cb_flush_trans(ll_hci_log_cb);
spi_out_log_cb_flush_trans(ll_isr_log_cb);
portEXIT_CRITICAL_SAFE(&spinlock);
spi_out_log_cb_append_trans(ll_task_log_cb);
spi_out_log_cb_append_trans(ll_hci_log_cb);
spi_out_log_cb_append_trans(ll_isr_log_cb);
}
#endif // SPI_OUT_LL_ENABLED
#if SPI_OUT_TS_SYNC_ENABLED
static int spi_out_ts_sync_init(void)
{
if (ts_sync_inited) {
return 0;
}
// Initialize sync IO
gpio_config_t io_conf = {
.intr_type = GPIO_INTR_DISABLE,
.mode = GPIO_MODE_OUTPUT,
.pin_bit_mask = BIT(SPI_OUT_SYNC_IO_NUM),
.pull_down_en = 0,
.pull_up_en = 0
};
if (gpio_config(&io_conf) != ESP_OK) {
goto failed;
}
// Initialization done
ts_sync_inited = true;
return 0;
failed:
return -1;
}
static void spi_out_ts_sync_deinit(void)
{
ts_sync_inited = false;
spi_out_ts_sync_enable(false);
gpio_reset_pin(SPI_OUT_SYNC_IO_NUM);
}
static void spi_out_ts_sync_enable(bool enable)
{
// Update ts sync status
ts_sync_enabled = enable;
if (!enable && !ts_sync_data.io_level) {
gpio_set_level(SPI_OUT_SYNC_IO_NUM, 1);
}
ts_sync_data.io_level = 0;
gpio_set_level(SPI_OUT_SYNC_IO_NUM, 0);
}
static void spi_out_ts_sync_toggle(void)
{
// Toggle sync IO
ts_sync_data.io_level = !ts_sync_data.io_level;
// Enter critical
portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&spinlock);
// Get LC timestamp
ts_sync_data.lc_ts = SPI_OUT_GET_LC_TIME;
// Set sync IO level
gpio_set_level(SPI_OUT_SYNC_IO_NUM, (uint32_t)ts_sync_data.io_level);
// Get OS timestamp
ts_sync_data.os_ts = pdTICKS_TO_MS(xTaskGetTickCountFromISR());
portEXIT_CRITICAL(&spinlock);
// Exit critical
}
#endif // SPI_OUT_TS_SYNC_ENABLED
static void spi_out_task(void *pvParameters)
{
while (1) {
if (ulTaskNotifyTake(pdTRUE, portMAX_DELAY)) {
#if SPI_OUT_LL_ENABLED
ble_log_spi_out_ll_log_ev_proc();
#endif // SPI_OUT_LL_ENABLED
#if SPI_OUT_TS_SYNC_ENABLED
if (ts_sync_inited && ts_sync_enabled) {
uint32_t curr_os_ts = pdTICKS_TO_MS(xTaskGetTickCount());
if ((curr_os_ts - ts_sync_data.os_ts) > SPI_OUT_TS_SYNC_TIMEOUT_MS) {
spi_out_ts_sync_toggle();
ble_log_spi_out_write(BLE_LOG_SPI_OUT_SOURCE_SYNC,
(const uint8_t *)&ts_sync_data, sizeof(ts_sync_data_t));
}
}
#endif // SPI_OUT_TS_SYNC_ENABLED
}
}
}
// Public functions
int ble_log_spi_out_init(void)
{
// Avoid double init
if (spi_out_inited) {
return 0;
}
// Initialize SPI
spi_bus_config_t bus_config = {
.miso_io_num = -1,
.mosi_io_num = SPI_OUT_MOSI_IO_NUM,
.sclk_io_num = SPI_OUT_SCLK_IO_NUM,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
.max_transfer_sz = SPI_OUT_MAX_TRANSFER_SIZE,
#if CONFIG_SPI_MASTER_ISR_IN_IRAM
.intr_flags = ESP_INTR_FLAG_IRAM
#endif // CONFIG_SPI_MASTER_ISR_IN_IRAM
};
spi_device_interface_config_t dev_config = {
.clock_speed_hz = SPI_MASTER_FREQ_20M,
.mode = 0,
.spics_io_num = SPI_OUT_CS_IO_NUM,
.queue_size = SPI_OUT_SPI_MASTER_QUEUE_SIZE,
.post_cb = spi_out_tx_done_cb,
.pre_cb = spi_out_pre_tx_cb,
.flags = SPI_DEVICE_NO_RETURN_RESULT
};
if (spi_bus_initialize(SPI_OUT_BUS, &bus_config, SPI_DMA_CH_AUTO) != ESP_OK) {
goto failed;
}
if (spi_bus_add_device(SPI_OUT_BUS, &dev_config, &spi_handle) != ESP_OK) {
goto failed;
}
if (LOG_MODULE_INIT(ul)() != 0) {
goto failed;
}
#if SPI_OUT_LL_ENABLED
if (spi_out_ll_log_init() != 0) {
goto failed;
}
#endif // SPI_OUT_LL_ENABLED
#if SPI_OUT_TS_SYNC_ENABLED
if (spi_out_ts_sync_init() != 0) {
goto failed;
}
#endif // SPI_OUT_TS_SYNC_ENABLED
#if SPI_OUT_LE_AUDIO_ENABLED
if (LOG_MODULE_INIT(le_audio)() != 0) {
goto failed;
}
#endif // SPI_OUT_LE_AUDIO_ENABLED
#if SPI_OUT_HOST_ENABLED
if (LOG_MODULE_INIT(host)() != 0) {
goto failed;
}
#endif // SPI_OUT_HOST_ENABLED
#if SPI_OUT_HCI_ENABLED
if (LOG_MODULE_INIT(hci)() != 0) {
goto failed;
}
#endif // SPI_OUT_HCI_ENABLED
#if SPI_OUT_MESH_ENABLED
if (LOG_MODULE_INIT(mesh)() != 0) {
goto failed;
}
#endif // SPI_OUT_MESH_ENABLED
#if SPI_OUT_FLUSH_TIMER_ENABLED
esp_timer_create_args_t timer_args = {
.callback = (esp_timer_cb_t)esp_timer_cb_log_flush,
.dispatch_method = ESP_TIMER_TASK
};
if (esp_timer_create(&timer_args, &flush_timer) != ESP_OK) {
goto failed;
}
#endif // SPI_OUT_FLUSH_TIMER_ENABLED
BaseType_t ret = xTaskCreate(spi_out_task, "BLELogSPIOut",
SPI_OUT_TASK_STACK_SIZE, NULL,
SPI_OUT_TASK_PRIORITY, &spi_out_task_handle);
if (ret == pdFALSE) {
goto failed;
}
// Initialization done
spi_out_inited = true;
spi_out_enabled = true;
#if SPI_OUT_FLUSH_TIMER_ENABLED
esp_timer_start_once(flush_timer, SPI_OUT_FLUSH_TIMEOUT_US);
#endif // SPI_OUT_FLUSH_TIMER_ENABLED
return 0;
failed:
ble_log_spi_out_deinit();
return -1;
}
void ble_log_spi_out_deinit(void)
{
spi_out_inited = false;
spi_out_enabled = false;
if (spi_out_task_handle) {
vTaskDelete(spi_out_task_handle);
spi_out_task_handle = NULL;
}
#if SPI_OUT_FLUSH_TIMER_ENABLED
if (flush_timer) {
esp_timer_stop(flush_timer);
esp_timer_delete(flush_timer);
flush_timer = NULL;
}
#endif // SPI_OUT_FLUSH_TIMER_ENABLED
if (spi_handle) {
// Drain all queued transactions
assert(spi_device_acquire_bus(spi_handle, portMAX_DELAY) == ESP_OK);
spi_device_release_bus(spi_handle);
// Remove SPI master
spi_bus_remove_device(spi_handle);
spi_handle = NULL;
spi_bus_free(SPI_OUT_BUS);
}
#if SPI_OUT_TS_SYNC_ENABLED
spi_out_ts_sync_deinit();
#endif // SPI_OUT_TS_SYNC_ENABLED
#if SPI_OUT_MESH_ENABLED
LOG_MODULE_DEINIT(mesh)();
#endif // SPI_OUT_MESH_ENABLED
#if SPI_OUT_HCI_ENABLED
LOG_MODULE_DEINIT(hci)();
#endif // SPI_OUT_HCI_ENABLED
#if SPI_OUT_HOST_ENABLED
LOG_MODULE_DEINIT(host)();
#endif // SPI_OUT_HOST_ENABLED
#if SPI_OUT_LE_AUDIO_ENABLED
LOG_MODULE_DEINIT(le_audio)();
#endif // SPI_OUT_LE_AUDIO_ENABLED
#if SPI_OUT_LL_ENABLED
spi_out_ll_log_deinit();
#endif // SPI_OUT_LL_ENABLED
LOG_MODULE_DEINIT(ul)();
}
#if SPI_OUT_TS_SYNC_ENABLED
void ble_log_spi_out_ts_sync_start(void)
{
// Check if SPI out is initialized
if (!spi_out_inited) {
return;
}
spi_out_ts_sync_enable(true);
}
void ble_log_spi_out_ts_sync_stop(void)
{
// Check if SPI out is initialized
if (!spi_out_inited) {
return;
}
spi_out_ts_sync_enable(false);
}
#endif // SPI_OUT_TS_SYNC_ENABLED
#if SPI_OUT_LL_ENABLED
// Only LL task has access to this API
IRAM_ATTR void ble_log_spi_out_ll_write(uint32_t len, const uint8_t *addr, uint32_t len_append,
const uint8_t *addr_append, uint32_t flag)
{
// Raw logs will come in case of assert, shall be printed to console directly
if (flag & BIT(LL_LOG_FLAG_RAW)) {
if (len && addr) {
for (uint32_t i = 0; i < len; i++) { esp_rom_printf("%02x ", addr[i]); }
}
if (len_append && addr_append) {
for (uint32_t i = 0; i < len_append; i++) { esp_rom_printf("%02x ", addr_append[i]); }
}
if (flag & BIT(LL_LOG_FLAG_END)) { esp_rom_printf("\n"); }
}
if (!ll_log_inited) {
return;
}
bool in_isr = false;
uint8_t source;
spi_out_log_cb_t *log_cb;
if (flag & BIT(LL_LOG_FLAG_ISR)) {
log_cb = ll_isr_log_cb;
source = BLE_LOG_SPI_OUT_SOURCE_ESP_ISR;
in_isr = true;
} else if (flag & BIT(LL_LOG_FLAG_HCI)) {
log_cb = ll_hci_log_cb;
source = BLE_LOG_SPI_OUT_SOURCE_LL_HCI;
} else if (flag & BIT(LL_LOG_FLAG_HCI_UPSTREAM)) {
log_cb = ll_hci_log_cb;
source = BLE_LOG_SPI_OUT_SOURCE_HCI_UPSTREAM;
} else {
log_cb = ll_task_log_cb;
source = BLE_LOG_SPI_OUT_SOURCE_ESP;
}
bool need_append;
if (spi_out_log_cb_check_trans(log_cb, (uint16_t)(len + len_append), &need_append)) {
need_append |= spi_out_log_cb_write(log_cb, addr, (uint16_t)len, addr_append,
(uint16_t)len_append, source, true);
}
if (need_append) {
if (in_isr) {
ll_ev_flags |= BIT(LL_EV_FLAG_ISR_APPEND);
SPI_OUT_TASK_NOTIFY_FROM_ISR;
} else {
spi_out_log_cb_append_trans(log_cb);
}
}
spi_out_log_cb_write_loss(log_cb);
}
IRAM_ATTR void ble_log_spi_out_ll_log_ev_proc(void)
{
if (!ll_log_inited) {
return;
}
if (ll_ev_flags & BIT(LL_EV_FLAG_ISR_APPEND)) {
spi_out_log_cb_append_trans(ll_isr_log_cb);
ll_ev_flags &= ~BIT(LL_EV_FLAG_ISR_APPEND);
}
if (ll_ev_flags & BIT(LL_EV_FLAG_FLUSH_LOG)) {
spi_out_ll_log_flush();
ll_ev_flags &= ~BIT(LL_EV_FLAG_FLUSH_LOG);
}
ll_ev_flags = 0;
}
#endif // SPI_OUT_LL_ENABLED
int ble_log_spi_out_write(uint8_t source, const uint8_t *addr, uint16_t len)
{
if (!LOG_MODULE_INIT_FLAG(ul)) {
return -1;
}
xSemaphoreTake(LOG_MODULE_MUTEX(ul), portMAX_DELAY);
spi_out_write_hex(LOG_MODULE_CB(ul, 0), source, addr, len, false);
xSemaphoreGive(LOG_MODULE_MUTEX(ul));
return 0;
}
void ble_log_spi_out_dump_all(void)
{
if (!spi_out_inited) {
return;
}
portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL_SAFE(&spinlock);
esp_rom_printf("[SPI_LOG_DUMP_START:\n");
#if SPI_OUT_LL_ENABLED
if (ll_log_inited) {
spi_out_log_cb_dump(ll_isr_log_cb);
spi_out_log_cb_dump(ll_task_log_cb);
spi_out_log_cb_dump(ll_hci_log_cb);
}
#endif // SPI_OUT_LL_ENABLED
LOG_MODULE_DUMP(ul);
#if SPI_OUT_LE_AUDIO_ENABLED
LOG_MODULE_DUMP(le_audio);
#endif // SPI_OUT_LE_AUDIO_ENABLED
#if SPI_OUT_HOST_ENABLED
LOG_MODULE_DUMP(host);
#endif // SPI_OUT_HOST_ENABLED
#if SPI_OUT_HCI_ENABLED
LOG_MODULE_DUMP(hci);
#endif // SPI_OUT_HCI_ENABLED
#if SPI_OUT_MESH_ENABLED
LOG_MODULE_DUMP(mesh);
#endif // SPI_OUT_MESH_ENABLED
esp_rom_printf("\n:SPI_LOG_DUMP_END]\n\n");
portEXIT_CRITICAL_SAFE(&spinlock);
}
void ble_log_spi_out_enable(bool enable)
{
if (!spi_out_inited) {
return;
}
spi_out_enabled = enable;
if (!enable) {
#if CONFIG_BT_BLE_LOG_SPI_OUT_TS_SYNC_ENABLED
ble_log_spi_out_ts_sync_stop();
#endif // CONFIG_BT_BLE_LOG_SPI_OUT_TS_SYNC_ENABLED
}
}
void ble_log_spi_out_flush(void)
{
if (!spi_out_enabled) {
return;
}
spi_out_log_flush();
}
#if SPI_OUT_LE_AUDIO_ENABLED
IRAM_ATTR void ble_log_spi_out_le_audio_write(const uint8_t *addr, uint16_t len)
{
if (!LOG_MODULE_INIT_FLAG(le_audio)) {
return;
}
spi_out_log_cb_t *log_cb;
if (!spi_out_get_task_mapping(LOG_MODULE_TASK_MAP(le_audio),
LOG_MODULE_CB_CNT(le_audio), &log_cb, NULL)) {
return;
}
bool need_append;
if (spi_out_log_cb_check_trans(log_cb, len, &need_append)) {
need_append |= spi_out_log_cb_write(log_cb, addr, len, NULL, 0,
BLE_LOG_SPI_OUT_SOURCE_LE_AUDIO, false);
}
if (need_append) {
spi_out_log_cb_append_trans(log_cb);
}
spi_out_log_cb_write_loss(log_cb);
return;
}
#endif // SPI_OUT_LE_AUDIO_ENABLED
#if SPI_OUT_HOST_ENABLED
int ble_log_spi_out_host_write(uint8_t source, const char *prefix, const char *format, ...)
{
if (!LOG_MODULE_INIT_FLAG(host) || !prefix || !format) {
return -1;
}
spi_out_log_cb_t *log_cb;
uint8_t *str_buf;
bool fallback = false;
if (!spi_out_get_task_mapping(LOG_MODULE_TASK_MAP(host),
LOG_MODULE_CB_CNT(host), &log_cb, &str_buf)) {
// NimBLE workaround
fallback = true;
xSemaphoreTake(LOG_MODULE_MUTEX(ul), portMAX_DELAY);
log_cb = LOG_MODULE_CB(ul, 0);
str_buf = LOG_MODULE_STR_BUF(ul, 0);
}
// Copy prefix to string buffer
int prefix_len = strlen(prefix);
if (prefix_len >= SPI_OUT_LOG_STR_BUF_SIZE) {
return -1;
}
memcpy(str_buf, prefix, prefix_len);
// Write string buffer
va_list args;
va_start(args, format);
int total_len = spi_out_write_str(str_buf, format, args, prefix_len);
va_end(args);
if (total_len == 0) {
return -1;
}
// Write log control block buffer
spi_out_write_hex(log_cb, source, str_buf, (uint16_t)total_len, true);
if (fallback) {
xSemaphoreGive(LOG_MODULE_MUTEX(ul));
}
return 0;
}
#endif // SPI_OUT_HOST_ENABLED
#if SPI_OUT_HCI_ENABLED
int ble_log_spi_out_hci_write(uint8_t source, const uint8_t *addr, uint16_t len)
{
if (!LOG_MODULE_INIT_FLAG(hci)) {
return -1;
}
if (source == BLE_LOG_SPI_OUT_SOURCE_HCI_UPSTREAM) {
#if SPI_OUT_LL_ENABLED
ble_log_spi_out_ll_write(len, addr, 0, NULL, BIT(LL_LOG_FLAG_HCI_UPSTREAM));
#endif // SPI_OUT_LL_ENABLED
}
if (source == BLE_LOG_SPI_OUT_SOURCE_HCI_DOWNSTREAM) {
spi_out_log_cb_t *log_cb;
bool fallback = false;
if (!spi_out_get_task_mapping(LOG_MODULE_TASK_MAP(hci),
LOG_MODULE_CB_CNT(hci), &log_cb, NULL)) {
// NimBLE workaround
fallback = true;
xSemaphoreTake(LOG_MODULE_MUTEX(ul), portMAX_DELAY);
log_cb = LOG_MODULE_CB(ul, 0);
}
spi_out_write_hex(log_cb, source, addr, len, true);
if (fallback) {
xSemaphoreGive(LOG_MODULE_MUTEX(ul));
}
}
return 0;
}
#endif // SPI_OUT_HCI_ENABLED
#if SPI_OUT_MESH_ENABLED
int ble_log_spi_out_mesh_write(const char *prefix, const char *format, ...)
{
if (!LOG_MODULE_INIT_FLAG(mesh) || !prefix || !format) {
return -1;
}
spi_out_log_cb_t *log_cb;
uint8_t *str_buf;
if (!spi_out_get_task_mapping(LOG_MODULE_TASK_MAP(mesh),
LOG_MODULE_CB_CNT(mesh), &log_cb, &str_buf)) {
return -1;
}
// Copy prefix to string buffer
int prefix_len = strlen(prefix);
if (prefix_len >= SPI_OUT_LOG_STR_BUF_SIZE) {
return -1;
}
memcpy(str_buf, prefix, prefix_len);
// Write string buffer
va_list args;
va_start(args, format);
int total_len = spi_out_write_str(str_buf, format, args, prefix_len);
va_end(args);
if (total_len == 0) {
return -1;
}
// Write log control block buffer
spi_out_write_hex(log_cb, BLE_LOG_SPI_OUT_SOURCE_MESH, str_buf, (uint16_t)total_len, true);
return 0;
}
#endif // SPI_OUT_MESH_ENABLED
#endif // CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED